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Abstract. For system-on-chips (SoC) using deep submicron (DSM) technologies, interconnects are becoming
critical determinants for performance, reliability and power. Buses and long interconnects being susceptible to
crosstalk noise, may lead to functional and timing failures. Existing at-speed interconnect crosstalk test methods
propose inserting dedicated interconnect self-test structures in the SoC to generate vectors which have high crosstalk
defect coverage. However, these methods may have a prohibitively high area overhead. To reduce this overhead,
existing logic BIST structures like LFSRs could be reused to deliver interconnect tests. But, as shown by our
experiments, use of LFSR tests achieve poor crosstalk defect coverage. Additionally, it has been shown that the
power consumed during testing can potentially become a significant concern.

In this paper, we present Logic-Interconnect BIST (LI-BIST), a comprehensive self-test solution for both the logic
of the cores and the SoC interconnects. LI-BIST reuses existing logic BIST structures but generates high-quality
tests for interconnect crosstalk defects, while minimizing the area overhead and interconnect power consumption.
The application of the LI-BIST methodology on example SoCs indicates that LI-BIST is a viable, low-cost, yet
comprehensive solution for testing SoCs.
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1. Introduction

Advances in device technology have led to an era where
entire systems can be implemented on a single chip, re-
ferred to as System-on-Chip (SoC). As SoC complex-
ity grows with increasing integration and reducing fea-
ture sizes, the on-chip interconnect architecture, which
is responsible for inter-core communication, plays a
much more critical role since it starts dominating sys-
tem performance [14] and power consumption [10].
Reliability of SoCs depends increasingly on the error-
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free operation of such interconnects. Testing of SoCs,
hence, implies testing not only the logic cores but also
the interconnect architecture.

The use of deep sub-micron (DSM) technology in
SoCs increases the capacitive coupling between ad-
jacent wires leading to severe crosstalk noise, which
causes the functionality or performance of the chip
to deviate significantly from expected behavior. Sev-
eral physical design [4, 18] and analysis [9, 12, 13]
techniques have been developed to allow design for
margin and to minimize signal integrity problems.
However, these may be prohibitive in terms of design
cost. Furthermore, it impossible to take into account
all the possible process variations and physical defects
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Fig. 1. Types of crosstalk faults.

during design. Hence, we need to address the crosstalk
issue by means of testing techniques.

Increased cross-coupling capacitance between a pair
of interconnects can produce either glitches or delays
depending upon the signal transitions at the intercon-
nects as shown in Fig. 1(a) and (b) respectively. In
addition to glitches and delays, presence of significant
coupling inductance can result in damped voltage os-
cillations superimposed on top of a glitch or delay, as
illustrated in Fig. 1(c). However, if the damping is large
enough, the effects of the third case may be approxi-
mated by one of the first two cases. Also, previous
studies [5, 12] have shown that crosstalk noise is more
pronounced for long interconnects. Current and future
SoCs will be dominated by a large number of very long
interconnects and buses needed for the integration and
communication among the cores in the chip [14]. In this
paper, therefore, we focus on developing a comprehen-
sive test solution to address the test needs of both the
logic cores as well as the buses and global interconnects
of an SoC.

Crosstalk effects most adversely affect high perfor-
mance circuits operating at GHz clock frequencies.
At-speed testing is essential for testing such chips ad-
equately since many crosstalk effects are not mani-
fested at lower speeds. However, the gap between ASIC
speeds and external testers’ accuracy for timing sig-
nal resolution at ASIC pins is constantly growing [14].
Furthermore, test equipment having high speed, large
pin count, large memory, and good timing accuracy can
be prohibitively expensive. We, therefore, employ self-
testing techniques to address the problem of testing for
crosstalk in SoCs.

In recent years, the power consumption of digital
systems during testing has become a major concern as
it may increase significantly as compared to normal
operational mode [19]. Also, empirical studies have
shown that the power dissipation associated with long
interconnects accounts for a significant fraction of the
overall system power [10]. This power consumption is
dominated by the increasing interwire cross-coupling
capacitances in DSM technology [15]. The energy dis-

sipated due to cross-coupling capacitances can vary de-
pending on the type of transitions on the interconnects
[15]. We, therefore, also focus on making our self-test
scheme extremely power-efficient.

Bai et al. [2], have proposed inserting dedicated in-
terconnect self-test structures in the SoC to generate
vectors which have 100% crosstalk defect coverage.
This scheme is based on the Maximal Aggressor Fault
Model proposed by Cuviello et al. [5]. However, this
method has a prohibitively high area overhead. To re-
duce this overhead, existing logic BIST structures, like
linear feedback shift registers (LFSRs), could be reused
to generate interconnect tests. But, LFSR vectors have
very poor crosstalk defect coverage. In this paper, we
address the issue of how to generate high quality inter-
connect crosstalk tests, efficiently reusing existing on-
chip test structures so as to minimize the area overhead.
Our proposed methodology, called Logic-Interconnect
BIST (LI-BIST), produces high crosstalk defect cover-
age with low area penalty and low interconnect power
consumption.

The interconnect fault model used in this paper is
the Maximal Aggressor Fault Model that was reported
and validated in [5]. Next, we briefly review this fault
model, and the corresponding Maximal Aggressor test
vectors.

1.1. Interconnect Crosstalk Fault Model

If the crosstalk problem is addressed at the process
level, the number of possible process variations and
physical defects that need to be considered even for
a pair of interconnects is very large. For wide buses,
considering all such variations is clearly prohibitive.
At the circuit level, the cumulative effect of process
variations can be described behaviorally by a coarser
mesh of lumped circuit elements, but the resulting fault
universe is still too large. Hence, we need an abstract
fault model that can represent all crosstalk defects with
a small number of faults.

The Maximal Aggressor Fault Model (MAFM) [5]
is a functional fault model representing all the pro-
cess variations and physical defects that lead to any
of the following four crosstalk errors on a wire des-
ignated as the victim wire among the set of intercon-
nects under test: positive glitch (gp), negative glitch
(gn), rising delay (dr ) and falling delay (d f ). All the
other wires are designated as aggressors and act collec-
tively to generate the glitch or delay error on the victim.
Fig. 2 shows the transitions needed on the aggressors
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Fig. 2. Maximal aggressor fault model.

and victim wires to produce the maximum error effect
for all four error types on the victim wire Yi . These
transitions constitute the Maximal Aggressor (MA)
tests; they are necessary and sufficient for detecting
the corresponding four crosstalk faults for the victim
wire Yi .

From Fig. 2 we see that the MA vectors are such that
all the aggressor wires have a same direction transition
while the victim wire remains at 0/1 or has an opposite
direction transition. Such vectors cause the maximum
cross-coupling capacitive effect on the victim wire.
Hence, vectors which cause a majority of the wires to
transition in the same direction and relatively few wires
to remain at 0/1 or transition in the opposite direction
(and thus exciting high cross-coupling capacitive effect
on the victim wires) achieve high interconnect crosstalk
defect coverage.

1.2. Paper Outline

In Section 2, we briefly describe the interconnect test
scheme proposed by Bai et al. in [2]. In Section 3,
we discuss how existing logic BIST structures could
be reused to deliver interconnect tests, and the short-
comings thereof. These shortcomings are addressed in
Section 4, where we propose a new test generator de-
sign which can generate vectors for both logic as well
as interconnects and also present the overall test archi-
tecture for LI-BIST. Experimental results are presented
in Section 5. Section 6 concludes the paper.

2. Interconnect Test Using Dedicated
Self-Test Structures

A self-test methodology for testing interconnects based
on the Maximal Aggressor Fault Model has been pro-
posed by Bai et al. [2]. Here, we briefly describe their
scheme.

The scheme is based on the fact that since the re-
quired Maximal Aggressor tests are known a priori, if
suitable self-test structures can be inserted in the SoC to
generate all the required MA vectors, then the self-test
methodology will be able to achieve 100% crosstalk de-
fect coverage. For each core to core test transaction, the
methodology requires a test generator in the intercon-
nect interface of the source core and an error detector in
the interconnect interface of the destination core. For
example, in the SoC shown in Fig. 3, to test the trans-
action from core C1 (CPU) to core C3 (RAM), a test
generator is inserted at the output of the CPU core, and
an error detector is inserted at the inputs of the RAM
core. The test vectors are launched on the interconnect
under test by the test generator of the source core and
measured for logical consistency at the other end of
the interconnect by the error detector in the destina-
tion core. Since the drivers and loads of the core play a
crucial role in crosstalk noise, the test generators/error
detectors are located between the core outputs/inputs
and the core’s buffer connections to the bus. A global
test controller, which selects and activates appropriate
test generators/error detectors is also described in the
paper.

The total hardware overhead of this scheme ap-
plied to a Digital Signal Processing chip, CMUDSP, as
reported in the paper, is about 22% which is clearly pro-
hibitive. Hence, although this scheme achieves 100%
crosstalk defect coverage, yet it is infeasible due to the
high area overhead involved.

It should be noted that the proposed self-test struc-
tures are used only to test the interconnects of the SoC.
They are exclusive of any other test structures that may
be present on-chip to test the logic of the SoC. If exist-
ing logic BIST structures could be efficiently reused
to deliver interconnect tests, then the need for sep-
arate interconnect test generators/error detectors can
be done away with and the area overhead kept at a
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Fig. 3. An SoC with embedded self-test structures.

minimum. We describe such a scheme in the next
section.

3. Reuse of Logic BIST for Crosstalk Testing

In this section, we describe how existing logic BIST
structures could be reused to deliver interconnect tests,
and the shortcomings thereof. In the next section, we
propose our new test generator design which addresses
these shortcomings.

Consider an SoC in which logic BIST struc-
tures, comprising of Linear Feedback Shift Regis-
ters (LFSRs) and Multiple Input Signature Registers
(MISRs), are used to test the logic of the circuit. Since
in an SoC, each core is itself a large and complex cir-
cuit, all cores are assumed to have their own dedicated
LFSR/MISR. In our proposed methodology, the LFSRs
will be used to generate test vectors not only for the
logic cores but also for the interconnects. Similarly,
the MISRs will be used for compacting the output re-
sponses of both the logic cores as well as the intercon-
nects. There are two test phases, the logic test phase and
the interconnect test phase. During the logic test phase,
the cores are tested using their own LFSRs/MISRs as
in traditional logic BIST. During the interconnect test
phase, for each core-to-core test transaction, the LFSR
of the source core generates the test vectors, which are
then delivered onto the bus and they are compressed by
the MISR at the destination core for signature analysis.

This scheme is illustrated by Fig. 4. The example
SoC contains two cores C1 and C2 that communicate
using interconnects I1 and I2. Each core has a dedi-
cated LFSR/MISR for logic BIST (L1/M1 for core C1
and L2/M2 for core C2). The figure shows an exam-
ple logic BIST configuration. The core flip-flops are
scanned and the I/Os are boundary scanned. There is a
multiplexer at each core (MUX1 and MUX2) to choose

Fig. 4. Testing for crosstalk defects on interconnects reusing logic
BIST structures.

whether the values going on the interconnects are test
vectors generated by the LFSR or normal operational
values from the core. Similarly there is a multiplexer
(MUX3 and MUX4) to choose whether the MISR com-
presses the output responses of the logic core or the
values on the interconnects. Suppose we are testing for
crosstalk defects on I1, for the core-to-core transaction
C2 → C1. The vectors generated by L2 (the source
core’s LFSR) are driven on I1, and are compacted by
M1 (the destination core’s MISR). At the end of the
test, MISR M1’s signature is analyzed to see if there
was any crosstalk error for this particular transaction.
Similarly, for testing the interconnect I2, for the core-
to-core transaction C1 → C2, the vectors are gener-
ated by L1 and compacted by M2. Note that the inter-
connect test scheme does not depend upon the actual
logic BIST configuration as long as an LFSR and MISR
are present at each core.

This scheme looks attractive since the hardware
overhead incurred is very minimal. It essentially reuses
existing logic BIST structures to act as test gen-
erators and error detectors for testing crosstalk de-
fects in interconnects. But, unfortunately the vectors
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generated by an LFSR, though good for logic, have
poor crosstalk defect coverage [17]. This is because
the kind of vectors which achieve high stuck-at-fault
coverage for logic are very different from those which
achieve high interconnect crosstalk defect coverage.
As shown in Section 1.1, good vectors for intercon-
nect crosstalk test are such that they cause a major-
ity of the wires to transition in the same direction
and a few wires to remain at 0/1 or transition in the
opposite direction, thus exciting high cross-coupling
capacitive effect on the victim wires. The vectors pro-
duced by an LFSR are pseudo-random and do not have
such a characteristic. Hence, they have poor defect
coverage.

We would ideally like to use this framework of
testing the interconnects (as it has low area over-
head) but generate test vectors having much higher
crosstalk defect coverage. Thus, our goal is to develop
a test generator, which while not compromising on
logic fault coverage, produces high quality intercon-
nect crosstalk tests with minimal area overhead. We
call this integrated self-test scheme for both logic and
interconnects as LI-BIST which we present in the next
section.

4. New Test Generator Design and LI-BIST
Test Architecture

In this section, we first present the design of the test
generator for LI-BIST and discuss the motivation be-
hind such a design. We then present the test architecture
of LI-BIST.

4.1. New Test Generator Design

Before presenting the actual design of the test gen-
erator, we first discuss the desired properties of
LI-BIST and the corresponding requirements of the
test generator:

• Low Cost: The test generator should be designed so
as to maximize the reuse of existing self-test struc-
tures (logic BIST) so that additional test circuitry
area is minimized.

• High Logic and Interconnect Defect Coverage: The
new test generator should achieve as high logic fault
coverage as existing logic BIST schemes. Also, it
should produce high quality interconnect crosstalk
tests. Hence, the profile of the interconnect test vec-
tors produced by the test generator should be such
that the majority of the wires transition in the same

Fig. 5. A 4 bit test generator for LI-BIST.

direction (to act as aggressors) and relatively few
wires remain 0/1 or transition in the opposite direc-
tion (to act as victims) so as to cause a high cross-
coupling capacitive effect on the victim wires, as
described in Section 1.1.

• Low Power: The vectors generated by the test gener-
ator should be interconnect power efficient. Hence,
we should minimize opposite direction transitions on
adjacent wires, so that the total amount of coupling
capacitance excited is low.

Fig. 5 shows the structure of a 4 bit LI-BIST test
generator. It consists of an LFSR that produces vectors
for testing the logic core (as in traditional logic BIST),
and an extension circuit that modifies the LFSR vectors
such that they have high interconnect crosstalk defect
coverage. In the extension circuit, the adjacent bits of
the LFSR are both ANDed and ORed. For example,
LFSR bits 2 and 3 are input to AND2 and OR2. The
outputs of the AND gate and the OR gate are connected
to a 2:1 multiplexer. The multiplexer selects which of
these values drives the corresponding output line. For
example, MUX2 selects whether the output line L2 is
driven by the output of AND2 or OR2. The select line
of all the multiplexers is driven by a toggle flip-flop.
Hence, the value of an output line alternates at every
cycle between the output of the respective AND gate
and OR gate. For example, at clock cycle i , if the AND
gates drive the lines L0 to L3, then the OR gates drive
them at cycle i + 1, the AND gates drive them at cycle
i + 2, and so on.

With this small extension to a regular LFSR, the
interconnect test vectors generated have the required
profile as described earlier in this section. For an LFSR
configured with a primitive polynomial, the probability
of any bit i being 0, Pi (0), is 1/2; Pi (1) = 1/2. So the
probability that the AND of two bits, i and j , is 0 is
3/4 (1 − Pi (1) ∗ Pj (1)). Similarly, the probability that
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the OR of two bits, i and j , is 0 is 1/4 (Pi (0) ∗ Pj (0)).
Now, since the interconnect vectors generated are
driven alternately by the AND gates and the OR gates,
hence the probability that an output line is 0 varies
alternately between 3/4 and 1/4. So, we are essen-
tially generating weighted random patterns which are
alternately weighted with a high probability of 0 and
a high probability of 1. Hence, the profile of the inter-
connect test vectors generated will be such that many
wires transition in the same direction to act as aggres-
sors, and a few wires remain static or transition in the
opposite direction to act as victims; exactly the kind
of vectors we require. Note that the interconnect test
vectors are not true MA vectors but MA like vectors,
since there might be multiple victims. However, only
the adjacent few aggressor wires on either side of the
victim have any significant cross-coupling capacitive
effect on the victim wire, and so are sufficient to excite
the fault.

In order to minimize the correlation among the gen-
erated interconnect vectors due to the structural depen-
dencies among the LFSR bits, ideally a separate LFSR
should be used for each output line, all of them differ-
ently configured. However, such a scheme is expensive
in terms of area. Our proposed scheme using only a sin-
gle LFSR to generate all the bits, is more than adequate
for our requirements since we do not really care what
the exact probabilities are as long as alternate vectors
have a high probability of 0 and 1. For the same reason,
the seed value of the LFSR and the primitive polyno-
mial used does not affect the crosstalk defect coverage
much.

The size of the extension circuit which is added to
the LFSR to appropriately weight the interconnect test
vectors is relatively small. For testing an n bit bus, for
example, we require n 2-input AND gates, n 2-input
OR gates, n 2-bit MUX gates, 1 DFF and 1 NOT gate.

4.2. Test Architecture for LI-BIST

Fig. 6 illustrates the test architecture of LI-BIST on
an example SoC consisting of 2 cores. Each core is
surrounded by a Test Wrapper, which consists of self-
test structures like a Test Pattern Generator (TPG)
(described in the previous section) and a MISR. The
TPG generates test vectors for both the logic core as
well as the interconnects. Multiplexers are used to se-
lect between the normal core outputs and the inter-
connect test vectors. The MISR compacts the output
responses of both the core and the interconnects; this is

Fig. 6. Test architecture of LI-BIST.

selected by multiplexers. There is a centralized LI-BIST
Controller which controls the whole test sequence. It
gives control signals to all the test structures and is
also responsible for seeding the TPG and unloading
the MISR signature.

There are three operational modes of the SoC; nor-
mal mode, core test mode and interconnect test mode.
In the normal mode, the SoC functions in its normal
system operational mode. During the core test mode,
the internal logic of the cores is tested via the TPG
and the MISR, as in logic BIST. The core F/Fs are
scanned and the I/Os are boundary-scanned for con-
trollability and observability. In the interconnect test
mode, for each core-to-core transaction, the vectors
generated by the TPG of the source core are routed onto
the interconnect and they are compacted by the MISR
of the destination core. For example in Fig. 6, there
are three core-to-core transactions which are tested:
Core1

I1→ Core2, Core1
I2→ Core2, Core2

I3→ Core1.
The LI-BIST test scheme can be made to work with

the emerging IEEE P1500 Standard for Embedded
Core Test (SECT) [8]. Since the mechanism for test-
ing the logic cores is the same, hence the LI-BIST test
wrapper can be merged with the P1500 wrapper. The
LI-BIST TPG is used as the source of vectors and the
MISR is used as the sink. The LI-BIST controller can
be merged with the P1500 controller to control the
whole test sequence.

5. Validation of LI-BIST Methodology

In order to validate the LI-BIST methodology, we ap-
plied it to two example SoCs: (i) a sub-system of
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the 802.11 MAC layer [16], and (ii) a Digital Signal
Processing chip, CMUDSP [3], which corresponds to
Motorola DSP56002. In this section, we first briefly de-
scribe the architecture of these SoCs and discuss how
LI-BIST is applied to these chips. Next, we describe
how the interconnect crosstalk defect coverage of LI-
BIST is measured using a high-level crosstalk defect
simulation methodology. Finally, we present our exper-
imental results by comparing LI-BIST with the previ-
ous two schemes outlined in Sections 2 and 3 w.r.t the
MAC sub-system and the CMUDSP chip.

5.1. Examples

In this subsection, we describe the architecture of the
sub-system of the 802.11 MAC layer and the CMUDSP
chip and discuss how LI BIST is applied to these
chips.

5.1.1. Case Study 1: A Sub-System of the 802.11 MAC
Layer. We first applied the LI-BIST scheme on a sub-
system of the 802.11 MAC layer. Fig. 7 shows the archi-
tecture of this sub-system, which consists of the PAR-
WAN processor core [11] and a hardware encryption
co-processor. PARWAN is a simple accumulator-based
microprocessor. The data bus is 8-bits wide and shared
by both Data In and Data Out. The address bus is 12-
bits wide. The Read and Write signals indicate whether
data is read from or written to the address specified.

Fig. 7. Application of LI-BIST to a sub-system of the 802.11
MAC layer.

The encryption co-processor implements the 802.11b
WEP encryption algorithm [16]. PARWAN controls
the encryption process by writing to the encryption
co-processor registers which are memory-mapped.

In order to apply LI-BIST, both the PARWAN and the
encryption co-processor are enclosed in a test-wrapper
as described in Section 4.2. The test wrapper contains
test structures for testing both the logic cores as well
as the interconnects. An LI-BIST controller is also
inserted, which interfaces with the test wrappers by
means of control and data signals, as shown in Fig. 7.
The LI-BIST controller initiates logic or interconnect
tests when it receives corresponding external signals.
At the end of the tests, it signals whether the chip is
good or not through the error flag.

5.1.2. Case Study 2: CMUDSP. Fig. 8 shows the
CMUDSP chip, which consists of four components:
Arithmetic and Data Logic Unit (ALU), Address Gen-
eration Unit (AGU), Bus Switch, and Program Control
Unit (PCU). The ALU contains the X, Y, A and B reg-
isters along with the multiply-accumulate and adder
units. The AGU generates the addresses for access-
ing the data memories. The PCU contains the pro-
gram counter and flag bits for controlling the whole
CMUDSP chip. The PCU also performs program ad-
dress generation and instruction decoding. The Bus
Switch is used to control data flow between buses.
CMUDSP consists of four sets of separate data buses
(XDB, YDB, PDB, GDB) and address buses (XAB,
YAB, PAB). The X and Y buses are connected to the
data memory, and the P buses are connected to the pro-
gram memory.

As described in the previous sub-section, in order
to apply LI-BIST, each of the components is wrapped
in a test wrapper and a centralized LI-BIST controller
is inserted which controls the whole test sequence as
shown in Fig. 8.

5.2. Fault Simulation Methodology

In order to calculate the interconnect crosstalk defect
coverage of LI-BIST for any SoC, we have to inject
and simulate crosstalk defects in the interconnects, and
examine how many of these defects are detected by the
interconnect test vectors. The most accurate way of
doing this is spice-level simulation. However, it is not
feasible to simulate the entire chip at this level since
it takes prohibitively long. Hence, we use a high-level
crosstalk defect simulation method [1], which allows
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Fig. 8. Application of LI-BIST to CMUDSP.

Fig. 9. Crosstalk defect simulation environment.

simulation of the crosstalk effects on the interconnects,
together with the HDL models of the rest of the chip
components including the test structures. We describe
this fault-simulation methodology briefly here using
the CMUDSP chip as an example.

The high-level crosstalk defect simulation environ-
ment for the CMUDSP chip is shown in Fig. 9. Be-
havioral level interconnect DSM error models [1] are
inserted corresponding to the interconnects under test
so that we can inject crosstalk defects in the intercon-

nects and simulate the behavior of defect effects (like
glitches and delays) at the high-level. Coded in HDL,
the error model takes as input a parameter file contain-
ing the values of the coupling capacitances among the
interconnects. Given an input transition on the driver
end of the bus, the error model determines whether a
crosstalk error occurs at the receiver end, based on er-
ror criteria described in [5]. The criterion for a glitch
or delay error depends on the technology and the char-
acteristics of the receiving logic like setup time, hold
time, noise threshold voltage etc [5]. A crosstalk de-
fect can be injected by perturbing the values and the
distribution of the cross-coupling capacitances in the
parameter file beyond a threshold value to reflect pro-
cess variation beyond design margins.

Fault-simulation is performed as follows: An HDL
test generator of the source core generates the test
vectors for a bus, which are input to the correspond-
ing DSM error model. Depending upon the test vec-
tor transitions and the coupling parameters of the bus
from the parameter file, the model generates output
vectors, which may or may not contain digital errors
corresponding to glitches or delays. Then, the MISR at
the destination core compresses these output vectors.
At the end of the test, the MISR signature is analyzed
to see whether the injected defect was detected or not.
To estimate the defect coverage, the same defect simu-
lation process is repeated on all defects from a precon-
structed defect library.

To generate the defect library, we randomly perturb
the nominal values of coupling capacitances among the
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interconnects according to a given defect distribution.
Given the resulting perturbation, we use the error cri-
teria in [5], to determine if the perturbation is large
enough to be detected by any tests. If so, we record the
perturbation as a defect. This process is repeated until
a satisfactory number of defects are generated.

In our experiments, we used a Gaussian distribu-
tion to model the defect distribution in terms of the
variation of capacitance values (in %). A standard vari-
ance of 50% was chosen. A total of 1000 defects were
generated for each bus.

5.3. Experimental Results

In this subsection, we compare the LI-BIST scheme
with the MA Test scheme described in Section 2 and
the LFSR test scheme described in Section 3 in terms
of the interconnect defect coverage, the area over-
head, the interconnect power consumption during test-
ing, and the test application time. The experiments
were applied to the two SoCs, the sub-system of the
802.11 MAC layer and the CMUDSP chip described in
Section 5.1.

5.3.1. Defect Coverage. Table 1 compares the three
schemes in terms of the interconnect crosstalk defect
coverage, and the logic fault coverage of the cores
for the 802.11 MAC sub-system and the CMUDSP
chip. All the three schemes were implemented for both
the chips. For the 802.11 MAC sub-system, LFSRs of
24 bits and 12 bits were used for the PARWAN core
and the ENCRYPT core respectively. LFSRs of 32 bits
were used for the AGU, ALU and PCU cores and an
LFSR of 16 bits was used for the BUS SWITCH core
in the CMUDSP chip. For both the chips, the test length
for logic was 32757 vectors and the test length for
the interconnects was 10000 vectors. The defect cover-

Table 1. Defect coverage comparison of MA tests, LFSR tests
and LI-BIST.

Defect Logic fault
Design Test scheme coverage (%) coverage (%)

802.11 MA tests 100 –

MAC LFSR tests 3.4 96.71

sub-system LI-BIST 100 96.71

CMUDSP MA tests 100 –

LFSR tests 1 91.36

LI-BIST 99.7 91.36

Table 2. Area overhead comparison of MA tests,
LFSR tests and LI-BIST.

Design Test scheme Area overhead (%)

802.11 MA tests 20.05

MAC LFSR tests 3.55

sub-system LI-BIST 6.24

CMUDSP MA tests 22

LFSR tests 1.22

LI-BIST 4

age was measured using the high-level fault-simulation
methodology described in the previous sub-section.
The logic fault coverage of the cores is in terms of
single stuck-at-fault coverage and was measured using
Mentor Graphics’ FastScan [7].

From Table 1, we observe that the MA tests have
100% defect coverage because the interconnects are
tested using MA vectors. The LFSR tests are not fea-
sible due to their extremely poor defect coverage. The
LI-BIST scheme, however, achieves very high defect
coverage comparable to MA tests. Both LFSR tests and
LI-BIST achieve the same logic fault coverage of the
cores since the test methodology for logic is the same
in both the schemes.

5.3.2. Area Overhead. Table 2 compares the three
schemes in terms of the additional area overhead over
conventional logic BIST for testing the interconnects
for the 802.11 MAC sub-system and the CMUDSP
chip. We used Synopsys’ Design Compiler [6] syn-
thesis tool to synthesize both the designs along with
the test structures for all the three schemes.

From Table 2, we observe that the MA test scheme
has high area overhead because it uses dedicated
self-test structures for testing the interconnects. The
LI-BIST scheme has very low area overhead since it
reuses existing logic BIST test structures to test the
interconnects also. Note that the LFSR test scheme
has slightly more area compared to conventional logic
BIST because of the extra multiplexers required to
multiplex the LFSR and MISR signals (see Fig. 4).

5.3.3. Interconnect Power Consumption. In order
to assess the power-efficiency of LI-BIST, we con-
ducted another set of experiments to measure the av-
erage interconnect power consumption of all the three
schemes. The results are presented in Table 3. The in-
terconnect power consumption was measured using a
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Table 3. Interconnect power consumption of MA
tests, LFSR tests and LI-BIST.

Design Test scheme Avg. int. power (mW)

802.11 MA tests 0.39

MAC LFSR tests 1.65

sub-system LI-BIST 0.41

CMUDSP MA tests 0.43

LFSR tests 3.66

LI-BIST 0.77

DSM-accurate power estimation technique proposed in
[15] which takes into account not only the number of
transitions on the interconnects but also DSM crosstalk
effects.

The LFSR test vectors consume the maximum
amount of interconnect power since the vectors are
pseudo-random and they have many opposing direc-
tion transitions which excite a large amount of cou-
pling capacitance. The MA vectors have the least power
consumption because all the wires, except the victim,
transition in the same direction. So, although there is a
high coupling capacitive effect on the victim wire, the
total amount of coupling capacitance excited is very
low. The LI-BIST generated vectors have marginally
higher interconnect power consumption as compared
to the MA vectors since there may be more than one
victim wire. So, the LI-BIST test methodology is also
power-efficient.

5.3.4. Test Application Time. We conducted another
set of experiments to compare the test application time
of LI-BIST with the MA test scheme and the LFSR test
scheme and to measure how the test application time
varies with the bus width.

Fig. 10 shows the interconnect crosstalk defect
coverage versus the number of test patterns applied
for all the three schemes for a 24 bit bus. The
interconnect defect coverage is measured using the
high-level fault-simulation methodology described in
Section 5.2. The MA test scheme very quickly reaches
100% defect coverage because all the test vectors are
MA vectors and are deterministically generated. The
LFSR test scheme has extremely poor defect coverage
even after the application of a large number of patterns.
The LI-BIST scheme quickly achieves high defect
coverage with a small number of test patterns and then
there is a marginal increase in the defect coverage with
additional test patterns. This is because most of the

Fig. 10. Defect coverage v.s. test application time for MA tests,
LFSR tests and LI-BIST for a 24 bit bus.

crosstalk faults can be detected by many different test
vector pairs and so are detected early on. However,
there are a few faults which can be detected only by
a few specific test vector pairs and so additional test
patterns are needed to detect them.

Fig. 11 shows how the test application time for the
LI-BIST varies with the bus width for different defect
coverage values. The LI-BIST vectors are generated
by an LI-BIST test generator which consists of a
32 bit LFSR and the extension circuit as described
in Section 4.1. From the figure, we can see that the
LI-BIST scheme quickly achieves high crosstalk
defect coverage with a small number of patterns for
different bus widths. However, to achieve higher fault
coverage, the additional number of LI-BIST patterns
required increases with the bus-width. This is because
as the bus width increases, the number of faults which
can be detected by only a few specific test vectors

Fig. 11. Defect coverage v.s. test application time of LI-BIST for
different bus widths.
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also increases, and so more number of test vectors are
required. The slight anomaly between the curve for
the 24 bit bus and the 32 bit bus between the patterns
200 to 1000 can be attributed to the pseudo-random
nature of the LI-BIST vectors.

6. Conclusion

In this paper, we presented LI-BIST, a comprehen-
sive SoC test methodology for both logic cores and
interconnects. It efficiently reuses existing on-chip
test structures to generate high quality interconnect
crosstalk tests. We have compared LI-BIST with ex-
isting solutions and validated it using a high-level
crosstalk error model. Experiments on example SoCs
confirm that LI-BIST yields high crosstalk defect cov-
erage, low area overhead and low interconnect power
consumption.
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