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Abstract 

We present in this paper a new algorithm for floorplan 
design using the method of simulated annealing. The major 
contributions of the paper are: 1. A new representation of 
floorplans (normalized Polish expressions) which enables us to 
carry out the neighborhood search effectively. 2. A simultane- 
ous minimization of area and total interconnection length in 
the final solution. Experimental results indicate that the algo- 
rithm performs well in many test problems. 

1. Introduction 

Floorplan design ([He 821, [Ma 821, [Ot 821) is one of the 
most important problems in VLSI circuit layout. It is a gen- 
eralization of the classical module placement problem ([PV 791, 
[La SO]). Both problems are concerned with the placement of 
rectangular modules of arbitrary size and dimensions such that 
the total area occupied by the modules and the interconnec- 
tions is minimum. In the module placement problem, the 
dimensions of the modules are fixed. On the other hand, in 
the floorplan design problem the modules may assume any 
shape permitted by its shape constraints (e.g. a range of possi- 
ble aspect ratios). The flexibility in the shape of the modules 
represents the designer’s freedom to manipulate the modules’ 
internal structure, and is hence a more accurate reflection of 
the steps carried out in the physical design process. 

We are given a set of IZ modules named 1,2,...,n and a 
corresponding list of n triplets of numbers (AI,rl,sl), 

(A z~rw~z), . , (A,, ,r, Is, ). The triplet of numbers (A. r. s.) *r 8, I Y 
with zi < si, specifies the area and the shape constraints for 
the module i. In fact, if we let wi be the width of module i 
and hi be the height of module i, we must have : 

(1) w;h; = A,, 

(2) ri <hi/wi <si ifi ES,, 

(3) ri 5 hi/w; < si or l/si 5 hi/wi 5 l/ri if i E S,. 

Module i is a rigid module if ri = sir otherwise it is a 
flexible module. We are given two set S, and S, such that 
s, u s, = (1,2 ,...) n ). The set S, specifies the set of modules 
with fixed orientation, and the set S, specifies the set of 
modules with free orientations. The range of the aspect ratio 
of the final chip that contain the n modules is specified by two 
numbers (p,q), p 5 q. We are also given an nxn intercon- 
nection matrix C = (.cij ),,Xn, with 0 5 cij < 1, 1 < i ,j 2 n, 

’ This work was partially supported by the National Science Founda- 
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which provides information on the wiring density between each 
pair of modules. 

A Ieasible solution of the floorplan design problem con- 
sists of an enveloping rectangle R subdivided by horizontal 
and vertical line segments into n nonoverlapping rectangles 
labeled 1,2,..., n . The aspect ratio of R is between p and q, 
and for each i, rectangle i (with dimensions (zi,yi)) is large 
enough to accommodate module i. (i.e. zi > wi and yi 2 hi 
where wi and hi satisfy the above three conditions.) 

In this paper, we present an algorithm that produces a 
feasible solution to the floorplan design problem which simul- 
taneously minimizes the area of the chip and a proximity 
measure based on a total wire length estimation among the 
modules. The technique of simulated annealing ((Ki 83],[Le 
851) is employed to solve the problem. 

There are several advantages of our algorithm over exist- 
ing algorithms for the solution of the floorplan design problem 
(e.g. [Ma 821, [Ot 82a]). Some of the existing algorithms derive 
the final solution in two stages. They first determine the rela- 
tive positions of the modules on the chip using primarily inter- 
connection information, then they use the area and shape 
information to minimize the area of the chip. Whereas our 
algorithm considers simultaneously the interconnection infor- 
mation as well as the area and shape information. Existing 
algorithms that employ the technique of simulated annealing 
either use a representation that leads to an unnecessarily large 
number of states and thus ultimately a slow rate of conver- 
gence ([SS 85]), or apply the technique only at a particular 
stage of a heuristic floorplan design algorithm ([OG 841). Our 
algorithm is based on a new representation of floorplans called 
normalized Polish expressions which enables us to speed up 
the search procedure significantly. 

2. Definitions 

A rectangle dissection is a subdivision of a given rectan- 
gle by horizontal and vertical line segments into a finite 
number of non-overlapping rectangles. The non-overlapping 
rectangles are called basic rectangles. By cutting a rectangle, 
we mean to divide the rectangle into two rectangles by a verti- 
cal or horizontal line. A slicing structure is a rectangle 
dissection that can be obtained by recursively cutting rectan- 
gles into smaller rectangles (see Fig.la). The hierarchical 
structure of a slicing structure can be described by an oriented 
rooted binary tree, called a slicing tree (see Fig.lb). Each 
internal node of the tree is labeled either * or f, corresponding 
to either a vertical or a horizontal cut, respectively. Each leaf 
corresponds to a basic rectangle and is labeled by a number 
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between 1 and n when the slicing structure has n basic rectan- 
gles. A skewed slicing tree is a slicing tree in which no node 
and its right son has the same label in -(*,+I. (See Fig.2.) 

A binary sequence b,b, * * * b, is a balloting sequence iff 

for any k, 1 5 k <m, the number of 0 ‘s in b, * * * b, is less 

than the number of the 1 ‘s in b 1 . . . b, _ Let (T be a function IJ 
: cl,2 ,..., n,*,+J -1 (O,l) defined by o(i) == 1, 15 i In, and 
U(k) = u(+) = 0. 

A sequence ala2 . . . a2,-1 of elements from 
{l,Z,..., n ,*,+) is a Polish expression of length 2n -1 iff 

(1) every i appears exactly once in the sequence, 
1 5 i <2n ---I., 

(2) 4++32) . . . (T(cY~~-~) is a balloting sequence.’ 

A Polish expression (Y~OI~ . . . a2n-1 is said to be normal- 
ized iff there is no consecutive * ‘s or + ‘s in the sequence. 
(e.g. 1 2 + 4 3 * + is a normalized Polish expression.) 

3. Solution Representation 

In this paper, we restrict our search to floorplans that 
are slicing structures. Otten ([Ot 82b]) pointed out that slicing 
structures have several advantages over general rectangle 
dissections in floorplan design. It is also known that slicing 
structures are computationally easier to handle ([St 83],[Ot 
831). Slicing structures can be represented by either series- 
parallel graphs ([Ot 821) or slicing trees ((Ot 831). In this sec- 
tion, we introduce a new representation of slicing structures 
that is most, suitable for the technique of simulated annealing. 
For the sake of brevity, we omit all the proofs of the lemmas 
and theorems in the rest of this paper. 

LEMMA. There is a l-1 correspondence between the set 
of slicing trees with n leaves and the set of Polish expressions 
of length 2n -1. 

In general, there might be two or more Polish expres- 
sions (slicing trees) that correspond to a given slicing structure 
(see Fig.3). The number of Polish expressions corresponding to 
a slicing structure can vary from slicing structure to slicing 
structure. This makes Polish expressions an undesirable 
choice for representation of solutions in a simulated annealing 
setting for the following reasons: 1. There is an unnecessary 
increase in the number of states. 2. The set of slicing struc- 

tures is unevenly distributed over the set of Polish expressions, 
which might lead to unintentional and undesirable biases 

toward some slicing structures. The next theorem completely 
resolves the multiple representation problem. The theorem 
follows from the next lemma and the observation that given 
any slicing structure, it can be described by a unique skewed 
slicing tree by performing the cuts always from right to left 
and from top to bottom. Hence, we shall use the set of nor- 
malized Polish expressions as the solution space in our simu- 
lated annealing algorithm. 

LEM&fA. There is a l-l correspondence between the set 
of skewed slicing trees with n leaves and the set of normalized 
Polish expressions of length 2~ -1. 

*ci1a2. . . “&)-.l is said to have the balloting property if condition 
(2) is satisfied. 

THEOREM. There is a l-l correspondence between thd 
set of normalized Polish expressions of length 2n-1 and the 
set of slicing structures with TV. basic rectangles. 

A Slicing tree is essentially a top down description of a 
slicing structure. It specifies bow a given rectangle is cut into 
smaller rectangles by horizontal and vertical cutting lines. On 
the other hand, a slicing structures can also be described by 
recursively combining smaller slicing structures. Indeed, we 
can view a Polish expression as a bottom UP description of a 
slicing structure. In fact, we can interpret the symbols * and 
+ as two binary operators between slicing structures. If A and 
B are slicing structures, we can interpret A +B and A*B as 
the resulting slicing structures obtained by placing B on top of 
A, and B to the right of A, respectively as shown in Fig.4. An 
inorder traversal ([Ah 741) of the slicing tree result in an 
“arithmetic expression” with * and + as the operators, and the 
basic rectangles as operands. (See Fig.5.) This expression 
specifies how to build the final slicing structure from smaller 
ones. The Polish expression in fact is the Polish postfix nota- 
tion for this “arithmetic expression”. From now on, we shall 
refer the elements in /1,2,...,n ) as operands, and the elements 
in I 1, + ! as operators. 

4. Neighborhood Structure 

A sequence b,b, . . . b, of k operators is a called a chain 
of length k iff bi # bi+l, 1 5 i 5 k-1. A chain of length 0 is 
defined to be the empty sequence. It is clear that for every 
k p 0, there are only two possible types of chains of length k : 
t-j-*+* . . * and +*++I- . . * . We define the complement of a 

chain to be the chain obtained by interchanging the operators 
* and + (e.g. the complement of *+*+u is +*+*+). Let 01 = 

alo2 ’ ’ ’ +7,-l be a normalized Polish expression. Note that 
Q can also be written as c~~,c~K~c~ . . . c~-~R,,c,,, where 
a1,1r2 ,..., *n is a permutation of 1,2 ,..., n, the ci’s are chains 
(possibly of zero length), and C(length of c;) = n-l (see 

Fig.6). 

Two operands in CY are said to be adjacent iff they are con- 

secutive elements in ~1 . . . z,, An operand and an operator 
are said to be adjacent iff they are consecutive elements in 

al+ . . . azn-l. We define three types of moves that can be 
used to modify a given normalized Polish expression. 

Ml. Swap two adjacent operands. 

M2. Complement some chain of nonzero length. 

M3. Swap two adjacent operand and operator. 

Two normalized Polish expressions are said to be neigh- 
bors if one can be obtained from the other via one of these 
three moves. For a given normalized Polish expression 01, we 
can choose a neighbor of cu by first randomly select a type of 
move and then randomly select a pair of adjacent elements or 

a chain according to the type of move selected. We also want 
to make sure that the move selected will also produce a nor- 
malized Polish expression. It is clear that Ml and M2 always 
produce a normalized Polish expression. This is not always 
the case for M3. In fact, M3 will change the sequence 

+4-+4 . . ~4”.2,-1). It might produce a sequence that 

contains identical consecutive operators or violates the ballot- 
ing property. To generate a move of type M3, we can repeat- 
edly choose a pair of adjacent operator and operand, and then 

Paper 7.1 
102 



check whether swapping the operator and operand will lead to 
an expression that is not a normalized Polish expression. Since 
we have to make type M3 moves very often, efficient algorithm 
for checking the conditions is crucial. Fortunately, whether a 
given M3 move will result in a normalized Polish expression 
can be tested very rapidly (O(1) time). Since it is trivial to 
determine whether a M3 move will introduce identical consecu- 
tive operators, we only need to show how to test efficiently 
whether a sequence possesses the balloting property. Let d, 
denote the number of O’s in r(al) . . . a(ork), 1 < k 127~ -1. 

Consider a M3 move that swaps oi and CY;+~. We only need to 
consider the case when ai is an operand and (Y~+~ is an opera- 
tor. In this case, it can be shown that swapping ai and ai+1 
will not violate the balloting property iff 2di+l < i. Moreover, 
the di’s can be updated easily after every move. Finally, it 

can be shown that the three types of moves are sufficient to 
ensure that it is possible to go from any normalized Polish 
expression to any other via a sequence of moves. (See Fig.7 for 
a pictorial demonstration of the three types of moves.) 

5. The Cost Function 

For a given feasible solution of the floorplan design prob- 
lem, we shall use the area of the enveloping rectangle and the 
center to center total wire length estim:~l.ion as the measures 
of the quality of floorplans. Let dij be 111~ Uanhattan distance 
between the centers of basic rectanglq,s i and j, 1 < i ,j 2 n. 
The total wire length is given by P c,,;~!, ,. Irl fa.ct,, our 

l&<n 
approach is quite flexible with respect to dillkrent kinds of 
quality measures (especially variations of proximity measures). 
We have arbitrarily chosen the frequently used total wire 
length in our experiments only to demonstrate the flexibility 
of our algorithm. 

A floorplan realization of a given slicing structure is a 
feasible solution of the floorplan design problem where the 
basic rectangles in the slicing structure are the spaces allocated 
to the modules. In general, there are many floorplan realiza- 
tions of a given slicing structure. The relative positions of the 
modules in different floorplan realizations are essentially fixed 
by the given slicing structure. Those floorplan realizations 
with smaller area, in general, tend to pull the modules closer 
together and hence achieve shorter wire length. For a given 
normalized Polish expression (x, let S,, denote its correspond- 
ing slicing structure. We define the area measure A and the 
total wire length measure W of 01 to be the area and the total 
wire lengths of a minimum area floorplan realization of S,. 

The cost function we use is of the following form : 

!P=A +X,W 

where X, control the relative importance of A and W. 

8. Cost Computation 

6.1. Bounding Curve 

Let r be a continuous curve on the plane. Z’ is said to be 
decreasing if for any two points (z,,y,), (s,,yz) on r with 
x1 5 x2, we must have y, _> yz. r is a bounding curve if it 
satisfies the following three conditions. 1. It is decreasing. 2. It 
lies completely in the first quadrant, i.e. u > 0 and v > 0 for 
all (u,v) E l’. 3. It partitions the first quadrant into two con- 
nected regions. The connected region which contains all the 
paints (a ,a ) for very Large a is called the bounded area with 

respect to the bounding curve. (see Fig.8.) Let r and A be 
two bounding curves. We define I’+ A to be the curve 
((u,u+w) I(u,u) E rand ( u,‘~)En) and r+A to be the 
curve ((u+v,w) I( u,w)~rand (u,uJ)EA). r+A (r*A) is 
obtained by adding the two curves Z’ and A along the y- 
direction (Z -direction). It is easy to see that r + A and r * A 
are also bounding curves. Moreover, they are piecewise linear 

if r and A are both piecewise linear. For piecewise linear 
bounding curves, there is an efficient algorithm to compute 
r + A and r * A. A piecewise linear bounding curve is com- 
pletely characterized by an ordered list of all the %orners” of 
the curve. To add two piecewise linear bounding curves (along 
either directions), we only have to add up the curves at the 
“corners”. 

6.2. Area Computation 

For a given module i , let Wi and hi denote the width and 
the height of the module, and let zi and yi denote the width 
and the height of the basic rectangle i. We must have 
zi>wi and yi>hi. The bounding curves in Fig.9 
coTrespond to different kinds of shape constraints for a module 
where the shaded regions are the bounded areas. A point in the 
bounded area corresponds to a basic rectangle that can accom- 
modate a given module. (The x and y coordinates of the point 
are the horizontal and vertical dimensions of the basic rectan- 
gle.) Fig.9a and Fig.Sb correspond to the case in which the 
module is rigid. Fig.Sc and Fig.Sd correspond to the case in 
which the module is flexible. Let H be the hyperbola sy = Ai, 
L, be the line y = .si2, L, be the line y = yiz, L, be the line 
y = l/riz, and L, be the line y = l/.siz. In these figures, a, 
6, c and d are the intersections between the hyperbola H and 
the lines L,, L,, L, and L,, respectively. 

Let T,, be the slicing tree corresponding to CY. We can 
associate a bounding curve r,, with each node v in T,. For 
each node o in T,, the subtree rooted at v defines a slicing 
structure R,. Let D, be the set of all possible dimensions of 
R,. Let r, be the boundary of D, . It can be shown that r,, is 
a bounding curve with D, as the bounding area. For every 
three nodes u ,o,w in T, with u as the father of v and w, we 
note that r, is either ‘:, *r, or r, +r, depending on whether 
u is * or +, respectively. Hence, all the TV’s can be computed 
by adding up the bounding curves of the basic rectangles (the 
leaves). We assume the bounding curves for the basic rectan- 
gles are all piecewise linear ([Ot 831) so that we can compute 
efficiently all the T,,‘s. Once we have computed all the TV’s , 
we can compute the area measure A from r, where r is the 
root of T,. (I’, is the bounding curve for the slicing structure 

CX.) Let (nl,bJ ((al+l,bl+l)) be the point of intersection 
between I; and the line y = px (y = qx). Let (a2,b2), (a3,b3), 
. . . ,(a,,50 be all the “corners” of the curve that lies between 
the lines y =pz and y = qx. (i.e. p 2 bj/aj 5 q.) The 
dimensions of a minimum area realization are then given by 
the point (ai,bi) such that aibi is minimum. We have 

A = ai bi. Since we can have piecewise linear approximation 

of the bounding curves for the basic rectangles with arbitrary 
precision, it follows that we can determine A with arbitrary 
precision. 

In our simulated annealing algorithm, we need to per- 
form area computation many times. Since each move is only a 
local perturbation of the present Polish expression, many of 
the r, ‘s remain unchanged. The next theorem describes the set 
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of rv’s that need to be recomputed for the new slicing struc- 

ture. Indeed, the number of Z’,,‘s that need to be recomputed is 
usually quite small. Thus, the computation time for the area 
of each slicing structure examined in the annealing process can 
be significantly reduced. Before we state the next theorem, we 
need one more delinition. A fork in a tree consists of two 
paths from two distinct nodes to the root as illustrated in 
Fig.10. 

THEOREM. After any move of type Ml, M2, or M3, the 
set of Pv’s that are changed corresponds to a path or a fork in 
T U. 

We use Fig.11 to illustrate the above theorem. In the 
given example, the Polish expression is of the form 
* * . 17 + 16 . . . * 6 * . . 9 + * 8 . . . . We consider the follow- 

ing three moves : 1. Swapping 17 and 16 (Ml). 2. Complement 
the chain + c (M2). 3. Swapping * and 6 (M3). The forks (or 
paths) associated with these three moves are shown in Fig. 1 la, 
Fig.llb and Fig.llc. 

We have designed an algorithm to compute the area 
measure A. Our algorithm only recompute those P, ‘s that are 
changed. It scans the Polish expression once, stores intermedi- 
ate results on a stack, and add up bounding curves whenever it 
is necessary. 

6.3. Wire Length Computation 

Once we have determined the dimension of a minimum 
area floorplan reallization, we can compute recursively the 
dimensions and the centers of all the basic rectangles using the 
Z’v’s. After each move, we only recompute those terms cijdij 
where either one or both of the centers of the basic rectangle i 
and j changed. We can then subtract the old value of cijdij 
and add the new value of cijdij to W. 

7. The Annealing Schedule 

We use a fixed ratio temperature schedule Tk = r .Tk-i, 

k = 1,2,... . Our experiments indicate that setting r = 0.85 
produces very satisfactory results. 

To determine the value of T,, we can perform a sequence 

of random moves and compute the quantity Anup, the average 

of change in cost in uphill moves. We should have e -4.,/7’, _ - 
P N 1 so that there will be a reasonable probability of accep- 
tance at high temperatures. This suggests that T = - A,,,,, / 
ln{P) is a good choice for T,. Our experiments indicate that T 
should actually be smaller then T. We use T, = X,T where 
X, < 1 is a constant used to compensate for initial solutions 
that are too far from optimal. 

Our algorithm can start with any initial normalized Pol- 
ish expression. In our experiments, we start with the Polish 
expression 12*3*4* . . . tn * which corresponds to placing the n 
modules horizontally next to each other. This Polish expres- 
sion is usually far from the optimal solution. 

At each temperature, we try enough moves until either 
there are N downhill moves or the total number of moves 
exceeds 2N where N = O(number of neighbors) = O(n). We 
terminate the annealing process if the number of accepted 
moves is less than 5’% of all moves made at a certain tempera- 
ture or the temperature is low enough. 

8. Experimental Results and Discussions 

We have implemented our simulated annealing algo- 
rithm. The program is written in PASCAL and is run on a 

PYRAMID. The experimental results are very encouraging. 
They are summarized1 in Tables 1, 2 and 3. The modules in all 
our tests problems are flexible modules with free orientations 
allowed and ri = l/si. The running time for the test prob- 
lems range from Y CPU minute for the 15 modules problem to 
13 CPU minutes for the 40 modules problem. 

The problems in Table 1 are randomly generated. The 
areas of the modules (A;) are chosen uniformly between 0 and 
20. For P4 and P5, all modules have the same aspect ratio 
[si). It is 2 for P4 and 3 for P5. For the other problems, each 
si is chosen uniformly between 1 and 3. The maximum aspect 
ratio allowed for the final chip is 2. The interconnection 
matrices are also randomly generated such that the weights 
(cij) are between 0 and 1. Various values of X,, are used in 
these test problems. Total Area in the table is the sum of the 
areas of the given modules and hence is a lower bound on the 
area of the final chip. Comparing the results for problems 
with the same number of modules (i.e. P2 & P3, P4 & P5, and 
P6 & P7), we discover that the final area (A) of P2 and P3 are 
both veiy close to optimal while the final total wire length (W) 
of P3 is substantially higher than that of P2. Since we gen- - 
erate their interconnection matrices using the same probability 
distribution, One might expect the values of W to be about the 
same. The large difference in the final values of W is due to the 

fact that the value of X, is 0 for P3, and hence the algorithm 
makes no attempt to minimize W. We also observe that we 
can obtain reasonable tradeoffs between area and wire length 
without substantially increasing the area. Similar observation 
can be made for the other two pairs of problems. For some of 
the test problems with nonzero X,, we obtain solutions in 
which the value of A -t Xv, W is about the same while the value 
of A is smaller and the value of W is larger. This is to be 
expected because of the tradeoffs between A and W in the cost 
function. Also, for problems with zero X,, even though the 
final wire lengths are large, they are much smaller than those 
in random solutions. Since modules that are closely packed will 
in general lead to a reduction of total wire length too. For 
some of the test problems, suboptimality in area is due to the 
presence of very rigid modules (small si), and the tradeoffs 
between area and wire length. Fig.12 shows the final Aoorplan 
for problem P8 which contains 40 modules. 

Table 2 is a summary of results for a random problem 
with 20 modules. The sum of the areas of the modules in this 
problem is 195.37. We used various value of X, to demon- 
strate the tradeoffs between area and wire length. As we 
increase X,,, from 0 to 3, we observe that A increases from 
196.42 to 220.30 while W decreases from 152.1 to 93.96. We 
observe that those entries marked by a .\ are the values of the 

cost function. They should be the minimum values for the 
columns. This is indeed the case. 

Table 3 shows the results for another 20 modules prob- 
lem. For this problem, all modules have the same aspect ratio 
s which is referred to as Module Ratio in table 3. The column 
Chip Ratio in Table 3 is the maximum aspect ratio allowed for 
the final chip. The value of X, is set to 0. This problem 
demonstrates the elect of Module Ratio and Chip Ratio on the 
final area of the chip. We observe that by relaxing either the 
Module Ratio or the Chip Ratio we can reduce the final area. 
Also, we observe that a Module Ratio of 2 gives enough flexi- 
bility for achieving close to optimal final area. 
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