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1 Introduction
This application note describes the bus interface for the ARM6 family of
microprocessors. Firstly, the general ARM bus interface signals and the minor
differences between the products are explained. The ARM6 bus cycles are then
described and finally, an example is given showing how code moves up the instruction
pipeline, and how the bus behaves as a result.

The ARM6 bus interface is implemented in the ARM6, ARM60 and ARM61 products.
There are two variations of the basic interface:

• the ARM7 bus interface as implemented in the ARM7D, ARM7DM and
ARM70DM

• the ARM610 bus interface as implemented in the ARM600, ARM610,
ARM700 and ARM710.

Both of these variations are covered in separate documents.

2 ARM6 Bus Interface External Signals

2.1 Processor Clocks

The ARM times all its external activity from a single clock, MCLK . This is typically a
square wave but, due to the static nature of the ARM core, either phase of the clock
may be stretched indefinitely. This feature may be exploited by system controllers in
order to extend memory accesses to slow peripherals. There is one control signal
associated with the clock, nWAIT. Inside the ARM, nWAIT  is ANDed with MCLK  to
make the core’s clock. This facility allows cycle stretching in a system with a free
running MCLK .

This internal version of MCLK  (gated with nWAIT ) is divided into two non-overlapping
clocks: phase 1 (ph1) when the clock is low, and phase 2 (ph2) when the clock is high.
This is shown in ➲Figure 2-1: The ARM Clock on page 2. The ARM times all its activity
from these internal clock signals. In the ARM documentation, when a signal is said to
change in the high phase of MCLK , it is assumed that nWAIT  is also high (ie. when
ph2 is high).
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 Figure 2-1:  The ARM Clock

2.2 Data and Address Buses

With the exception of the ARM6 macrocell, all ARM processors have a 32 bit
bidirectional data bus (D[31:0] ) which is used for instruction fetches and data loads
and stores. The ARM6 macrocell has 2 unidirectional buses, one for data in
(DATA[31:0] ), and the other for data out (DOUT[31:0] ). The ARM can deal with both
byte and word (32 bit) quantities. Instructions are always single words. When reading
a byte quantity over the data bus, ARM expects it to be presented on the appropriate
8 data lines and ignores the other 24 lines. When writing a byte quantity, the byte
appears replicated 4 times over the 32 lines and it is up to the memory system to
choose which copy it uses.

The ARM6 core has an address bus that is 32 bits wide (A[31:0] ), allowing up to 4
gigabytes to be addressed. ARM memory is byte addressed, though most memory
systems will be 32 bits wide. The smallest directly addressable unit will be a 32 bit
word. For this reason it is often convenient to view A[31:2]  as a word memory address
and A[1:0]  as a byte selector within that word.

With the exception of the ARM61, all the processors in the family have all 32 address
lines externally available. The ARM61 only has 26 address lines (A[25:0] ) available,
allowing up to 64 Megabytes to be addressed.

2.3 Bus Control Signals

There are three main control signals associated with the ARM’s buses: Address Latch
Enable (ALE ), Data Bus Enable (DBE) and Address Bus Enable (ABE ). The ARM6
core does not include tristate drivers on the address bus, so there is no ABE  signal on
the ARM6 macrocell. All other processors in the family have the three control signals.

Phase 2 Phase 1

MCLK

nWAIT

ph2

ph1
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The action of the three control signals is shown in ➲Figure 2-2: The ARM Bus Control
Signals. Note that the use of DBE shown in the figure is unlikely in a real system. It is
more likely that DBE would be asserted for the whole cycle. A description of each
control signal is given below.

Address Latch Enable (ALE)

ALE  is used to control transparent latches on the address outputs of the ARM. When
ALE  is high, the latches are transparent and taking ALE  low will latch the current
value. This mechanism can be used to de-pipeline the address when interfacing to
memory systems such as ROMs and Static RAMs which require a stable address for
the entire cycle.

Data Bus Enable (DBE)

DBE enables the data bus outputs when it is high. When it is low, these outputs are
put into a high impedance state. The outputs are normally only enabled during write
cycles and so the DBE signal will only be needed in systems which require the data
bus for DMA or similar shared bus operations.

Address Bus Enable (ABE)

ABE  enables the address bus outputs when it is high. When it is low, these outputs
are put into a high impedance state. Note that the ARM6 macrocell does not include
tristate drivers on the address bus, and so there is no ABE  signal.

 Figure 2-2: The ARM Bus Control Signals
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2.4 Memory Control Signals

These signals control access to the memory system. Most signals become valid just
before the cycle to which they refer, and remain valid during phase 1 of that cycle. Two
signals (SEQ and nMREQ) have different behaviour, because of the pipeline
mechanism, and they are valid in the cycle before the one to which they refer. The
pipelining of the bus control signals is described in section 3. The memory signals are
shown in ➲Figure 2-3: The ARM Memory Control Signals on page 5.

Not Memory Request (nMREQ).

This active-low signal indicates that a memory access will be made in the following
cycle. It becomes valid during phase 1 and remains valid throughout phase 2 of the
cycle, before the one to which it refers.

Sequential (SEQ).

This active-high signal indicates that the address used in the following cycle is either
the same as the last memory address, or is 4 greater (ie. the next word address). It
becomes valid during phase 1 and remains valid throughout phase 2 of the cycle
before the one to which it refers.

These two signals (nMREQ and SEQ) indicate burst activity one-cycle in advance.

Address Bus (A[31:0]).

These signals provide the memory address in cycles which access memory. They
become valid during phase 2 of the cycle preceding the memory access, and remain
valid through phase 1 of the actual memory cycle. This behaviour may be modified by
the ALE  latch.

Not Byte/Word (nBW).

This signal indicates whether a memory cycle will transfer a byte (nBW  low) or word
(nBW  high) quantity. It becomes valid during phase 2 of the cycle preceding the
memory access and remains valid through phase 1 of the actual memory cycle. This
signal (nBW ) allows the system designer to interface 8-bit peripherals and control byte
accesses to memory.

Read/Write (nRW).

This signal differentiates between memory cycle reads (nRW low) and writes (nRW
high). It becomes valid during phase 2 of the cycle preceding the memory access and
remains valid through phase 1 of the actual memory cycle.

Data Bus (D[31:0]).

These signals are inputs during read cycles and outputs during write cycles. At other
times they are high-impedance. During read cycles, data must be valid at the end of
phase 2. During write cycles, valid data appears during phase 1 and remains valid
throughout phase 2. During byte write cycles the 8-bit data is broadcast across all 4
bytes to simplify 8-bit peripheral connection.
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Lock (LOCK).

This signal indicates that a swap instruction (SWP) is in progress and that the two
memory cycles used in this instruction should be regarded as indivisible. It becomes
valid during phase 2 of the cycle preceding the first memory access and remains valid
through phase 1 of the second memory cycle. This signal provides information to bus
arbitration logic to indicate 2 bus cycles should not be interrupted to maintain
“semaphore” integrity.

 Figure 2-3: The ARM Memory Control Signals
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2.5 Memory Management Signals

In addition to the signals described above, ARM processors also have some signals
which are of use in systems requiring memory management. They are shown in
➲Figure 2-4: The ARM Memory Management Signals.

 Figure 2-4: The ARM Memory Management Signals

Not Opcode Fetch (nOPC).

This active-low signal indicates that the processor is fetching an instruction from
memory. It becomes valid during phase 2 of the cycle preceding the memory access
to which it refers, and remains valid through phase 1 of that memory cycle (ie. like the
address). nOPC may be used to distinguish instruction fetches from data read cycles.
This may be used to check for executable permission. nOPC may be used by
coprocessors for pipeline following.

Not Translate (nTRANS).

This active-low signal indicates that the processor requires the memory manager to
perform a translation on the current address. It is driven low during memory accesses
while the processor is in User Mode, and becomes valid during phase 2 of the cycle
preceding the memory access to which it refers (ie. like the address). nTRANS
remains valid through phase 1 of the memory cycle.

MCLK

A[31:0]

nM[4:0]

nOPC
nTRANS

ABORT

Phase 1 Phase 2
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Processor Mode (nM[4:0]).

These five signals encode the ARM’s current mode of operation, and hence the
register set in use. They become valid during phase 2 of the cycle preceding the
memory access to which they refer, and remain valid through phase 1 of that memory
cycle. Note, these signals are not available on the ARM60 and ARM61 processors. For
an explanation of the encoding of these signals, please refer to the relevant data
sheet.

Memory Abort (ABORT).

This active-high input is used to indicate that a requested access to memory is not
allowed. It will normally be generated by the memory management logic. This signal
must become valid during phase 1 of the memory cycle, and be held into phase 2. For
future compatibility, ABORT  should be held throughout phase 2 of the memory cycle.

The action taken by the processor after an abort depends on the state of the
configuration input, LATEABT .

The action of the processor after an aborted memory access is as follows: for an abort
on an instruction fetch, if the instruction reaches the execute stage of the pipeline then
a branch to the Prefetch-Abort vector is taken. If an abort occurs on a data load, then
the destination register of the load is not updated. If this was part of a load multiple
(LDM), then all further register updates are also prevented, although the LDM on the
bus will continue normally. If base write-back has been set, then processors
configured for late-aborts will allow the base write-back. Processors configured for
early-aborts will prevent base write back. On completion of the instruction, the Data-
Abort vector is taken.

Similarly for aborts on data stores, ARM6 processors configured for early-abort will
prevent base write-back. In all systems, it is up to the external memory controller to
stop writes on aborted addresses. After an abort part way through a store multiple
(STM), the ARM will complete the instruction, continuing the writes on the bus. On
completion of the store instruction, the Data-Abort vector is taken.

For more information on the action of the ARM in the case of an abort, please refer to
the relevant data sheet. Note that all future ARM processors will implement late-abort
timing, where the ABORT  input must be set up and held around the falling edge of
MCLK  (ie. at the same time as the data). The abort configuration of ARM6 allows users
to write ARM7-compatible abort handlers before upgrading the hardware to an ARM7
based processor.

3 The ARM6 Bus Cycles
The ARM6 Bus Interface performs 4 basic types of cycle. These are:

• non-sequential (N) cycles

• sequential (S) cycles

• internal, or idle, (I) cycles

• coprocessor register transfers (CPRT) cycles.

In addition to these there is a fifth special case, the merged IS (MIS) cycle.
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The type of memory cycle that the ARM will perform is encoded by the signals nMREQ
and SEQ. To aid memory system performance, these two signals are pipelined ahead
by one cycle. Also to aid performance, the address for the memory cycle is pipelined
ahead by a phase. This pipelining is shown in ➲Figure 3-5: The ARM Memory
Pipeline.

 Figure 3-5: The ARM Memory Pipeline

At any time, the type of cycle which will be performed next can be determined by the
current state of nMREQ and SEQ, and the previous state of nMREQ. This can be
summarised in the following table.

nMREQ SEQ Previous Next Cycle

0 0 X Non-sequential (N)

0 1 0 Sequential

0 1 1 Merged I-S (MIS)

1 0 X Internal (I)

1 1 X CPRT

 Table 3-1: The ARM6 Bus Cycle Encoding

MCLK

nMREQ

A[31:0]

D[31:0]

Memory
Cycle

SEQ

D[31:0]

(In)

(Out)



The ARM Family Bus Interface

Application Note 18
ARM DAI 0018B

9

The transitions between bus cycles can be summarised by the state diagram shown
in ➲Figure 3-6: The ARM6 Bus State Transitions.

 Figure 3-6: The ARM6 Bus State Transitions
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➲Figure 3-7: An Ideal N-Cycle on page 10 shows the bus activity during an N-cycle.
During phase 1 of the pervious cycle, nMREQ and SEQ are driven to indicate that the
following cycle will be non-sequential. During phase 2 of the previous cycle, the
address becomes valid. Since this cycle is non-sequential, the address is unrelated to
the previous address. At the end of phase 2 of the actual cycle, the data is valid.

The diagram shows an ideal N-cycle in that it assumes zero wait-state memory. If the
system was running from fast ROM or SRAM, then cycles of this speed could be
achieved. More common would be a system comprising dynamic RAM (DRAM). In this
case, wait states would have to be inserted for the RAS and CAS part of the cycle.
➲Figure 3-8: A Practical N-Cycle on page 11 shows how a typical cycle would look
using a memory system where non-sequential accesses take twice as long as
sequential accesses.

 Figure 3-7: An Ideal N-Cycle
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 Figure 3-8: A Practical N-Cycle

Note that MCLK  has been stretched at source, though a system could easily be built
with a free running MCLK  using nWAIT  to stretch the cycle.
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➲Figure 3-9: Ideal NS-Cycles shows a N-cycle followed by an S-cycle in an ideal
memory system. The definition of a sequential cycle is that the address for the access
is one word greater than that of the previous cycle. This is particularly of use in a
DRAM system since it allows use of burst or page mode memory. ➲Figure 3-10:
Practical NS-Cycles on page 13 shows this in operation. The memory’s RAS input is
asserted for the N-cycle, followed by CAS. For the following cycle, RAS is held active,
and the sequential access is performed by reasserting CAS. Memory systems built in
this way offer both improved performance, and reduced system power consumption.

 Figure 3-9: Ideal NS-Cycles
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 Figure 3-10: Practical NS-Cycles

➲Figure 3-11: A Merged IS-Cycle(MIS) on page 14 shows a merged IS-cycle. Internal
cycles are performed by the ARM whenever it does not need memory. For example,
when a multiply is executed, the ARM will perform an instruction fetch, and then
perform a number of internal cycles whilst calculating the result of the multiply.
Similarly during the final cycle of a load instruction, the ARM will perform an internal
cycle whilst writing the loaded data into the destination register. Under most
circumstances, after an internal cycle the ARM will perform a sequential cycle, and
memory systems can be constructed to exploit this for performance gains.

During the internal cycle, the ARM presents the address for the next instruction fetch
on the address bus, although nMREQ denotes that memory is not required. During the
sequential cycles the address does not change. Thus, during phase 1 of the I-cycle, a
memory controller can start decoding the address for the DRAM row access. During
phase 2 of the I-cycle, RAS can be asserted once the memory controller has
acknowledged that nMREQ and SEQ have been driven to denote that the following
cycle will be sequential. Then, in the S-cycle, CAS can be asserted to complete the
memory cycle. Note that if this optimisation is not exploited, and the memory system
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S-CycleN-Cycle

A A+4
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does nothing during the I-cycle, then the access will take longer to complete since the
S-cycle would have to be treated as an N-cycle. In this case, the access would have
the same timing as an IN-cycle.

Merged IS-cycles are not performed when the destination register is the PC. For
example, after the internal cycle at the end of a data load, the ARM will normally
perform an S-cycle. However, if the load destination was the PC, then an N-cycle will
be performed after the I-cycle. This is shown in ➲Figure 3-12: A Typical IN-Cycle on
page 15.

 Figure 3-11: A Merged IS-Cycle(MIS)
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 Figure 3-12: A Typical IN-Cycle

The ARM bus performs CPRT cycles whenever it needs to transfer data between itself
and a coprocessor. Note that although nMREQ is high, denoting that memory is not
required, the ARM6,60 and 61 do not have a dedicated coprocessor bus and so use
the system data bus to transfer the data. A memory controller must be aware of this
and prevent other use of the bus during these cycles. ➲Figure 3-13: The CPRT Cycle
on page 16 shows a CPRT cycle as executed by an ARM60. The diagram shows both
the bus control signals and the coprocessor control signals. For more information on
attaching coprocessors to the ARM, please refer to the relevant data sheet.
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 Figure 3-13: The CPRT Cycle

4 Example Code
This section considers typical activity of the ARM6 bus using short sections of code as
examples.

4.1 Data Load

The first example shows a branch to a routine which performs a data load.

BL label
.....

label LDR R2, [R0]
ADD R2, R2, R3
SUB R2, R2, R4
MOV PC, R14

.....

MCLK

nMREQ

SEQ

D[31:0]

CPRT-Cycle

Data

nOPC

nCPI

CPA,CPB



The ARM Family Bus Interface

Application Note 18
ARM DAI 0018B

17

The progress of these instruction through the ARM’s Fetch: Decode: Execute pipeline
is shown in ➲Figure 4-14: ARM Instruction Pipeline Activity: Example 1. Note that after
the branch-and-link (BL) instruction, two more instructions are loaded. However, when
the instruction gets executed the pipeline is flushed.

 Figure 4-14: ARM Instruction Pipeline Activity: Example 1

➲Figure 4-15: ARM Bus Activity: Example 1 shows the activity on the ARM's bus
between cycles 4 and 9. This shows the full range of bus cycles (except CPRT): a burst
of two sequential instruction fetches, a non-sequential data access, followed by a
merged IS-cycle.

 Figure 4-15: ARM Bus Activity: Example 1
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4.2 Data Store

The second example shows an instruction sequence containing a data store.

......
ADD R1, R0, R0
STR R0, [R1]
SUB R3, R0, R1
BIC R4, R3, R2
AND R0, R2, R3
EOR R7, R3, R2

......

Progress through the ARM’s instruction pipeline is similar to the previous example,
and is shown ➲Figure 4-16: ARM Instruction Pipeline Activity: Example 2.

 Figure 4-16: ARM Instruction Pipeline Activity: Example 2

The activity on the bus during the execution of cycles 3 to 7 of this section of code is
shown in ➲Figure 4-17: ARM Bus Activity: Example 2. This shows the sequential
instruction fetches, the non-sequential data store followed by a non-sequential
instruction fetch, and then further sequential fetches. Note that data stores are always
non-sequential, and the instruction fetch after a data store is also always
non-sequential. In the case of a store-multiple (STM), the first memory access is
always non-sequential, and the following stores are then sequential. The instruction
fetch after a store-multiple is always non-sequential.
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 Figure 4-17: ARM Bus Activity: Example 2
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