
A NEW ALGORITHM FOR FLOORPLAN DESIGN.’

D. F. Wong and C. L. Liu

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield, Urbana, IL 61801

Abstract

We present in this paper a new algorithm for floorplan
design using the method of simulated annealing. The major
contributions of the paper are: 1. A new representation of
floorplans (normalized Polish expressions) which enables us to
carry out the neighborhood search effectively. 2. A simultane-
ous minimization of area and total interconnection length in
the final solution. Experimental results indicate that the algo-
rithm performs well in many test problems.

1. Introduction

Floorplan design ([He 821, [Ma 821, [Ot 821) is one of the
most important problems in VLSI circuit layout. It is a gen-
eralization of the classical module placement problem ([PV 791,
[La SO]). Both problems are concerned with the placement of
rectangular modules of arbitrary size and dimensions such that
the total area occupied by the modules and the interconnec-
tions is minimum. In the module placement problem, the
dimensions of the modules are fixed. On the other hand, in
the floorplan design problem the modules may assume any
shape permitted by its shape constraints (e.g. a range of possi-
ble aspect ratios). The flexibility in the shape of the modules
represents the designer’s freedom to manipulate the modules’
internal structure, and is hence a more accurate reflection of
the steps carried out in the physical design process.

We are given a set of IZ modules named 1,2,...,n and a
corresponding list of n triplets of numbers (AI,rl,sl),

(A z~rw~z), . , (A,, ,r, Is,). The triplet of numbers (A. r. s.) *r 8, I Y
with zi < si, specifies the area and the shape constraints for
the module i. In fact, if we let wi be the width of module i
and hi be the height of module i, we must have :

(1) w;h; = A,,

(2) ri <hi/wi <si ifi ES,,

(3) ri 5 hi/w; < si or l/si 5 hi/wi 5 l/ri if i E S,.

Module i is a rigid module if ri = sir otherwise it is a
flexible module. We are given two set S, and S, such that
s, u s, = (1,2 ,...) n). The set S, specifies the set of modules
with fixed orientation, and the set S, specifies the set of
modules with free orientations. The range of the aspect ratio
of the final chip that contain the n modules is specified by two
numbers (p,q), p 5 q. We are also given an nxn intercon-
nection matrix C = (.cij),,Xn, with 0 5 cij < 1, 1 < i ,j 2 n,

’ This work was partially supported by the National Science Founda-
tion under grant DCR 84-04239 and by a grant from the General Electric
Company.

which provides information on the wiring density between each
pair of modules.

A Ieasible solution of the floorplan design problem con-
sists of an enveloping rectangle R subdivided by horizontal
and vertical line segments into n nonoverlapping rectangles
labeled 1,2,..., n . The aspect ratio of R is between p and q,
and for each i, rectangle i (with dimensions (zi,yi)) is large
enough to accommodate module i. (i.e. zi > wi and yi 2 hi
where wi and hi satisfy the above three conditions.)

In this paper, we present an algorithm that produces a
feasible solution to the floorplan design problem which simul-
taneously minimizes the area of the chip and a proximity
measure based on a total wire length estimation among the
modules. The technique of simulated annealing ((Ki 83],[Le
851) is employed to solve the problem.

There are several advantages of our algorithm over exist-
ing algorithms for the solution of the floorplan design problem
(e.g. [Ma 821, [Ot 82a]). Some of the existing algorithms derive
the final solution in two stages. They first determine the rela-
tive positions of the modules on the chip using primarily inter-
connection information, then they use the area and shape
information to minimize the area of the chip. Whereas our
algorithm considers simultaneously the interconnection infor-
mation as well as the area and shape information. Existing
algorithms that employ the technique of simulated annealing
either use a representation that leads to an unnecessarily large
number of states and thus ultimately a slow rate of conver-
gence ([SS 85]), or apply the technique only at a particular
stage of a heuristic floorplan design algorithm ([OG 841). Our
algorithm is based on a new representation of floorplans called
normalized Polish expressions which enables us to speed up
the search procedure significantly.

2. Definitions

A rectangle dissection is a subdivision of a given rectan-
gle by horizontal and vertical line segments into a finite
number of non-overlapping rectangles. The non-overlapping
rectangles are called basic rectangles. By cutting a rectangle,
we mean to divide the rectangle into two rectangles by a verti-
cal or horizontal line. A slicing structure is a rectangle
dissection that can be obtained by recursively cutting rectan-
gles into smaller rectangles (see Fig.la). The hierarchical
structure of a slicing structure can be described by an oriented
rooted binary tree, called a slicing tree (see Fig.lb). Each
internal node of the tree is labeled either * or f, corresponding
to either a vertical or a horizontal cut, respectively. Each leaf
corresponds to a basic rectangle and is labeled by a number

23rd Design Automation Conference

0738-100X/86/0000/0101$01.00 01986 IEEE
Paper 7.1

101

between 1 and n when the slicing structure has n basic rectan-
gles. A skewed slicing tree is a slicing tree in which no node
and its right son has the same label in -(*,+I. (See Fig.2.)

A binary sequence b,b, * * * b, is a balloting sequence iff

for any k, 1 5 k <m, the number of 0 ‘s in b, * * * b, is less

than the number of the 1 ‘s in b 1 . . . b, _ Let (T be a function IJ
: cl,2 ,..., n,*,+J -1 (O,l) defined by o(i) == 1, 15 i In, and
U(k) = u(+) = 0.

A sequence ala2 . . . a2,-1 of elements from
{l,Z,..., n ,*,+) is a Polish expression of length 2n -1 iff

(1) every i appears exactly once in the sequence,
1 5 i <2n ---I.,

(2) 4++32) . . . (T(cY~~-~) is a balloting sequence.’

A Polish expression (Y~OI~ . . . a2n-1 is said to be normal-
ized iff there is no consecutive * ‘s or + ‘s in the sequence.
(e.g. 1 2 + 4 3 * + is a normalized Polish expression.)

3. Solution Representation

In this paper, we restrict our search to floorplans that
are slicing structures. Otten ([Ot 82b]) pointed out that slicing
structures have several advantages over general rectangle
dissections in floorplan design. It is also known that slicing
structures are computationally easier to handle ([St 83],[Ot
831). Slicing structures can be represented by either series-
parallel graphs ([Ot 821) or slicing trees ((Ot 831). In this sec-
tion, we introduce a new representation of slicing structures
that is most, suitable for the technique of simulated annealing.
For the sake of brevity, we omit all the proofs of the lemmas
and theorems in the rest of this paper.

LEMMA. There is a l-1 correspondence between the set
of slicing trees with n leaves and the set of Polish expressions
of length 2n -1.

In general, there might be two or more Polish expres-
sions (slicing trees) that correspond to a given slicing structure
(see Fig.3). The number of Polish expressions corresponding to
a slicing structure can vary from slicing structure to slicing
structure. This makes Polish expressions an undesirable
choice for representation of solutions in a simulated annealing
setting for the following reasons: 1. There is an unnecessary
increase in the number of states. 2. The set of slicing struc-

tures is unevenly distributed over the set of Polish expressions,
which might lead to unintentional and undesirable biases

toward some slicing structures. The next theorem completely
resolves the multiple representation problem. The theorem
follows from the next lemma and the observation that given
any slicing structure, it can be described by a unique skewed
slicing tree by performing the cuts always from right to left
and from top to bottom. Hence, we shall use the set of nor-
malized Polish expressions as the solution space in our simu-
lated annealing algorithm.

LEM&fA. There is a l-l correspondence between the set
of skewed slicing trees with n leaves and the set of normalized
Polish expressions of length 2~ -1.

*ci1a2. . . “&)-.l is said to have the balloting property if condition
(2) is satisfied.

THEOREM. There is a l-l correspondence between thd
set of normalized Polish expressions of length 2n-1 and the
set of slicing structures with TV. basic rectangles.

A Slicing tree is essentially a top down description of a
slicing structure. It specifies bow a given rectangle is cut into
smaller rectangles by horizontal and vertical cutting lines. On
the other hand, a slicing structures can also be described by
recursively combining smaller slicing structures. Indeed, we
can view a Polish expression as a bottom UP description of a
slicing structure. In fact, we can interpret the symbols * and
+ as two binary operators between slicing structures. If A and
B are slicing structures, we can interpret A +B and A*B as
the resulting slicing structures obtained by placing B on top of
A, and B to the right of A, respectively as shown in Fig.4. An
inorder traversal ([Ah 741) of the slicing tree result in an
“arithmetic expression” with * and + as the operators, and the
basic rectangles as operands. (See Fig.5.) This expression
specifies how to build the final slicing structure from smaller
ones. The Polish expression in fact is the Polish postfix nota-
tion for this “arithmetic expression”. From now on, we shall
refer the elements in /1,2,...,n) as operands, and the elements
in I 1, + ! as operators.

4. Neighborhood Structure

A sequence b,b, . . . b, of k operators is a called a chain
of length k iff bi # bi+l, 1 5 i 5 k-1. A chain of length 0 is
defined to be the empty sequence. It is clear that for every
k p 0, there are only two possible types of chains of length k :
t-j-*+* . . * and +*++I- . . * . We define the complement of a

chain to be the chain obtained by interchanging the operators
* and + (e.g. the complement of *+*+u is +*+*+). Let 01 =

alo2 ’ ’ ’ +7,-l be a normalized Polish expression. Note that
Q can also be written as c~~,c~K~c~ . . . c~-~R,,c,,, where
a1,1r2 ,..., *n is a permutation of 1,2 ,..., n, the ci’s are chains
(possibly of zero length), and C(length of c;) = n-l (see

Fig.6).

Two operands in CY are said to be adjacent iff they are con-

secutive elements in ~1 . . . z,, An operand and an operator
are said to be adjacent iff they are consecutive elements in

al+ . . . azn-l. We define three types of moves that can be
used to modify a given normalized Polish expression.

Ml. Swap two adjacent operands.

M2. Complement some chain of nonzero length.

M3. Swap two adjacent operand and operator.

Two normalized Polish expressions are said to be neigh-
bors if one can be obtained from the other via one of these
three moves. For a given normalized Polish expression 01, we
can choose a neighbor of cu by first randomly select a type of
move and then randomly select a pair of adjacent elements or

a chain according to the type of move selected. We also want
to make sure that the move selected will also produce a nor-
malized Polish expression. It is clear that Ml and M2 always
produce a normalized Polish expression. This is not always
the case for M3. In fact, M3 will change the sequence

+4-+4 . . ~4”.2,-1). It might produce a sequence that

contains identical consecutive operators or violates the ballot-
ing property. To generate a move of type M3, we can repeat-
edly choose a pair of adjacent operator and operand, and then

Paper 7.1
102

check whether swapping the operator and operand will lead to
an expression that is not a normalized Polish expression. Since
we have to make type M3 moves very often, efficient algorithm
for checking the conditions is crucial. Fortunately, whether a
given M3 move will result in a normalized Polish expression
can be tested very rapidly (O(1) time). Since it is trivial to
determine whether a M3 move will introduce identical consecu-
tive operators, we only need to show how to test efficiently
whether a sequence possesses the balloting property. Let d,
denote the number of O’s in r(al) . . . a(ork), 1 < k 127~ -1.

Consider a M3 move that swaps oi and CY;+~. We only need to
consider the case when ai is an operand and (Y~+~ is an opera-
tor. In this case, it can be shown that swapping ai and ai+1
will not violate the balloting property iff 2di+l < i. Moreover,
the di’s can be updated easily after every move. Finally, it

can be shown that the three types of moves are sufficient to
ensure that it is possible to go from any normalized Polish
expression to any other via a sequence of moves. (See Fig.7 for
a pictorial demonstration of the three types of moves.)

5. The Cost Function

For a given feasible solution of the floorplan design prob-
lem, we shall use the area of the enveloping rectangle and the
center to center total wire length estim:~l.ion as the measures
of the quality of floorplans. Let dij be 111~ Uanhattan distance
between the centers of basic rectanglq,s i and j, 1 < i ,j 2 n.
The total wire length is given by P c,,;~!, ,. Irl fa.ct,, our

l&<n
approach is quite flexible with respect to dillkrent kinds of
quality measures (especially variations of proximity measures).
We have arbitrarily chosen the frequently used total wire
length in our experiments only to demonstrate the flexibility
of our algorithm.

A floorplan realization of a given slicing structure is a
feasible solution of the floorplan design problem where the
basic rectangles in the slicing structure are the spaces allocated
to the modules. In general, there are many floorplan realiza-
tions of a given slicing structure. The relative positions of the
modules in different floorplan realizations are essentially fixed
by the given slicing structure. Those floorplan realizations
with smaller area, in general, tend to pull the modules closer
together and hence achieve shorter wire length. For a given
normalized Polish expression (x, let S,, denote its correspond-
ing slicing structure. We define the area measure A and the
total wire length measure W of 01 to be the area and the total
wire lengths of a minimum area floorplan realization of S,.

The cost function we use is of the following form :

!P=A +X,W

where X, control the relative importance of A and W.

8. Cost Computation

6.1. Bounding Curve

Let r be a continuous curve on the plane. Z’ is said to be
decreasing if for any two points (z,,y,), (s,,yz) on r with
x1 5 x2, we must have y, _> yz. r is a bounding curve if it
satisfies the following three conditions. 1. It is decreasing. 2. It
lies completely in the first quadrant, i.e. u > 0 and v > 0 for
all (u,v) E l’. 3. It partitions the first quadrant into two con-
nected regions. The connected region which contains all the
paints (a ,a) for very Large a is called the bounded area with

respect to the bounding curve. (see Fig.8.) Let r and A be
two bounding curves. We define I’+ A to be the curve
((u,u+w) I(u,u) E rand (u,‘~)En) and r+A to be the
curve ((u+v,w) I(u,w)~rand (u,uJ)EA). r+A (r*A) is
obtained by adding the two curves Z’ and A along the y-
direction (Z -direction). It is easy to see that r + A and r * A
are also bounding curves. Moreover, they are piecewise linear

if r and A are both piecewise linear. For piecewise linear
bounding curves, there is an efficient algorithm to compute
r + A and r * A. A piecewise linear bounding curve is com-
pletely characterized by an ordered list of all the %orners” of
the curve. To add two piecewise linear bounding curves (along
either directions), we only have to add up the curves at the
“corners”.

6.2. Area Computation

For a given module i , let Wi and hi denote the width and
the height of the module, and let zi and yi denote the width
and the height of the basic rectangle i. We must have
zi>wi and yi>hi. The bounding curves in Fig.9
coTrespond to different kinds of shape constraints for a module
where the shaded regions are the bounded areas. A point in the
bounded area corresponds to a basic rectangle that can accom-
modate a given module. (The x and y coordinates of the point
are the horizontal and vertical dimensions of the basic rectan-
gle.) Fig.9a and Fig.Sb correspond to the case in which the
module is rigid. Fig.Sc and Fig.Sd correspond to the case in
which the module is flexible. Let H be the hyperbola sy = Ai,
L, be the line y = .si2, L, be the line y = yiz, L, be the line
y = l/riz, and L, be the line y = l/.siz. In these figures, a,
6, c and d are the intersections between the hyperbola H and
the lines L,, L,, L, and L,, respectively.

Let T,, be the slicing tree corresponding to CY. We can
associate a bounding curve r,, with each node v in T,. For
each node o in T,, the subtree rooted at v defines a slicing
structure R,. Let D, be the set of all possible dimensions of
R,. Let r, be the boundary of D, . It can be shown that r,, is
a bounding curve with D, as the bounding area. For every
three nodes u ,o,w in T, with u as the father of v and w, we
note that r, is either ‘:, *r, or r, +r, depending on whether
u is * or +, respectively. Hence, all the TV’s can be computed
by adding up the bounding curves of the basic rectangles (the
leaves). We assume the bounding curves for the basic rectan-
gles are all piecewise linear ([Ot 831) so that we can compute
efficiently all the T,,‘s. Once we have computed all the TV’s ,
we can compute the area measure A from r, where r is the
root of T,. (I’, is the bounding curve for the slicing structure

CX.) Let (nl,bJ ((al+l,bl+l)) be the point of intersection
between I; and the line y = px (y = qx). Let (a2,b2), (a3,b3),
. . . ,(a,,50 be all the “corners” of the curve that lies between
the lines y =pz and y = qx. (i.e. p 2 bj/aj 5 q.) The
dimensions of a minimum area realization are then given by
the point (ai,bi) such that aibi is minimum. We have

A = ai bi. Since we can have piecewise linear approximation

of the bounding curves for the basic rectangles with arbitrary
precision, it follows that we can determine A with arbitrary
precision.

In our simulated annealing algorithm, we need to per-
form area computation many times. Since each move is only a
local perturbation of the present Polish expression, many of
the r, ‘s remain unchanged. The next theorem describes the set

Paper 7.1
103

of rv’s that need to be recomputed for the new slicing struc-

ture. Indeed, the number of Z’,,‘s that need to be recomputed is
usually quite small. Thus, the computation time for the area
of each slicing structure examined in the annealing process can
be significantly reduced. Before we state the next theorem, we
need one more delinition. A fork in a tree consists of two
paths from two distinct nodes to the root as illustrated in
Fig.10.

THEOREM. After any move of type Ml, M2, or M3, the
set of Pv’s that are changed corresponds to a path or a fork in
T U.

We use Fig.11 to illustrate the above theorem. In the
given example, the Polish expression is of the form
* * . 17 + 16 . . . * 6 * . . 9 + * 8 We consider the follow-

ing three moves : 1. Swapping 17 and 16 (Ml). 2. Complement
the chain + c (M2). 3. Swapping * and 6 (M3). The forks (or
paths) associated with these three moves are shown in Fig. 1 la,
Fig.llb and Fig.llc.

We have designed an algorithm to compute the area
measure A. Our algorithm only recompute those P, ‘s that are
changed. It scans the Polish expression once, stores intermedi-
ate results on a stack, and add up bounding curves whenever it
is necessary.

6.3. Wire Length Computation

Once we have determined the dimension of a minimum
area floorplan reallization, we can compute recursively the
dimensions and the centers of all the basic rectangles using the
Z’v’s. After each move, we only recompute those terms cijdij
where either one or both of the centers of the basic rectangle i
and j changed. We can then subtract the old value of cijdij
and add the new value of cijdij to W.

7. The Annealing Schedule

We use a fixed ratio temperature schedule Tk = r .Tk-i,

k = 1,2,... . Our experiments indicate that setting r = 0.85
produces very satisfactory results.

To determine the value of T,, we can perform a sequence

of random moves and compute the quantity Anup, the average

of change in cost in uphill moves. We should have e -4.,/7’, _ -
P N 1 so that there will be a reasonable probability of accep-
tance at high temperatures. This suggests that T = - A,,,,, /
ln{P) is a good choice for T,. Our experiments indicate that T
should actually be smaller then T. We use T, = X,T where
X, < 1 is a constant used to compensate for initial solutions
that are too far from optimal.

Our algorithm can start with any initial normalized Pol-
ish expression. In our experiments, we start with the Polish
expression 12*3*4* . . . tn * which corresponds to placing the n
modules horizontally next to each other. This Polish expres-
sion is usually far from the optimal solution.

At each temperature, we try enough moves until either
there are N downhill moves or the total number of moves
exceeds 2N where N = O(number of neighbors) = O(n). We
terminate the annealing process if the number of accepted
moves is less than 5’% of all moves made at a certain tempera-
ture or the temperature is low enough.

8. Experimental Results and Discussions

We have implemented our simulated annealing algo-
rithm. The program is written in PASCAL and is run on a

PYRAMID. The experimental results are very encouraging.
They are summarized1 in Tables 1, 2 and 3. The modules in all
our tests problems are flexible modules with free orientations
allowed and ri = l/si. The running time for the test prob-
lems range from Y CPU minute for the 15 modules problem to
13 CPU minutes for the 40 modules problem.

The problems in Table 1 are randomly generated. The
areas of the modules (A;) are chosen uniformly between 0 and
20. For P4 and P5, all modules have the same aspect ratio
[si). It is 2 for P4 and 3 for P5. For the other problems, each
si is chosen uniformly between 1 and 3. The maximum aspect
ratio allowed for the final chip is 2. The interconnection
matrices are also randomly generated such that the weights
(cij) are between 0 and 1. Various values of X,, are used in
these test problems. Total Area in the table is the sum of the
areas of the given modules and hence is a lower bound on the
area of the final chip. Comparing the results for problems
with the same number of modules (i.e. P2 & P3, P4 & P5, and
P6 & P7), we discover that the final area (A) of P2 and P3 are
both veiy close to optimal while the final total wire length (W)
of P3 is substantially higher than that of P2. Since we gen- -
erate their interconnection matrices using the same probability
distribution, One might expect the values of W to be about the
same. The large difference in the final values of W is due to the

fact that the value of X, is 0 for P3, and hence the algorithm
makes no attempt to minimize W. We also observe that we
can obtain reasonable tradeoffs between area and wire length
without substantially increasing the area. Similar observation
can be made for the other two pairs of problems. For some of
the test problems with nonzero X,, we obtain solutions in
which the value of A -t Xv, W is about the same while the value
of A is smaller and the value of W is larger. This is to be
expected because of the tradeoffs between A and W in the cost
function. Also, for problems with zero X,, even though the
final wire lengths are large, they are much smaller than those
in random solutions. Since modules that are closely packed will
in general lead to a reduction of total wire length too. For
some of the test problems, suboptimality in area is due to the
presence of very rigid modules (small si), and the tradeoffs
between area and wire length. Fig.12 shows the final Aoorplan
for problem P8 which contains 40 modules.

Table 2 is a summary of results for a random problem
with 20 modules. The sum of the areas of the modules in this
problem is 195.37. We used various value of X, to demon-
strate the tradeoffs between area and wire length. As we
increase X,,, from 0 to 3, we observe that A increases from
196.42 to 220.30 while W decreases from 152.1 to 93.96. We
observe that those entries marked by a .\ are the values of the

cost function. They should be the minimum values for the
columns. This is indeed the case.

Table 3 shows the results for another 20 modules prob-
lem. For this problem, all modules have the same aspect ratio
s which is referred to as Module Ratio in table 3. The column
Chip Ratio in Table 3 is the maximum aspect ratio allowed for
the final chip. The value of X, is set to 0. This problem
demonstrates the elect of Module Ratio and Chip Ratio on the
final area of the chip. We observe that by relaxing either the
Module Ratio or the Chip Ratio we can reduce the final area.
Also, we observe that a Module Ratio of 2 gives enough flexi-
bility for achieving close to optimal final area.

Paper 7.1
I64

[Ah 741

[He 821

[Ki 831

[La 801

[Le 851

[Ma 821

REFERENCES

A. V. Aho, J. E. Hopcroft and J. D. Ullman, “The
Design and Analysis of Computer Algorithms,”
(Addison Wesley), (1974).

[Ot 82a] R. H. J. M. Otten, “Automatic Floorplan Design,”
Proc. 19th D. A. Gonf., (1982), 261-267.

[Ot 82b] R. H. J. M. Otten, ‘(Layout Structures,” Proc. IEEE

W. R. Heller, G. Sorkin and K. Maling, “The Planar
Package For System Designers,” Proc. 19th D. A.
Conf., (1982), 253-260.

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,
“Optimization by Simulated Annealing,” Science,
Vol. 220, (1983), 671-680.

U. Lauther, “A Min-Cut Placement Algorithm for
General Cell Assemblies Based on a Graph Represen-
tation,” Journal of Digital Systems, Vol. IV, Issue 1,
(1980), 21-34.

H. W. Leong, D. F. Wong and C. L. Liu, “A
Simulated-Annealing Channel Router,” Proc. Intl.
Conf.on Computer-Aided-Design, IEEE, (1985).

K. Maling, S. H. Mueller and W. R. Heller, “On Find-
ing Most Optimal Rectangular Package Plans,” Proc.
19th D. A. Conf., (1982), 663-670.

(0t 831

[OG 84)

[PV 791

[SS 851

[St 831

Large Scale Systems Symp.“(1982).

R. H. J. M. Otten, “Efficient Floorplan Optimiza-
tion,” Proc. ICCD 83, (1983), 499-502.

R. H. J. M. Otten, L. P. P. P. van Ginneken, “Floor-
plan Design using Simulated Annealing,” Proc.
ZCCAD 84, (1984), 96-98.

B.T. Preas, W. M. VanCleemput, “Placement Algo-
rithms for Arbitrary Shaped Blocks,” Proc. 16th D.
A. Conf., (1979), 474-480.

C. Sechen, A. Sangiovanni-Vincentelli, “The Tim-
berwolf Placement and Routing Package,” IEEE
Journal of Solid-State Circuits, Vol. SC-20, No.2,
(1985), 510-522.

L. Stockmeyer, “Optimal Orientations of Cells in
Slicing Floorplan Designs,” Information and Control,
Vol. 59, (1983), 91-101.

Table 1

Table 2 Table 3

Paper 7.1
105

/*,
+ *

1 2 3 * + 5 4 + *

7T171’271’3 c3 n4 “5 c5

co = c1 = c2 = c4 = the empty sequence.

Fig.6

Slicing structure

Fig.la

A
l A

2 3

not skewed

/\ /\
1 6

/t /+\
* 2 7 4

3 ’ ‘5
Fig.lb. Slicing tree

A 3 l /+/
1 2 2 3

Fig.2

skewed

* *

LIzI1
/\ /\

3 l 1 4 /“\ A 4
2 /+\ 4 l /+\

2 3 2 3

Fig.3. Two different slicing trees for the same slicing structure.

Fig.4

Fig.5

5

12*3+4*5-t: 3 4

I q 1 2

I Ml

(5(
12*4+3*5-t:

I
1 M3 4

12*4,+35*+:

I
M3

3
12*43+5*-t: 4 5 q 1 2

M3
4

12*435+*-t:

I M2

12+435+*-t:

M2 i
12+435*+*:

Fig.7

z

Fig.8

Paper 7.1
IO6

Fig.9b

Fig.Dc Fig.Sd

vQ

V-l

Fig.10

Fig.lla

39 1 40

26 31 Fig.llb

L

37
12 20

8

17 4

7 11 2

38

16

10
19

23 28

6 25 34

34 21 + 13 + 6 25 * 11 2 * 8 * + 10 * 19 37 + * 23 12 + * 28 20 + *
17 4 * 16 * 26 * 31 * + * 9 5 * 22 14 * 32 + * 27 29 * 35 * + 30 3 15
+*7*38+39*1833*+*140*2436*+*+

Fig.12

1132 3

Fig.llc

Paper 7.1
107

