
LI-BIST: A Low-Cost Self-Test Scheme for SoC Logic Cores and Interconnects�

Krishna Sekar Sujit Dey
Department of Electrical and Computer Engineering, University of California, San Diego

fksekar, deyg@ece.ucsd.edu

Abstract
For deep sub-micron system-on-chips (SoC), intercon-

nects are critical determinants of performance, reliability
and power. Buses and long interconnects being susceptible
to crosstalk noise, may lead to functional and timing fail-
ures. Existing at-speed interconnect crosstalk test methods
are based on either (i) inserting dedicated interconnect self-
test structures (leading to significant area overhead), or (ii)
using existing logic BIST structures (e.g., LFSRs), which of-
ten result in poor defect coverage. Additionally, it has been
shown that power consumed during testing can potentially
become a significant concern.

In this paper, we present Logic-Interconnect BIST (LI-
BIST), a comprehensive self-test solution for both the logic
of the cores and the SoC interconnects. LI-BIST reuses exist-
ing LFSR structures but generates high-quality tests for inter-
connect crosstalk, while minimizing area overhead and inter-
connect power consumption. On applying LI-BIST to a DSP
chip, we achieved crosstalk defect coverage of99:7% for the
interconnects and single stuck-at-fault coverage of91:36%
for the logic cores, while incurring an area overhead of only
4% over conventional LBIST.

1. Introduction

Advances in device technology have led to an era where
entire systems can be implemented on a single chip, referred
to as System-on-Chip (SoC). As SoC complexity grows with
increasing integration and reducing feature sizes, the on-chip
interconnect architecture, which is responsible for inter-core
communication, plays a much more critical role since it starts
dominating system performance [11] and power consump-
tion [8]. Reliability of SoCs depends increasingly on the
error-free operation of such interconnects. Testing of SoCs,
hence, implies testing not only the logic cores but also the
interconnect architecture.

The use of deep sub-micron (DSM) technology in SoCs
increases the capacitive coupling between adjacent wires
leading to severe crosstalk noise, which causes the function-
ality or performance of the chip to deviate significantly from
expected behavior. Several physical design [14, 3] and anal-
ysis [9, 10] techniques have been developed to allow design
for margin and to minimize signal integrity problems. How-
ever, these may be prohibitive in terms of design cost. Also, it
impossible to take into account all the possible process vari-
ations and physical defects during design. Hence, we need to
address the crosstalk issue by means of testing techniques.

�This work is supported by MARCO/DARPA Gigascale Silicon Re-
search Center (GSRC).

Increased cross-coupling capacitance between a pair of
interconnects can produce either glitches or delays depend-
ing upon the signal transitions at the interconnects as shown
in Figure 1(a) and 1(b) respectively. Also, previous studies
[9, 5] have shown that crosstalk noise is more pronounced
for long interconnects. Current and future SoCs will be dom-
inated by a large number of very long interconnects and buses
needed for the integration and communication among the
cores in the chip [11]. In this paper, therefore, we focus on
developing a comprehensive test solution to address the test
needs of both the logic cores as well as the buses and global
interconnects of an SoC.

zz

(a) Glitch

zz

(b) Delay

Figure 1. Types of crosstalk faults

Crosstalk effects most adversely affect high performance
circuits operating at GHz clock frequencies. At-speed test-
ing is essential for testing such chips adequately since many
crosstalk effects are not manifested at lower speeds. How-
ever, the gap between ASIC speeds and external testers’
accuracy for timing signal resolution at ASIC pins is con-
stantly growing [11]. Furthermore, test equipment having
high speed, large pin count, large memory, and good timing
accuracy can be prohibitively expensive. We, therefore, em-
ploy self-testing techniques to address the problem of testing
for crosstalk in SoCs.

In recent years, the power consumption of digital systems
during testing has become a major concern as it may increase
significantly as compared to normal operational mode [15].
Also, empirical studies have shown that the power dissipation
associated with long interconnects accounts for a significant
fraction of the overall system power [8]. This power con-
sumption is dominated by the the increasing inter-wire cross-
coupling capacitances in DSM technology [12]. The energy
dissipated due to cross-coupling capacitances can vary de-
pending on the type of transitions on the interconnects [12].
We, therefore, also focus on making our self-test scheme ex-
tremely power-efficient.

Bai et al [2], have proposed inserting dedicated intercon-
nect self-test structures in the SoC to generate vectors which
have100% crosstalk defect coverage. This scheme is based
on the Maximal Aggressor Fault Model proposed by Cuviello
et al [5]. However, this method has a prohibitively high area
overhead. To reduce this overhead, existing logic BIST struc-

tures, like linear feedback shift registers (LFSRs), could be
reused to generate interconnect tests. But, LFSR vectors have
very poor crosstalk defect coverage. In this paper, we ad-
dress the issue of how to generate high quality interconnect
crosstalk tests, efficiently reusing existing test structures so
as to minimize the area overhead. Our proposed method-
ology, calledLogic-Interconnect BIST(LI-BIST), produces
high crosstalk defect coverage with low area penalty and low
interconnect power consumption.

The interconnect fault model used in this paper is the Max-
imal Aggressor Fault Model that was reported and validated
in [5]. Next, we briefly review this fault model, and the cor-
responding Maximal Aggressor test vectors.

1.1. Interconnect Crosstalk Fault Model

If the crosstalk problem is addressed at the process level,
the number of possible process variations and physical de-
fects that need to be considered even for a pair of intercon-
nects is very large. For wide buses, considering all such vari-
ations is clearly prohibitive. At the circuit level, the cumula-
tive effect of process variations can be described behaviorally
by a coarser mesh of lumped circuit elements, but the result-
ing fault universe is still too large. Hence, we need an ab-
stract fault model that can represent all crosstalk defects with
a small number of faults.

The Maximal Aggressor Fault Model (MAFM) [5] is a
functional fault model representing all the process varia-
tions and physical defects that lead to any of the following
four crosstalk errors on a wire designated as the victim wire
among the set of interconnects under test: positive glitch (gp),
negative glitch (gn), rising delay (dr) and falling delay (df).
All the other wires are designated as aggressors and act col-
lectively to generate the glitch or delay error on the victim.
Figure 2 shows the transitions needed on the aggressors and
victim wires to produce the maximum error effect for all four
error types on the victim wireYi. These transitions consti-
tute the Maximal Aggressor (MA) tests; they are necessary
and sufficient for detecting the corresponding four crosstalk
faults for the victim wireYi.

Test for gp
(positive glitch)

Test for gn
(negative glitch)

Test for df
(falling delay)

Test for dr
(rising delay)

victim aggressors

fault type

Figure 2. Maximal Aggressor Fault Model

From Figure 2 we see that the MA vectors are such that
all the aggressor wires have a same direction transition while
the victim wire remains at0/1 or has an opposite direction
transition. Such vectors cause the maximum cross-coupling
capacitive effect on the victim wire. Hence, vectors which
cause a majority of the wires to transition in the same direc-
tion and relatively few wires to remain at0/1 or transition in
the opposite direction (and thus exciting high cross-coupling

capacitive effect on the victim wires) achieve high intercon-
nect crosstalk defect coverage.

1.2. Paper Outline

In Section 2, we briefly describe the interconnect test
scheme proposed by Baiet al in [2]. In Section 3, we discuss
how existing BIST structures could be reused to deliver inter-
connect tests, and the shortcomings thereof. These shortcom-
ings are addressed in Section 4, where we propose a new test
generator design which can generate vectors for both logic
as well as interconnects and also present the overall test ar-
chitecture for LI-BIST. Experimental results are presented in
Section 5. Section 6 concludes the paper.

2. Interconnect Test using Dedicated Self-Test
Structures

A self-test methodology for testing interconnects based on
MAFM has been proposed by Bai, Dey & Rajski [2]. Here,
we briefly describe their scheme.

The scheme is based on the fact that since the required
Maximal Aggressor tests are knowna-priori, if suitable self-
test structures can be inserted in the SoC to generate all the
required vectors, then the self-test methodology will be able
to achieve100% crosstalk defect coverage. For each core to
core test transaction, the methodology requires a test gener-
ator in the interconnect interface of the source core and an
error detector in the interconnect interface of the destination
core. For example, in the SoC shown in Figure 3, to test the
transaction from coreC1 (CPU) to coreC3 (RAM), a test
generator is inserted at the output of the CPU core, and an
error detector is inserted at the inputs of the RAM core. The
test vectors are launched on the interconnect under test by
the test generator of the source core and measured for log-
ical consistency at the other end of the interconnect by the
error detector in the destination core. Since the drivers and
loads of the core play a crucial role in crosstalk noise, the test
generators/error detectors are located between the core out-
puts/inputs and the core’s buffer connections to the bus. A
global test controller, which selects and activates appropriate
test generators/error detectors is also described in the paper.

Self- Test
Structures

32- bit Processor Bus

RAM RAM DMA
32

CPU
16

6 Arbiter
MPEG
Decoder

Video
Encoder
Interface

16

Cache

UDL
8

Cache Bus

16 16

32

Test
Controller

C1 C7

C2

C3 C4 C5 C6

C8

Figure 3. SoC with embedded self-test structures

The total hardware overhead of this scheme applied to a
Digital Signal Processing chip, CMUDSP, as reported in the
paper, is about22% which is clearly prohibitive. Hence, al-
though this scheme achieves100% crosstalk defect coverage,
yet it is infeasible due to the high area overhead involved.

It should be noted that the proposed self-test structures are
used only to test the SoC interconnects. They are exclusive
of any other test structures that may be present on-chip to
test the logic of the SoC. If existing logic BIST structures
could be efficiently reused to deliver interconnect tests, then
the need for separate interconnect test generators/error detec-
tors can be done away with and the area overhead kept at a
minimum. We describe such a scheme in the next section.

3. Reuse of Logic BIST for Crosstalk Testing

In this section, we describe how logic BIST structures
could be reused to deliver interconnect tests, and the short-
comings thereof. In the next section, we propose our new
test generator design which addresses these shortcomings.

Consider an SoC in which logic BIST structures, consist-
ing of Linear Feedback Shift Registers (LFSRs) and Multi-
ple Input Signature Registers (MISRs), are used to test the
logic of the circuit. Since in an SoC, each core is itself a
large and complex circuit, all cores are assumed to have their
own dedicated LFSR/MISR. In our proposed methodology,
the LFSRs will be used to generate test vectors not only for
the logic cores but also for the interconnects. Similarly, the
MISRs will be used for compacting the responses of both the
logic cores as well as the interconnects. There are two test
phases, the logic test phase and the interconnect test phase.
During the logic test phase, the cores are tested using their
own LFSRs/MISRs as in traditional logic BIST. During the
interconnect test phase, for each core-to-core test transaction,
the LFSR of the source core generates the test vectors, which
are then delivered onto the bus and they are compressed by
the MISR at the destination core for signature analysis.

LFSR

MISR

n

n

n
n

n

n

C1

L1

I1
I2

M1

MUX1

MUX3

LFSR

MISR

n

n

n

n

C2

L2

M2

MUX2

MUX4

Figure 4. Testing for crosstalk defects on intercon-
nects reusing Logic BIST structures

This scheme is illustrated by Figure 4. The example SoC
contains two coresC1 andC2 that communicate using inter-
connectsI1 andI2. Each core has a dedicated LFSR/MISR
for logic BIST (L1/M1 for core C1 and L2/M2 for core
C2). The figure shows an example logic BIST configura-
tion. The core flip-flops are scanned and the I/Os are bound-
ary scanned. There is a multiplexer at each core (MUX1 and
MUX2) to choose whether the values going on the intercon-
nects are test vectors generated by the LFSR or normal oper-

ational values from the core. Similarly there is a multiplexer
(MUX3andMUX4) to choose whether the MISR compresses
the output responses of the logic core or the values on the
interconnects. Suppose we are testing for crosstalk defects
on I1, for the core-to-core transactionC2!C1. The vectors
generated byL2 (the source core’s LFSR) are driven onI1,
and are compacted byM1 (the destination core’s MISR). At
the end of the test, MISRM1’s signature is analyzed to see
if there was any crosstalk error for this particular transac-
tion. Similarly, for testing the interconnectI2, for the core-
to-core transactionC1!C2, the vectors are generated byL1
and compacted byM2. Note that the interconnect test scheme
does not depend upon the actual logic BIST configuration as
long as an LFSR and MISR are present at each core.

This scheme looks attractive since the hardware overhead
incurred is very minimal. It essentially reuses existing logic
BIST structures to act as test generators and error detectors
for testing crosstalk defects in interconnects. But, unfortu-
nately the vectors generated by an LFSR, though good for
logic, have poor crosstalk defect coverage [13]. This is be-
cause the kind of vectors which achieve high stuck-at-fault
coverage for logic is very different from those which achieve
high interconnect crosstalk defect coverage. As shown in
Section 1.1, good vectors for interconnect crosstalk test are
such that they cause a majority of the wires to transition in the
same direction and a few wires to remain at0/1 or transition
in the opposite direction, thus exciting high cross-coupling
capacitive effect on the victim wires. The vectors produced
by an LFSR are pseudo-random and do not have such a char-
acteristic. Hence, they have poor defect coverage.

We would ideally like to use this framework of testing the
interconnects (as it has low area overhead) but generate test
vectors having much higher crosstalk defect coverage. Thus,
our goal is to develop a test generator, which while not com-
promising on logic fault coverage, produces high quality in-
terconnect crosstalk tests with minimal area overhead. We
call this integrated self-test scheme for both logic and inter-
connects as LI-BIST which we present in the next section.

4. New Test Generator Design and LI-BIST Test
Architecture

In this section, we first present the design of the test gen-
erator for LI-BIST and discuss the motivation behind such a
design. We then present the test architecture of LI-BIST.

4.1. New Test Generator Design

We first discuss the desired properties of LI-BIST and the
corresponding requirements of the test generator:

Low Cost: The test generator should be designed so as to
maximize the reuse of existing self-test structures (LBIST)
so that additional test circuitry area is minimized.
High Logic and Interconnect defect coverage:The new
test generator should achieve as high logic fault coverage as
existing logic BIST schemes. Also, it should produce high
quality interconnect crosstalk tests. Hence, the profile of
the interconnect test vectors produced by the test generator

should be such that the majority of the wires transition in the
same direction (to act as aggressors) and relatively few wires
remain 0/1 or transition in the opposite direction (to act as
victims) so as to cause a high cross-coupling capacitive ef-
fect on the victim wires, as described in Section 1.1.
Low Power: The vectors generated by the test generator
should be interconnect power efficient. Hence, we should
minimize opposite direction transitions on adjacent wires, so
that thetotal amountof coupling capacitances excited is low.

Figure 5 shows the structure of a4 bit LI-BIST test gener-
ator. It consists of an LFSR that produces vectors for testing
the logic core (as in traditional logic BIST), and an extension
circuit that modifies the LFSR vectors such that they have
high interconnect crosstalk defect coverage. In the extension
circuit, the adjacent bits of the LFSR are bothANDedand
ORed. For example, LFSR bits2 and3 are input toAND2and
OR2. The outputs of the AND gate and the OR gate are con-
nected to a 2:1 multiplexor. The multiplexor selects which
of these values drives the corresponding output line. For ex-
ample,MUX2selects whether the output lineL2 is driven by
the output ofAND2or OR2. The select line of all the mul-
tiplexors is driven by a toggle flip-flop. Hence, the value of
an output line alternates at every cycle between the output of
the respectiveAND gate andORgate. For example, at clock
cyclei if the ANDgates drive the linesL0 to L3, then theOR
gates drive them at cyclei+1 , theAND gates drive them at
cyclei+2 , and so on.

Original LFSR
(for logic test)

Extension (for
interconnect DSM
test)

D QD Q D Q D Q

Logic Core

0123

D Q

AND2 OR2

MUX2

L3 L2 L0L1

Figure 5. A 4 bit test generator for LI-BIST

With this small extension to a regular LFSR, the intercon-
nect test vectors generated have the required profile as de-
scribed earlier in this section. For an LFSR configured with
a primitive polynomial, the probability of any biti being0,
Pi(0), is 1=2; Pi(1) = 1=2. So the probability that theAND
of two bits, i and j, is 0 is 3=4 (1 � Pi(1) � Pj(1)). Sim-
ilarly, the probability that theOR of two bits, i and j, is 0
is 1=4 (Pi(0) � Pj(0)). Now, since the interconnect vec-
tors generated are driven alternately by theAND gates and
the OR gates, hence the probability that an output line is0
varies alternately between3=4 and1=4. So, we are essen-
tially generating weighted random patterns which are alter-
nately weighted with a high probability of0 and a high prob-
ability of 1. Hence, the profile of the interconnect test vectors
generated will be such that many wires transition in the same

direction, and a few wires remain static or transition in the
opposite direction; exactly the kind of vectors we require.

In order to minimize the correlation among the gener-
ated interconnect vectors due to the structural dependencies
among the LFSR bits, ideally a separate LFSR should be used
for each output line, all of them differently configured. How-
ever, such a scheme is expensive in terms of area. Our pro-
posed scheme using only a single LFSR to generate all the
bits, is more than adequate for our requirements since we do
not really care what the exact probabilities are as long as al-
ternate vectors have a high probability of0 and1. For the
same reason, the seed value of the LFSR and the primitive
polynomial used does not affect the crosstalk defect cover-
age much.

The size of the extension circuit which is added to the
LFSR to appropriately weight the interconnect test vectors
is relatively small. For testing ann bit bus, for example, we
requiren 2-inputANDgates,n2-inputORgates,n 2-bitMUX
gates,1 DFF and1 NOTgate.

4.2. Test Architecture for LI-BIST

Figure 6 illustrates the test architecture ofLI-BISTon an
example SoC consisting of 2 cores. Each core is surrounded
by aTest Wrapper, which consists of self-test structures like a
Test Pattern Generator (TPG) (described in the previous sec-
tion) and a MISR. The TPG generates test vectors for both the
logic core as well as the interconnects. Multiplexors are used
to select between the normal core outputs and the intercon-
nect test vectors. The MISR compacts the output responses
of both the core and the interconnects; this is selected by mul-
tiplexors. There is a centralizedLI-BIST Controllerwhich
controls the whole test sequence. It gives control signals to
all the test structures and is also responsible for seeding the
TPG and unloading the MISR signature.

There are three operational modes of the SoC; normal
mode, core test mode and interconnect test mode. In the
normal mode, the SoC functions in its normal system oper-
ational mode. During the core test mode, the internal logic
of the cores is tested via the TPG and the MISR, as in logic
BIST. The core F/Fs are scanned and the I/Os are boundary-
scanned for controllability and observability. In the intercon-
nect test mode, for each core-to-core transaction, the vec-
tors generated by the TPG of the source core are routed onto
the interconnect and they are compacted by the MISR of the
destination core. For example in Figure 6, there are three

core-to-core transactions which are tested:Core1
I1
! Core2,

Core1
I2
! Core2, Core2

I3
! Core1.

5. Validation of LI-BIST Methodology

To validate the LI-BIST methodology, we applied it to
a Digital Signal Processing chip, CMUDSP [4], which cor-
responds to Motorola DSP56002. In this section, we first
briefly describe the CMUDSP architecture and discuss how
LI-BIST is applied to this chip. Next, we describe how the in-
terconnect crosstalk defect coverage of LI-BIST is measured
using a high-level interconnect DSM error model. Finally,

MISR

Core1 Core2

MISR
L

IB
IS

T
 C

on
tr

ol
le

r

TPG TPG

I3
I2
I1

Test
Wrapper

Test
Wrapper

Figure 6. Test architecture of LI-BIST

we present our experimental results by comparing LI-BIST
with the previous two schemes outlined in Sections 2 and 3.

5.1. Application of LI-BIST to CMUDSP

Figure 7 shows the CMUDSP chip, which consists of
four components: Arithmetic and Data Logic Unit (ALU),
Address Generation Unit (AGU), Bus Switch, and Program
Control Unit (PCU). The ALU contains the X, Y, A and
B registers along with the multiply-accumulate and adder
units. The AGU generates the addresses for accessing the
data memories. The PCU contains the program counter and
flag bits for controlling the whole CMUDSP chip. The PCU
also performs program address generation and instruction de-
coding. The Bus Switch is used to control data flow between
buses. CMUDSP consists of four sets of separate data buses
(XDB, YDB, PDB, GDB) and address buses (XAB, YAB,
PAB). The X and Y buses are connected to the data memory,
and the P buses are connected to the program memory.

In order to apply LI-BIST, each of the components is en-
closed in a test wrapper as described in Section 4.2. The test
wrapper contains test structures for testing both the cores as
well as the interconnects. An LI-BIST controller is also in-
serted, which interfaces with the test wrappers by means of
control and data signals, as shown in Figure 7. The LI-BIST
controller initiates logic or interconnect tests when it receives
corresponding external signals. At the end of the tests, it sig-
nals whether the chip is good or not through the error flag.

5.2. Fault Simulation Methodology

To calculate the interconnect crosstalk defect coverage of
LI-BIST for the CMUDSP chip, we have to inject and simu-
late crosstalk defects in the interconnects, and examine how
many of these defects are detected by the interconnect test
vectors. The most accurate way of doing this is spice-level
simulation. However, it is not feasible to simulate the en-
tire chip at this level since it takes prohibitively long. Hence,
we use a high-level crosstalk defect simulation method [1],
which allows simulation of the crosstalk effects on the inter-
connects, together with the HDL models of the rest of the
chip components including the test structures. We describe
this fault-simulation methodology briefly here.

R
es

et

Y
R

ea
d

Y
W

ri
te

X
R

ea
d

X
W

ri
te

C
lo

ck

XDB
YDB
PDB

PAB
YAB
XAB

Immediate

Repeat

CCR_ALU

S0
S1

SWrite
LWrite

AGU ALU

PCU
BUS

SWITCH

GDB

L
IB

IS
T

 C
on

tr
ol

le
r

Test Wrapper Test Wrapper

Test Wrapper Test Wrapper

Logic
Test

Interconnect
Test

Error Flag

Figure 7. Application of LI-BIST to CMUDSP

The high-level crosstalk defect simulation environment
for the CMUDSP chip is shown in Figure 8. Behavioral
level interconnect DSM error models [1] are inserted corre-
sponding to the interconnects under test so that we can inject
crosstalk defects in interconnects and simulate the behavior
of defect effects (like glitches and delays) at the high-level.
Coded in HDL, the error model takes as input a parameter file
containing the values of the coupling capacitances among the
interconnects. Given an input transition on the driver end of
the bus, the error model determines whether a crosstalk error
occurs at the receiver end. A crosstalk defect can be injected
by perturbing the values and distribution of cross-coupling
parameters beyond a threshold value [5] to reflect process
variation beyond design margins.

defect
library

defect
detected

defect
undetected

defect
injection

correct

VHDL simulation

para. file
(coupling

capacitance)

input signals
at the driver end

output signals
at the receiver end

HDL-level
crosstalk

error model

incorrect Check MISR signature

ALUAGU

PCU BS

Figure 8. Crosstalk defect simulation environment

Fault-simulation is performed as follows: An HDL test
generator of the source core generates the test vectors for a
bus, which are input to the corresponding DSM error model.
Depending upon the test vector transitions and the coupling
parameters of the bus from the parameter file, the model gen-
erates output vectors, which may or may not contain digitally
encoded glitch or delay errors. Then, the MISR at the desti-
nation core compresses these output vectors. At the end of
the test, the MISR signature is analyzed to see whether the
injected defect was detected or not. To estimate the defect

coverage, the same defect simulation process is repeated on
all defects from a preconstructed defect library.

To generate the defect library, we randomly perturb the
nominal values of coupling capacitances among the intercon-
nects according to a given defect distribution. Given the re-
sulting perturbation, we use the criteria in [5], to determine if
the perturbation is large enough to be detected byany tests.
If so, we record the perturbation as a defect. This process is
repeated until a satisfactory number of defects are generated.

In our experiments, we used a Gaussian distribution to
model the defect distribution in terms of the variation of ca-
pacitance values (in%). A standard variance of50% was
chosen. A total of1000 defects were generated for each bus.

5.3. Experimental Results

In this sub-section, we compare the LI-BIST scheme with
the MA Test scheme described in Section 2 and the LBIST
scheme described in Section 3.

Table 1 compares the three schemes in terms of the addi-
tional area overhead over conventional LBIST for testing the
interconnects, the interconnect crosstalk defect coverage, and
the logic fault coverage for the CMUDSP chip. The LBIST
scheme and the LI-BIST scheme were both implemented on
the CMUDSP. The values for the MA Test scheme are re-
ported from [2]. We used Synopsys’ Design Compiler [6]
synthesis tool to synthesize CMUDSP along with the inserted
test structures. The area overhead is in terms of the additional
number of gates (over conventional LBIST) required to test
the interconnects of the chip. The defect coverage is mea-
sured using the high-level fault-simulation methodology de-
scribed in the previous sub-section. The logic fault coverage
is in terms of single stuck-at-fault coverage and is measured
using Mentor Graphics’ FastScan [7].

From the Table, we observe that the MA tests have100%
defect coverage, but with a high area penalty. The LBIST
tests using LFSRs are not feasible due to their poor defect
coverage. The LI-BIST scheme, however, achieves very high
defect coverage with very low area overhead . Both LBIST
and LI-BIST achieve the same logic fault coverage since the
test methodology for logic is the same in both the schemes.

Table 1. Comparison of LI-BIST with MA Tests and
LBIST

Test Area Overhead Defect Logic Fault
Scheme over LBIST Coverage Coverage

(%) (%) (%)
MA Tests 22 100 -

LBIST 1.22 1 91.36
LI-BIST 4 99.7 91.36

In order to assess the power-efficiency of LI-BIST, we
conducted another set of experiments to measure the aver-
age interconnect power consumption of all the three schemes.
The results are presented in Table 2. The interconnect power
consumption was measured using a DSM-accurate power es-
timation technique proposed in [12].

The LFSR test vectors consume the maximum amount of
interconnect power since the vectors are pseudo-random and

Table 2. Interconnect Power Consumption
Test Avg. Int.

Methodology Power (mW)
MA Tests 0.43

LBIST 3.66
LI-BIST 0.77

they have many opposing direction transitions which excite
a largeamountof coupling capacitance. The MA vectors
have the least power consumption because all the wires, ex-
cept the victim, transition in the same direction. So, although
there is a high coupling capacitive effect on the victim wire,
the total amount of coupling capacitance excited is very low.
The LI-BIST generated vectors have marginally higher inter-
connect power consumption as compared to the MA vectors
since there may be more than one victim wires. So, the LI-
BIST test methodology is also power-efficient.

6. Conclusion

In this paper, we presented LI-BIST, a comprehensive SoC
test methodology for both logic cores and interconnects. It
efficiently reuses existing on-chip test structures to generate
high quality interconnect crosstalk tests. We have compared
LI-BIST with existing solutions and validated it using a high-
level crosstalk error model. Experiments on a DSP chip con-
firm that LI-BIST yields high crosstalk defect coverage, low
area overhead and low interconnect power consumption.

References

[1] X. Bai and S. Dey. High-level crosstalk defect simulation for system-
on-chip interconnects. InProc. IEEE VLSI Test Symposium, Apr. 2001.

[2] X. Bai, S. Dey, and J. Rajski. Self-test methodology for at-speed test
of crosstalk in chip interconnects. InProc. Design Automation Conf.,
pages 619–624, June 2000.

[3] Z. Chen and I. Koren. Crosstalk minimization in three-layer HVH
channel routing. InProc. IEEE Int. Symp. on Defect and Fault Toler-
ance in VLSI Systems, pages 38–42, 1997.

[4] The Carnegie Mellon Synthesizable Digital Signal Processor Core
(http://www.ece.cmu.edu/ lowpower/benchmarks.html).

[5] M. Cuviello, S. Dey, X. Bai, and Y. Zhao. Fault modeling and simula-
tion for crosstalk in system-on-chip interconnects. InProc. Int. Conf.
Computer-Aided Design, pages 297–303, Nov. 1999.

[6] Design Compiler 2000.05, Synopsys Inc. (http://www.synopsys.com).
[7] FastScan v8.64.5, Mentor Graphics Corp. (http://www.mentor.com).
[8] R. Mehra, L. M. Guerra, and J. M. Rabaey. A partitioning scheme

for optimizing interconnect power. IEEE J. Solid-State Circuits,
32(3):433–443, Mar. 1997.

[9] P. Nordholz, D. Treytnar, J. Otterstedt, H. Grabinski, D. Niggemeyer,
and T. W. Williams. Signal integrity problems in deep submicron aris-
ing from interconnects between cores. InProc. IEEE VLSI Test Sym-
posium, pages 28–33, April 1998.

[10] K. Rahmat, J. Neves, and J. Lee. Methods for calculating coupling
noise in early design: a comparative analysis. InProc. Int. Conf. Com-
puter Design VLSI in Computers and Processors, pages 76–81, 1998.

[11] Semiconductor Industry Association. International technology
roadmap for semiconductors, 1999.

[12] C. N. Taylor, S. Dey, and Y. Zhao. Modeling and minimization of
interconnect energy dissipation in nanometer technologies. InProc.
Design Automation Conf., June 2001.

[13] Y. Zhao and S. Dey. Analysis of Interconnect Crosstalk Defect Cover-
age of Test Sets. InProc. Int. Test Conf., pages 492–501, Oct. 2000.

[14] H. Zhou and D. F. Wang. Global routing with crosstalk constraints. In
Proc. Design Automation Conf., pages 374–377, 1998.

[15] Y. Zorian. A distributed BIST control scheme for complex VLSI de-
vices. InProc. IEEE VLSI Test Symposium, pages 4–9, Apr. 1993.

