

VeriBest FPGA Synthesis
VHDL Reference Manual
VB 98.0 Reprint

DLA029300

Warranties and Liabilities
All warranties given by VeriBest, Inc. (hereinafter collectively called VeriBest), are set forth in the Software License
Agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modifica-
tion or amendment of such warranties.

The information and the software discussed in this document are subject to change without notice and should not be con-
strued as commitments by VeriBest. VeriBest assumes no responsibility for any errors that may appear in this document.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with
the terms of this license.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of
Commercial Computer Software -- Restricted Rights at 48 CFT 52.227-19, as applicable.

Reprinted with permission -- rights reserved under the Copyright Laws of the United States.
Synopsys, Inc., San Jose, CA and VeriBest, Inc., Boulder, CO

Trademarks

VeriBest® is a registered trademark of VeriBest Incorporated.
VeriBest FPGA Synthesis is a trademark of VeriBest Incorporated.

Synopsys, the Synopsys logo, BiNMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower,
dont_use, ExpressModel, LM-1000, LM-1200, Logic Modeling, the Logic Modeling logo, ModelAccess, Model-
Tools, SmartLicense, SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!, SourceModel Library, Stream
Driven Simulator, Synopsys VHDL Compiler, Synthetic Designs, and Synthetic Libraries are registered trademarks
of Synopsys, Inc.

Behavioral Compiler, CBA Design System, characterize, Compiled Designs, Cyclone, Data Path Architect, Data
Path Express, DC Expert, DC Professional, Design Analyzer, Design Compiler, DesignSource, DesignTime,
DesignWare, DesignWare Developer, dont_touch, dont_touch_network, ECL Compiler, Falcon Interface, Floor-
plan Manager, FoundryModel, FPGA Compiler, FPGA Express, Frame Compiler, General Purpose Post-Proces-
sor, GPP, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-
700, LM-family, Logic Model, Memory Architect, ModelSource, ModelWare, MS-3200, MS-3400, PLdebug, Prime-
Time, Shadow Debugger, Shortcut, Silicon Architects, SimuBus, SmartCircuit, SmartModel Windows, Source-
Level Design, SourceModel, SWIFT, SWIFT Interface, Synopsys Graphical Environment, Test Compiler, Test
Compiler Plus, Test Manager, TestBench Manager, TestSim, 3-D Debugging, VHDL System Simulator, Visualyze,
VSS Expert, and VSS Professional are trademarks of Synopsys, Inc.

In-Sync and LEARN-IT! are service marks of Synopsys, Inc.

Other brands and product names are trademarks of their respective owners.
No sponsorship or affiliation of any kind is implied in this manual by reference to brand names of other companies.
ii • VeriBest FPGA Synthesis VHDL Reference Manual

Table of Contents

Chapter 1
Using FPGA Express with VHDL ... 1-1

Hardware Description Languages... 1-1
Typical Uses for HDLs.. 1-1
Advantages of HDLs .. 1-2

About VHDL .. 1-2

FPGA Express Design Process ... 1-4

Using FPGA Express to Compile a VHDL Design... 1-4

Design Methodology ... 1-4

Chapter 2
Description Styles .. 2-1

Design Hierarchy ... 2-1

Data Types .. 2-2

Design Constraints .. 2-2

Register Selection.. 2-2

Asynchronous Designs .. 2-2

Language Constructs.. 2-3

Chapter 3
Describing Designs ... 3-1

VHDL Entities ... 3-1

VHDL Constructs ... 3-3
Entities.. 3-3
Architectures .. 3-5
Configurations .. 3-6
Processes... 3-6
Subprograms.. 3-7
Packages.. 3-8

Using a Package .. 3-8
Package Structure .. 3-9
Package Declarations... 3-9
Package Bodies.. 3-10

Defining Designs.. 3-11
Entity Specifications ... 3-11

Entity Generic Specifications.. 3-12
Entity Port Specifications.. 3-12
 iii

Entity Architectures .. 3-13
Entity Configurations .. 3-16
Subprograms.. 3-17

Subprogram Declarations... 3-17
Subprogram Bodies.. 3-19
Subprogram Overloading ... 3-20
Operator Overloading ... 3-21

Type Declarations .. 3-21
Subtype Declarations ... 3-21
Constant Declarations .. 3-22
Signal Declarations .. 3-22
Resolution Functions.. 3-22
Variable Declarations ... 3-25

Structural Design ... 3-25
Using Hardware Components .. 3-26
Component Declaration.. 3-26

Sources of Components ... 3-27
Consistency of Component Ports ... 3-27

Component Instantiation Statement ... 3-27
Mapping Generic Values .. 3-28
Mapping Port Connections ... 3-29

Technology-Independent Component Instantiation.. 3-30

Chapter 4
Data Types ... 4-1

Enumeration Types ... 4-2
Enumeration Overloading... 4-3
Enumeration Encoding... 4-3
Enumeration Encoding Values ... 4-4

Integer Types .. 4-5

Array Types... 4-5
Constrained Array .. 4-6
Unconstrained Array... 4-6
Array Attributes... 4-7

Record Types ... 4-8

Predefined VHDL Data Types... 4-9
Data Type BOOLEAN .. 4-11
Data Type BIT .. 4-11
Data Type CHARACTER ... 4-11
Data Type INTEGER.. 4-11
Data Type NATURAL ... 4-11
Data Type POSITIVE ... 4-11
Data Type STRING .. 4-12
Data Type BIT_VECTOR ... 4-12

Unsupported Data Types .. 4-12
iv • VeriBest FPGA Synthesis VHDL Reference Manual

Physical Types ... 4-12
Floating Point Types... 4-12
Access Types ... 4-12
File Types... 4-12

SYNOPSYS Data Types... 4-12

Subtypes ... 4-12

Chapter 5
Expressions .. 5-1

Operators .. 5-2
Logical Operators ... 5-3
Relational Operators .. 5-4
Adding Operators ... 5-5
Unary (Sign) Operators .. 5-8
Multiplying Operators ... 5-8
Miscellaneous Arithmetic Operators... 5-10

Operands... 5-11
Operand Bit Width .. 5-12
Computable Operands ... 5-12
Literals.. 5-14

Numeric Literals.. 5-14
Character Literals ... 5-15
Enumeration Literals... 5-15
String Literals.. 5-15

Identifiers.. 5-16
Indexed Names .. 5-17
Slice Names ... 5-18

Limitations on Null Slices.. 5-19
Limitations on Noncomputable Slices... 5-20

Records and Fields .. 5-20
Aggregates ... 5-21
Attributes .. 5-22
Function Calls... 5-22
Qualified Expressions... 5-23
Type Conversions .. 5-24

Chapter 6
Sequential Statements .. 6-1

Assignment Statements.. 6-2
Assignment Targets ... 6-2
Simple Name Targets... 6-2
Indexed Name Targets... 6-3
Slice Targets .. 6-4
Field Targets .. 6-5
 v

Aggregate Targets.. 6-6
Variable Assignment Statement .. 6-7

Signal Assignment Statement ... 6-7
Variable Assignment .. 6-7
Signal Assignment.. 6-7

if Statement ... 6-8
Evaluating condition ... 6-9
Using the if Statement to Imply Registers and Latches.. 6-9

case Statement... 6-10
Using Different Expression Types .. 6-10
Invalid case Statements ... 6-12

loop Statements ... 6-13
loop Statement ... 6-14
while .. loop Statement ... 6-14
for .. loop Statement ... 6-14

next Statement ... 6-16

exit Statement... 6-18

Subprograms .. 6-19
Subprogram Calls... 6-20

Procedure Calls .. 6-21
Function Calls ... 6-23

return Statement .. 6-24
Mapping Subprograms to Components (Entities) .. 6-24

wait Statement .. 6-29
Inferring Synchronous Logic... 6-29
Combinational vs. Sequential Processes ... 6-33

null Statement .. 6-34

Chapter 7
Concurrent Statements .. 7-1

process Statements... 7-2
Combinational Process Example ... 7-3
Sequential Process Example ... 7-4
Driving Signals ... 7-5

block Statement ... 7-6

Concurrent Procedure Calls... 7-7

Concurrent Signal Assignments ... 7-9
Conditional Signal Assignment... 7-10
Selected Signal Assignment... 7-11

Component Instantiations .. 7-13

generate Statements ... 7-15
for .. generate Statement.. 7-15
 if . . generate Statement .. 7-17
vi • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 8
Register and Three-State Inference... 8-1

Register Inference.. 8-1
Using Register Inference.. 8-2

Describing Clocked Signals.. 8-2
wait vs if Statements... 8-3
Recommended Use of Register Inference Capabilities.. 8-4
Restrictions on Register Capabilities.. 8-5

Delays in Registers .. 8-6
Describing Latches... 8-7

Automatic Latch Inferencing ... 8-8
Restrictions on Latch Inference Capabilities .. 8-9
Example—Design with Two-Phase Clocks .. 8-10

Describing Flip-Flops.. 8-11
Flip-Flop with Asynchronous Reset .. 8-11
Example—Synchronous Design with Asynchronous Reset ... 8-12

Attributes .. 8-14
async_set_reset ... 8-14
Latch with Asynchronous Set or Clear Inputs... 8-14
sync_set_reset ... 8-15
Flip-Flop with Synchronous Reset Input... 8-15
async_set_reset_local .. 8-16
sync_set_reset_local .. 8-18
async_set_reset_local_all .. 8-20
sync_set_reset_local_all .. 8-22
one_hot... 8-24
one_cold ... 8-26

FPGA Express Latch and Flip-Flop Inference.. 8-28
Efficient Use of Registers ... 8-29

Example—Using Synchronous and Asynchronous Processes .. 8-31
Three-State Inference .. 8-33

Assigning the Value Z .. 8-34
Latched Three-State Variables... 8-35

Chapter 9
FPGA Express Directives.. 9-1

Notation for FPGA Express Directives ... 9-1

FPGA Express Directives ... 9-1
Translation Stop and Start Directives... 9-2
Resolution Function Directives... 9-4
Component Implication Directives.. 9-4
 vii

Chapter 10
Synopsys Packages.. 10-1

std_logic_1164 Package ... 10-1

std_logic_arith Package ... 10-2
Using the Package ... 10-2
Modifying the Package... 10-3
Data Types ... 10-4

UNSIGNED... 10-4
SIGNED.. 10-4

Conversion Functions... 10-5
Arithmetic Functions... 10-7
Comparison Functions ... 10-10
Shift Functions.. 10-12

Multiplication Using Shifts... 10-13
ENUM_ENCODING Attribute ... 10-14
pragma built_in... 10-14

Two-Argument Logic Functions.. 10-14
One-Argument Logic Functions.. 10-15
Type Conversion .. 10-16

translate_off Directive... 10-16
std_logic_misc Package ... 10-17

Chapter 11
HDL Constructs.. 11-1

VHDL Construct Support .. 11-1
Design Units ... 11-2
Data Types ... 11-2
Declarations ... 11-3
Specifications ... 11-4
Names .. 11-4
Operators ... 11-5
Operands and Expressions .. 11-5
Sequential Statements ... 11-6
Concurrent Statements .. 11-7
Predefined Language Environment.. 11-8

VHDL Reserved Words ... 11-9

Index ... Index-1
viii • VeriBest FPGA Synthesis VHDL Reference Manual

FPGA Express
VHDL Reference Manual

September 1996
Comments?
E-mail your comments about Synopsys documentation to doc@synopsys.com

 only as
by any
ense

opyrights,
in the

countries

,

-1200,
,
ks of

fessional,
ompiler,

P, HDL
ct,

ompiler

re
Copyright Notice and Proprietary Information
Copyright © 1996 Synopsys, Inc. All rights reserved. This software and manual are owned by Synopsys, Inc., and/or its licensors and may be used
authorized in the license agreement controlling such use. No part of this publication may be reproduced, transmitted, or translated, in any form or
means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the lic
agreement

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all c
trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall conta
following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of ______________________________
____________ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other
contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys, the Synopsys logo, BiNMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, dont_use, ExpressModel, LM-1000, LM

Logic Modeling, the Logic Modeling logo, ModelAccess, ModelTools, SmartLicense, SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!
SourceModel Library, Stream Driven Simulator, Synopsys VHDL Compiler, Synthetic Designs, and Synthetic Libraries are registered trademar
Synopsys, Inc.

Behavioral Compiler, CBA Design System, characterize, Compiled Designs, Cyclone, Data Path Architect, Data Path Express, DC Expert, DC Pro
Design Analyzer, Design Compiler, DesignSource, DesignTime, DesignWare, DesignWare Developer, dont_touch, dont_touch_network, ECL C
Falcon Interface, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Express, Frame Compiler, General Purpose Post-Processor, GP
Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, Memory Archite
ModelSource, ModelWare, MS-3200, MS-3400, PLdebug, PrimeTime, Shadow Debugger, Shortcut, Silicon Architects, SimuBus, SmartCircuit,
SmartModel Windows, Source-Level Design, SourceModel, SWIFT, SWIFT Interface, Synopsys Graphical Environment, Test Compiler, Test C
Plus, Test Manager, TestBench Manager, TestSim, 3-D Debugging, VHDL System Simulator, Visualyze, VSS Expert, and VSS Professional a
trademarks of Synopsys, Inc.

In-Sync and LEARN-IT! are service marks of Synopsys, Inc.

All other products are trademarks of their respective holders and should be treated as such.

Chapter 1
Using FPGA Express with VHDL
FPGA Express translates and optimizes a VHDL description to an internal gate-level equivalent for-
mat. This format is then compiled for a given FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:

• Hardware Description Languages

• About VHDL

• About FPGA Express

• Using FPGA Express

• A Model of the Design Process

The United States Department of Defense, as part of its Very-High-Speed Integrated Circuit (VHSIC)
program, developed VHSIC HDL (VHDL) in 1982. VHDL describes the behavior, function, inputs, and
outputs of a digital circuit design. VHDL is similar in style and syntax to modern programming lan-
guages, but includes many hardware-specific constructs.

FPGA Express reads and parses the supported VHDL syntax. Chapter 11 lists all VHDL constructs
and includes the level of Synopsys support provided for each construct.

Hardware Description Languages
Hardware description languages (HDLs) are used to describe the architecture and behavior of discrete
electronic systems.

HDLs were developed to deal with increasingly complex designs. An analogy is often made to the his-
tory of what can be called software description languages, from machine code (transistors and solder),
to assembly language (netlists), to high-level languages (HDLs).

Top-down, HDL-based system design is most useful in large projects, where several designers or
teams of designers are working concurrently. HDLs provide structured development. After major archi-
tectural decisions have been made, and major components and their connections have been identi-
fied, work can proceed independently on subprojects.

Typical Uses for HDLs
HDLs typically support a mixed-level description where structural or netlist constructs can be mixed
with behavioral or algorithmic descriptions. With this mixed-level capability, you can describe system
architectures at a high level of abstraction; then incrementally refine a design into a particular compo-
 Using FPGA Express with VHDL • 1–1

About VHDL
nent-level or gate-level implementation. Alternatively, you can read an HDL design description into
FPGA Express, then direct the compiler to synthesize a gate-level implementation automatically.

Advantages of HDLs
A design methodology that uses HDLs has several fundamental advantages over a traditional
gate-level design methodology. Among the advantages are the following:

• You can verify design functionality early in the design process, and immediately simulate a design
written as an HDL description. Design simulation at this higher level, before implementation at the
gate-level, allows you to test architectural and design decisions.

• FPGA Express provides logic synthesis and optimization, so you can automatically convert a VHDL
description to a gate-level implementation in a given technology. This methodology eliminates the
former gate-level design bottleneck and reduces circuit design time and errors introduced when
hand-translating a VHDL specification to gates. With FPGA Express logic optimization, you can
automatically transform a synthesized design to a smaller and faster circuit. You can apply informa-
tion gained from the synthesized and optimized circuits back to the VHDL description, perhaps to
fine-tune architectural decisions.

• HDL descriptions provide technology-independent documentation of a design and its functionality.
An HDL description is more easily read and understood than a netlist or schematic description.
Since the initial HDL design description is technology-independent, you can later reuse it to generate
the design in a different technology, without having to translate from the original technology.

• VHDL, like most high-level software languages, provides strong type checking. A component that
expects a four-bit-wide signal type cannot be connected to a three- or five-bit-wide signal; this mis-
match causes an error when the HDL description is compiled. If a variable’s range is defined as 1 to
15, an error results from assigning it a value of 0. Incorrect use of types has been shown to be a
major source of errors in descriptions. Type checking catches this kind of error in the HDL descrip-
tion even before a design is generated.

About VHDL
VHDL is one of just a few HDLs in widespread use today. VHDL is recognized as a standard HDL by
the IEEE (IEEE Standard 1076, ratified in 1987) and by the United States Department of Defense
(MIL-STD-454L).

VHDL divides entities (components, circuits, or systems) into an external or visible part (entity name
and connections) and an internal or hidden part (entity algorithm and implementation). After you define
the external interface to an entity, other entities can use that entity when they all are being developed.
This concept of internal and external views is central to a VHDL view of system design. An entity is
defined, with respect to other entities, by its connections and behavior. You can explore alternate
implementations (architectures) of an entity without changing the rest of the design.

After you define an entity for one design, you can reuse it in other designs as needed. You can
develop libraries of entities for use by many designs, or for a family of designs.

The VHDL model of hardware is shown in Figure 1-1.
1–2 • VeriBest FPGA Synthesis VHDL Reference Manual

About VHDL
Figure 1-1: VHDL Hardware Model

A VHDL entity (design) has one or more input, output, or inout ports that are connected (wired) to
neighboring systems. An entity is itself composed of interconnected entities, processes, and compo-
nents, all which operate concurrently. Each entity is defined by a particular architecture, which is com-
posed of VHDL constructs such as arithmetic, signal assignment, or component instantiation
statements.

In VHDL, independent processes model sequential (clocked) circuits, using flip-flops and latches, and
combinational (unclocked) circuits, using only logic gates. Processes can define and call (instantiate)
subprograms (subdesigns). Processes communicate with each other by signals (wires).

A signal has a source (driver), one or more destinations (receivers), and a user-defined type, such as
“color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL you can describe discrete electronic systems of
varying complexity (systems, boards, chips, modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their level of abstraction: behavioral,
dataflow, and structural. These categories are described as follows:

behavioral

The functional or algorithmic aspects of a design, expressed in a sequential
VHDL process.

Entity

Process Process

(Signals)

Sequential
Process

(Architecture)

Component

red, blue

0 to 15

Combinational

Process
wait ... ;

X and (Y xor Z);

Subprogram

if A

end if;
 else Y
 then X

Ports
 Using FPGA Express with VHDL • 1–3

FPGA Express Design Process
dataflow

The view of data as flowing through a design, from input to output. An
operation is defined in terms of a collection of data transformations,
expressed as concurrent statements.

structural

The view closest to hardware; a model where the components of a design
are interconnected. This view is expressed by component instantiations.

FPGA Express Design Process
FPGA Express performs three functions:

• Translates VHDL to an internal format

• Optimizes the block level representation through various optimization methods

• Maps the design’s logical structure for a specific FPGA technology library.

FPGA Express synthesizes VHDL descriptions according to the VHDL synthesis policy defined in
Chapter 2, “Description Styles.” The Synopsys VHDL synthesis policy has three parts: design method-
ology, design style, and language constructs. You use the VHDL synthesis policy to produce high
quality VHDL-based designs.

Using FPGA Express to Compile a VHDL Design
When a VHDL design is read into FPGA Express, it is converted to an internal database format so
FPGA Express can synthesize and optimize the design. When FPGA Express optimizes a design, it
may restructure part or all the design. You control the degree of restructuring. Options include:

• Fully preserving a design’s hierarchy

• Allowing full modules to be moved up or down in the hierarchy

• Allowing certain modules to be combined with others

• Compressing the entire design into one module (called flattening the design) if it is beneficial

The following section describes the design process that uses FPGA Express with a VHDL Simulator.

Design Methodology
Figure 1-2 shows a typical design process that uses FPGA Express and a VHDL Simulator. Each step
of this design model is described in detail.
1–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Design Methodology
Figure 1-2: Design Flow

The steps in Figure 1-2 are explained below.

1. Write a design description in VHDL. This description can be a combination of structural and func-
tional elements (as shown in Chapter 2, “Description Styles“). This description is used with both
FPGA Express and the Synopsys VHDL simulator.

2. Provide VHDL-language test drivers for the simulator. For information on writing these drivers, see
the appropriate simulator manual. The drivers supply test vectors for simulation and gather output
data.

3. Simulate the design by using a VHDL simulator. Verify that the description is correct.

4. Use FPGA Express to synthesize and optimize the VHDL design description into a gate-level
netlist. FPGA Express generates optimized netlists to satisfy timing constraints for a targeted FPGA
architecture.

 VHDL
 Description

 VHDL
Simulator

Synopsys FPGA
Express

 VHDL
Test Driver

 VHDL
Simulator

Simulation
Output

Simulation
Output

Compare
Output

FPGA Vendor
Development System

7

1

2

3

4

5

6

 Using FPGA Express with VHDL • 1–5

Design Methodology
5. Use your FPGA development system to link the FPGA technology-specific version of the design to
the VHDL simulator. The development system includes simulation models and interfaces required
for the design flow.

6. Simulate the technology-specific version of the design with the VHDL simulator. You can use the
original VHDL simulation drivers from Step 2 because module and port definitions are preserved
through the translation and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output of the original VHDL
description simulation (Step 3) to verify that the implementation is correct.
1–6 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 2
Description Styles
The style of your initial VHDL description has a major effect on the characteristics of the resulting
gate-level design synthesized by FPGA Express. The organization and style of a VHDL description
determines the basic architecture of your design. Because FPGA Express automates most of the
logic-level decisions required in your design, you can concentrate on architectural tradeoffs.

You can make some of the high-level architectural decisions that are needed by using FPGA Express.
Certain VHDL constructs are well suited for synthesis. To make the decisions and use the constructs,
you need to become familiar with the following concepts:

• Design Hierarchy

• Data Types

• Design Constraints

• Register Selection

• Asynchronous Designs

• Language Constructs

Design Hierarchy
FPGA Express maintains the hierarchical boundaries you define when using the structural view in
VHDL. These boundaries have two major effects:

1. Each design entity specified in your VHDL description is synthesized separately and is maintained
as a distinct design. The constraints for the design are maintained, and each design entity can be
optimized separately in FPGA Express.

2. Component instantiations within VHDL descriptions are maintained during input. The instance
name you give each user-defined entity is carried through to the gate-level implementation.

Chapter 3 discusses design entities, and Chapter 7 discusses component instantiations.

Note: FPGA Express does not automatically maintain or create a hierarchy of other nonstructural
VHDL constructs such, as blocks, processes, loops, functions, and procedures. These elements
of a VHDL description are translated in the context of their design. After reading in a VHDL
design, you can group together the logic of a process, function, or procedure within the FPGA
Express Implementation Window.

The choice of hierarchical boundaries has a significant effect on the quality of the synthesized design.
Using FPGA Express, you can optimize a design while preserving these hierarchical boundaries. How-
 Description Styles • 2–1

Data Types
ever, FPGA Express only partially optimizes logic across hierarchical modules. Full optimization is
possible across those parts of the design hierarchy that are collapsed in FPGA Express.

Data Types
In VHDL, you must assign a data type to all ports, signals, and variables. The data type of an object
defines the operations that can be applied to it. For example, the AND operator is defined for objects of
type BIT, but not for objects of type INTEGER.

Data types are also important when your design is synthesized. The data type of an object determines
its size (bit width) and its bit organization. The proper choice of data types greatly improves design
quality and helps minimize errors.

See Chapter 4 for a discussion of VHDL data types.

Design Constraints
You can describe the performance constraints for a design module within the FPGA Express Imple-
mentation Window. Refer to the FPGA Express User’s Guide for further information.

Register Selection
The placement of registers and the clocking scheme are important architectural decisions. There are
two ways to define registers in your VHDL description. Each method has specific advantages:

• You can directly instantiate registers into a VHDL description, selecting from any element in your
FPGA library. Clocking schemes can be arbitrarily complex. You can choose between a flip-flop and
a latch-based architecture. The major disadvantages of this approach are

• The VHDL description is now specific to a given technology because you choose structural elements
from that technology library. However, you can isolate this portion of your design as a separate
entity, which you then connect to the remainder of the design.

• The description is more difficult to write.

• You can use the VHDL if and wait statements to direct FPGA Express to infer latches and
flip-flops from the description. The advantages of this approach directly counter the disadvantages of
the previous approach. When using register inference, the VHDL description is technology-indepen-
dent and is much easier to write. This method allows FPGA Express to select the type of component
inferred, on the basis of constraints. Therefore, if a specific component is necessary, instantiation
should be used. Some types of registers and latches cannot be inferred.

See Chapter 8 for a discussion of register and latch inference.

Asynchronous Designs
You can use FPGA Express to construct asynchronous designs with multiple clocks and gated clocks.
However, although these designs are logically (statically) correct, they might not simulate or operate
correctly, because of race conditions.
2–2 • VeriBest FPGA Synthesis VHDL Reference Manual

Language Constructs
Language Constructs
Another component of the VHDL synthesis policy is the set of VHDL constructs that describe your
design, determine its architecture, and give consistently good results. The remainder of this manual
discusses these constructs and their uses.

The concepts mentioned earlier in this chapter are described in the manual as follows:

Design Hierarchy

Chapter 3 describes the use and importance of hierarchy in VHDL designs.
Chapter 7 explains how to instantiate (apply) existing components.

Data Types

Chapter 4 describes data types and their uses.

Register Selection

You can instantiate registers with the component instantiation statement
discussed in Chapter 3 and Chapter 7. Chapter 6, and Chapter 8 describe
register inference with the VHDL if and wait statements.
 Description Styles • 2–3

Language Constructs
2–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 3
Describing Designs
To describe a design in VHDL, you need to be familiar with the following concepts:

• VHDL Entities

• VHDL Constructs

• Defining Designs

• Structural Designs

VHDL Entities
Designs that are described with VHDL are composed of entities. An entity represents one level of the
design hierarchy and can consist of a complete design, an existing hardware component, or a
VHDL-defined object.

Each design has two parts: the entity specification and the architecture. The specification of an entity is
its external interface. The architecture of an entity is its internal implementation. A design has only one
entity specification (interface), but it can have multiple architectures (implementations). When an entity
is compiled into a hardware design, a configuration specifies the architecture to use. An entity’s speci-
fication and architecture can be contained in separate VHDL source files or in one VHDL source file.

Example 3-1 shows the entity specification of a simple logic gate (a 2-input NAND gate).

Example 3-1: VHDL Entity Specification

entity NAND2 is

 port(A, B: in BIT; -- Two inputs, A and B

 Z: out BIT); -- One output, Z = (A and B)’

end NAND2;

Note: In a VHDL description, a comment is prefixed by two hyphens (--). All characters from the
hyphens to the end of the line are ignored by FPGA Express. The only exceptions to this rule
are comments that begin with -- pragma or -- synopsys; these comments are FPGA
Express directives.

After an entity statement declares an entity specification, that entity can be used by other entities in
a design. The internal architecture of an entity determines its function.

Examples 3-2, 3-3, and 3-4 show three different architectures for the entity NAND2. The three exam-
ples define equivalent implementations of NAND2. After optimization and synthesis, each implementa-
 Describing Designs • 3–1

VHDL Entities
tion produces the same circuit, probably a 2-input NAND gate in the target technology. The
architecture description style you use for this entity depends on your own preferences.

Example 3-2 shows how the entity NAND2 can be implemented with two components from a technol-
ogy library. The entity inputs A and B are connected to AND gate U0, producing an intermediate signal
I. Signal I is then connected to inverter U1, producing the entity output Z.

Example 3-2: Structural Architecture for Entity NAND2

architecture STRUCTURAL of NAND2 is

 signal I: BIT;

 component AND_2 -- From a technology library

 port(I1, I2: in BIT;

 O1: out BIT);

 end component;

 component INVERT -- From a technology library

 port(I1: in BIT;

 O1: out BIT);

 end component;

begin

 U0: AND_2 port map (I1 => A, I2 => B, O1 => I);

 U1: INVERT port map (I1 => I, O1 => Z);

end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND2 by its logical function.

Example 3-3: Dataflow Architecture for Entity NAND2

architecture DATAFLOW of NAND2 is

begin

 Z <= A nand B;

end DATAFLOW;

Example 3-4 shows another implementation of NAND2.
3–2 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Constructs
Example 3-4: RTL Architecture for Entity NAND2

architecture RTL of NAND2 is

begin

 process(A, B)

 begin

 if (A = ’1’) and (B = ’1’) then

 Z <= ’0’;

 else

 Z <= ’1’;

 end if;

 end process;

end RTL;

VHDL Constructs
The top-level VHDL constructs work together to describe a design. The description consists of

Entities

The interfaces to other designs.

Architectures

The implementations of design entities. Architectures can specify
connection through instantiation to other entities.

Configurations

The bindings of entities to architectures.

Processes

Collections of sequentially executed statements. Processes are declared
within architectures.

Subprograms

Algorithms that can be used by more than one architecture.

Packages

Collections of declarations used by one or more designs.

Entities
A VHDL design consists of one or more entities. Entities have defined inputs and outputs, and perform
a defined function. Each design has two parts: an entity specification and an architecture. The entity
specification defines the design’s inputs and outputs, and the architecture determines its function.
 Describing Designs • 3–3

VHDL Constructs
You can describe a VHDL design in one or more files. Each file contains entities, architectures, or
packages. Packages define global information that can be used by several entities. You can often
reuse VHDL design files in later design projects.

Figure 3-1 shows a block diagram of a VHDL design’s hierarchical organization into files.

Figure 3-1: Design Organization

VHDL Design

VHDL Files

Entities

Declare the interfaces to other
entities and designs.

Define the implementations of
entities.

Architectures

Packages

Declare constants, data types, components, and subprograms
used by several designs or entities or both.
3–4 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Constructs
Architectures
An architecture determines the function of an entity. Figure 3-2 shows the organization of an architec-
ture. Not all architectures contain every construct shown.

Figure 3-2: Architecture Organization

An architecture consists of a declaration section where you declare signals, types, constants, compo-
nents, and subprograms, followed by a collection of concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent statements) to each other, and
to the outside world, through interface ports. You declare each signal with a type that determines the
kind of data it carries. Types, constants, components, and subprograms declared in an architecture
are local to that architecture. To use these declarations in more than one entity or architecture, place
them in a package, as described under "Packages" later in this chapter.

Each concurrent statement in an architecture defines a unit of computation that reads signals, per-
forms a computation that is based on the signal values, and assigns computed values to signals. Con-
current statements compute all values simultaneously. Although the order of concurrent statements
has no effect on execution order, the statements often coordinate their processing by communicating
with each other through signals.

The five kinds of concurrent statements are blocks, signal assignments, procedure calls, component
instantiations, and processes. They are described as follows:

Architecture

Declarations
Declare signals used to communicate between concurrent statements,
and between concurrent statements and the interface ports. Declare

Concurrent Statements

Processes

Define a new algorithm.

Blocks

Signal Assignments

Procedure Calls

Component Instantiations
Collect concurrent statements

Compute values and assign them to

together.

signals.

Invoke a predefined algorithm.

Create an instance of
another entity.

types, constants, components, and subprograms used in the architecture.
 Describing Designs • 3–5

VHDL Constructs
blocks

Group together a set of concurrent statements.

signal assignments

Assign computed values to signals or interface ports.

procedure calls

Call algorithms that compute and assign values to signals.

component instantiations

Create an instance of an entity, connecting its interface ports to signals or
interface ports of the entity being defined. See "Structural Design" later in
this chapter.

processes

Define sequential algorithms that read the values of signals, and compute
new values to assign to other signals. Processes are discussed in the next
section.

Concurrent statements are described in Chapter 7.

Configurations
A configuration specifies one combination of an entity and its associated architecture.

Note: FPGA Express supports only configurations that associate one top-level entity with an architec-
ture.

Processes
Processes contain sequential statements that define algorithms. Unlike concurrent statements,
sequential statements are executed in order. The order allows you to perform step-by-step computa-
tions. Processes read and write signals and interface port values to communicate with the rest of the
architecture and with the enclosing system.

Figure 3-3 shows the organization of constructs in a process. Processes need not use all the con-
structs listed.

Processes are unique in that they behave like concurrent statements to the rest of the design, but they
are internally sequential. In addition, only processes can define variables to hold intermediate values in
a sequence of computations.

Because the statements in a process are sequentially executed, several constructs are provided to
control the order of execution, such as if and loop statements.

Chapter 6 describes sequential statements.
3–6 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Constructs
Figure 3-3: Process Organization

Subprograms
Subprograms, like processes, use sequential statements to define algorithms that compute values.
Unlike processes, however, they cannot directly read or write signals from the rest of the architecture.
All communication is through the subprogram’s interface; each subprogram call has its own set of
interface signals.

The two types of subprograms are functions and procedures. A function returns a single value directly.
A procedure returns zero or more values through its interface. Subprograms are useful because you
can use them to perform repeated calculations, often in different parts of an architecture.

Chapter 6 describes subprograms.

Process

Declarations
Internal variables that hold temporary values in the sequence
of computations, as well as types, constants, components, and
subprograms used locally.

Sequential Statements

loop Statements
Execute statements repeatedly.

Signal Assignments
Compute values and assign them
to signals.

Procedure Calls
Invoke predefined algorithms.

Variable Assignments
Store intermediate values

if Statements
Conditionally execute groups of
sequential statements.

case Statements
Select a group of sequential
statements to execute.

null Statements
Perform no action; these are
placeholders.

wait Statements

Wait for a clock signal.

next Statements
Skip remainder of a loop.

exit Statements
Terminate the execution
of a loop.in variables.
 Describing Designs • 3–7

VHDL Constructs
Packages
You can collect constants, data types, component declarations, and subprograms into a VHDL pack-
age that can then be used by more than one design or entity. Figure 3-4 shows the typical organization
of a package.

Figure 3-4: Typical Package Organization

A package must contain at least one of the constructs listed in Figure 3-4.

• Constants in packages often declare system-wide parameters, such as data-path widths.

• VHDL data type declarations are often included in a package to define data types used throughout a
design. All entities in a design must use common interface types; for example, common address bus
types.

• Component declarations specify the interfaces to entities that can be instantiated in the design.

• Subprograms define algorithms that can be called anywhere in a design.

Packages are often sufficiently general so that you can use them in many different designs. For exam-
ple, the std_logic_1164 package defines data types std_logic and std_logic_vector.

Using a Package
The use statement allows an entity to use the declarations in a package. The supported syntax of the
use statement is

use LIBRARY_NAME.PACKAGE_NAME.ALL;

LIBRARY_NAME is the name of a VHDL library, and PACKAGE_NAME is the name of the included pack-
age. A use statement is usually the first statement in a package or entity specification source file.
Synopsys does not support different packages with the same name when they exist in different librar-
ies. No two packages can have the same name.

Package

Constant Declarations

Define constant values used

Component Declarations

Declare interfaces for design

Subprograms

Declare algorithms used by

Type Declarations

Declare the data types used
by designs. by designs.

entities. designs.
3–8 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Constructs
Package Structure
Packages have two parts, the declaration and the body:

package declaration

Holds public information, including constant, type, and
subprogram declarations.

package body

Holds private information, including local types and subprogram
implementations (bodies).

Note: When a package declaration contains subprogram declarations, a corresponding package body
must define the subprogram bodies.

Package Declarations
Package declarations collect information needed by one or more entities in a design. This information
includes data type declarations, signal declarations, subprogram declarations, and component decla-
rations.

Note: Signals declared in packages cannot be shared across entities. If two entities both use a signal
from a given package, each entity has its own copy of that signal.

Although you can declare all this information explicitly in each design entity or architecture in a system,
it is often easier to declare system information in a separate package. Each design entity in the system
can then use the system’s package.

The syntax of a package declaration is

package package_name is

 { package_declarative_item }

end [package_name] ;

where package_name is the name of this package.

A package_declarative_item is any of these:

• use clause (to include other packages)

• Type declaration

• Subtype declaration

• Constant declaration

• Signal declaration

• Subprogram declaration

• Component declaration
 Describing Designs • 3–9

VHDL Constructs
Example 3-5 shows some package declarations.

Example 3-5: Sample Package Declarations

package EXAMPLE is

 type BYTE is range 0 to 255;

 subtype NIBBLE is BYTE range 0 to 15;

 constant BYTE_FF: BYTE := 255;

 signal ADDEND: NIBBLE;

 component BYTE_ADDER

 port(A, B: in BYTE;

 C: out BYTE;

 OVERFLOW: out BOOLEAN);

 end component;

 function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the example declarations above, add a use statement at the beginning of your design descrip-
tion as follows:

use WORK.EXAMPLE.ALL;

entity . . .

architecture . . .

Further examples of packages and their declarations are given in the packages supplied by Synopsys.
These packages are listed in Chapter 10.

Package Bodies
Package bodies contain the implementations of subprograms listed in the package declaration. How-
ever, this information is never seen by designs or entities that use the package. Package bodies can
include the implementations (bodies) of subprograms declared in the package declaration and in inter-
nal support subprograms.

The syntax of a package body is
3–10 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
package body package_name is

 { package_body_declarative_item }

end [package_name] ;

where package_name is the name of the associated package.

A package_body_declarative_item is any of these:

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

For an example of a package declaration and body, see the std_logic_arith package supplied
with FPGA Express. This package is listed in Chapter 10.

Defining Designs
The high-level constructs discussed earlier in this chapter involve

• Entity specifications (interfaces)

• Entity architectures (implementations)

• Subprograms

Entity Specifications
An entity specification defines the characteristics of an entity that must be known before that entity can
be connected to other entities and components.

For example, before you can connect a counter to other entities, you must specify the number and
types of its inputs and outputs. The entity specification defines the ports (inputs and outputs) of an
entity.

The syntax of an entity specification is

entity entity_name is

 [generic(generic_declarations) ;]

 [port(port_declarations) ;]

end [entity_name] ;

entity_name is the name of the entity, generic_declarations determine local constants used
for sizing or timing the entity, and port_declarations determine the number and type of inputs and
outputs. Other declarations are not supported in the entity specification.
 Describing Designs • 3–11

Defining Designs
Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the bit widths of components (such
as adders) or provide internal timing values.

A generic can have a default value. A generic is assigned a nondefault value only when the entity is
instantiated (see “Component Instantiation Statement” on page 3-27‘‘) or configured (see "“Entity Con-
figurations” on page 3-16). Inside an entity, a generic is a constant value.

The syntax of generic_declarations is

generic(

[constant_name : type [:= value]

 { ; constant_name : type [:= value] }

);

constant_name is the name of a generic constant, type is a previously defined data type, and the
optional value is the default value of constant_name.

Note: FPGA Express supports only INTEGER type generics.

Entity Port Specifications
The syntax of port_declarations is

port(

[port_name : mode port_type

 { ; port_name : mode port_type}]

);

port_name is the name of a port; mode is either in, out, inout, or buffer; and port_type is a
previously defined data type.

The four port modes are

in Can only be read.

out Can only be assigned a value.

inout Can be read and assigned a value. The value read is that of the port’s
incoming value, not the assigned value (if any).

buffer Similar to out, but can be read. The value read is the assigned value. It
can have only one driver. For more information on drivers, see "Driving
Signals" in Chapter 7..

Example 3-6 shows an entity specification for a 2-input N-bit comparator, with a default bit width of 8.
3–12 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
Example 3-6: Interface for an N-Bit Counter

-- Define an entity (design) called COMP

-- that has 2 N-bit inputs and one output.

entity COMP is

 generic(N: INTEGER := 8); -- default is 8 bits

 port(X, Y: in BIT_VECTOR(0 to N-1);

 EQUAL: out BOOLEAN);

end COMP;

Entity Architectures
Each entity architecture defines one implementation of the entity’s function. An architecture can range
in abstraction from an algorithm (a set of sequential statements within a process) to a structural netlist
(a set of component instantiations).

The syntax of an architecture is

architecture architecture_name of entity_name is

 { block_declarative_item }

begin

 { concurrent_statement }

end [architecture_name] ;

architecture_name is the name of the architecture, and entity_name is the name of the entity
being implemented.

A block_declarative_item is any of these:

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Signal declaration

• Component declaration

Concurrent statements are described in Chapter 7.

Example 3-7 shows a complete circuit description for a three-bit counter, entity specification
(COUNTER3), and an architecture (MY_ARCH). This example also includes a schematic of the resulting
synthesized circuit.
 Describing Designs • 3–13

Defining Designs
Example 3-7: An Implementation of a Three-Bit Counter

entity COUNTER3 is

port (CLK : in bit;

 RESET: in bit;

 COUNT: out integer range 0 to 7);

end COUNTER3;

architecture MY_ARCH of COUNTER3 is

signal COUNT_tmp : integer range 0 to 7;

begin

 process

 begin

 wait until (CLK’event and CLK = ’1’);

 -- wait for the clock

 if RESET = ’1’ or COUNT_tmp = 7 then

 -- Ck. for RESET or max. count

 COUNT_tmp <= 0;

 else COUNT_tmp <= COUNT_tmp + 1;

 -- Keep counting

 end if;

 end process;

 COUNT <= COUNT_tmp;

end MY_ARCH;
3–14 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
Figure 3-5: Three-Bit Counter Schematic

Note: In an architecture, you must not declare constants or signals with the same name as any of the
entity’s ports. If you declare a constant or signal with a port’s name, the new declaration hides
that port name. If the new declaration is included in the architecture declaration (as shown in
Example 3-8) and not in an inner block, FPGA Express reports an error.

Example 3-8: Incorrect Use of a Port Name when Declaring Signals or Constants

entity X is

 port(SIG, CONST: in BIT;

 OUT1, OUT2: out BIT);

end X;

architecture EXAMPLE of X is

 signal SIG : BIT;

 constant CONST: BIT := ’1’;

begin

...

end EXAMPLE;
 Describing Designs • 3–15

Defining Designs
The error messages generated for Example 3-8 are:

 signal SIG : BIT;

 ^

Error: (VHDL-1872) line 13

 Illegal redeclaration of SIG.

 constant CONST: BIT := ’1’;

 ^

Error: (VHDL-1872) line 14

 Illegal redeclaration of CONST.

Entity Configurations
A configuration defines one combination of an entity and architecture for a design.

Note: FPGA Express supports only configurations that associate one top-level entity with an architec-
ture.

The supported syntax for a configuration is

configuration configuration_name of entity_name is

 for architecture_name

 end for;

end [configuration_name] ;

configuration_name is the name of this configuration, entity_name is the name of a top-level
entity, and architecture_name is the name of the architecture to use for entity_name.

Example 3-9 shows a configuration for the three-bit counter in Example 3-7. This configuration associ-
ates the counter’s entity specification (COUNTER3) with an architecture (MY_ARCH).

Example 3-9: Configuration of Counter in Example 3-7

configuration MY_CONFIG of COUNTER3 is

 for MY_ARCH

 end for;

end MY_CONFIG;

Note: If you do not specify a configuration for an entity with multiple architectures, IEEE VHDL speci-
fies that the last architecture read is used. This is determined from the .mra (most recently
analyzed) file.
3–16 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
Subprograms
Subprograms describe algorithms that are meant to be used more than once in a design. Unlike com-
ponent instantiation statements, when a subprogram is used by an entity or another subprogram, a
new level of design hierarchy is not automatically created. However, you can manually define a sub-
program as a new level of design hierarchy in the FPGA Express Implementation Window.

Two types of subprograms, procedures and functions, can contain zero or more parameters:

procedures

Procedures have no return value, but can return information to their callers
by changing the values of their parameters.

functions

A function has a single value that it returns to the caller, but it cannot
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

declaration

Declares the interface to a subprogram: its name, its parameters, and its
return value (if any).

body

Defines an algorithm that gives the subprogram’s expected results.

When you declare a subprogram in a package, the subprogram declaration must be in the package
declaration, and the subprogram body must be in the package body. A subprogram defined inside an
architecture has a body, but does not have a corresponding subprogram declaration.

Subprogram Declarations
A subprogram declaration lists the names and types of its parameters and, for functions, the type of its
return value.

The syntax of a procedure declaration is

procedure proc_name [(parameter_declarations)] ;

proc_name is the name of the procedure.

The syntax of a function declaration is

function func_name [(parameter_declarations)]

 return type_name ;

func_name is the name of the function, and type_name is the type of the function’s returned value.
 Describing Designs • 3–17

Defining Designs
The syntax of parameter_declarations is the same as the syntax of port_declarations:

[parameter_name : mode parameter_type

 { ; parameter_name : mode parameter_type}]

parameter_name is the name of a parameter; mode is either in, out, inout, or buffer; and
parameter_type is a previously defined data type.

Procedure parameters can use any mode. Function parameters must use only mode in. Signal
parameters of type range cannot be passed to a subprogram.

Example 3-10 shows sample subprogram declarations for a function and a procedure.

Example 3-10: Two Subprogram Declarations

type BYTE is array (7 downto 0) of BIT;

type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;

 -- Returns TRUE if NUM is even.

procedure BYTE_TO_NIBBLES(B: in BYTE;

 UPPER, LOWER: out NIBBLE);

 -- Splits a BYTE into UPPER and LOWER halves.

Note: When you call a subprogram, actual parameters are substituted for the declared formal param-
eters. Actual parameters are either constant values or signal, variable, constant, or port names.
An actual parameter must support the formal parameter’s type and mode. For example, an input
port cannot be used as an out actual parameter, and a constant can be used only as an in
actual parameter.

Example 3-11 shows some calls to the subprogram declarations from Example 3-10.

Example 3-11: Two Subprogram Calls

signal INT : INTEGER;

variable EVEN : BOOLEAN;

. . .

INT <= 7;

EVEN := IS_EVEN(INT);

. . .

variable TOP, BOT: NIBBLE;

. . .

BYTE_TO_NIBBLES("00101101", TOP, BOT);
3–18 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
Subprogram Bodies
A subprogram body defines an implementation of a subprogram’s algorithm.

The syntax of a procedure body is

procedure procedure_name [(parameter_declarations)] is

 { subprogram_declarative_item }

begin

 { sequential_statement }

end [procedure_name] ;

The syntax of a function body is

function function_name [(parameter_declarations)]

 return type_name is

 { subprogram_declarative_item }

begin

 { sequential_statement }

end [function_name] ;

A subprogram_declarative_item is any of these:

• use clause

• Type declaration

• Subtype declaration

• Constant declaration

• Variable declaration

• Attribute declaration

• Attribute specification

• Subprogram declaration

• Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram declarations in Example 3-10.
 Describing Designs • 3–19

Defining Designs
Example 3-12: Two Subprogram Bodies

function IS_EVEN(NUM: in INTEGER)

 return BOOLEAN is

begin

 return ((NUM rem 2) = 0);

end IS_EVEN;

procedure BYTE_TO_NIBBLES(B: in BYTE;

 UPPER, LOWER: out NIBBLE) is

begin

 UPPER := NIBBLE(B(7 downto 4));

 LOWER := NIBBLE(B(3 downto 0));

end BYTE_TO_NIBBLES;

Subprogram Overloading
You can overload subprograms; more than one subprogram can have the same name. Each subpro-
gram that uses a given name must have a different parameter profile.

A parameter profile specifies a subprogram’s number and type of parameters. This information deter-
mines which subprogram is called when more than one subprogram has the same name. Overloaded
functions are also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but different parameter profiles.

Example 3-13: Subprogram Overloading

type SMALL is range 0 to 100;

type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;

function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;

signal B: BOOLEAN;

. . .

B <= IS_ODD(A_NUMBER); -- Will call the first

 -- function above
3–20 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
Operator Overloading
Predefined operators such as +, and, and mod can also be overloaded. By using overloading, you can
adapt predefined operators to work with your own data types.

For example, you can declare new logic types, rather than use the predefined types BIT and INTE-
GER. However, you cannot use predefined operators with these new types unless you declare over-
loaded operators for the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a new logic type.

Example 3-14: Operator Overloading

type NEW_BIT is (’0’, ’1’, ’X’);

 -- New logic type

function "and"(I1, I2: in NEW_BIT) return NEW_BIT;

function "or" (I1, I2: in NEW_BIT) return NEW_BIT;

 -- Declare overloaded operators for new logic type

. . .

signal A, B, C: NEW_BIT;

. . .

C <= (A and B) or C;

VHDL requires overloaded operator declarations to enclose the operator name or symbol in double
quotation marks, because they are infix operators (they are used between operands). If you declared
the overloaded operators without quotation marks, a VHDL tool considers them functions rather than
operators.

Type Declarations
Type declarations define the name and characteristics of a type. Types and type declarations are fully
described in Chapter 4. A type is a named set of values, such as the set of integers, or the set (red,
green, blue). An object of a given type, such as a signal, can have any value of that type.

Example 3-14 shows a type declaration for type NEW_BIT, and some functions and variables of that
type.

Type declarations are allowed in architectures, packages, entities, blocks, processes, and subpro-
grams.

Subtype Declarations
Use subtype declarations to define the name and characteristics of a constrained subset of another
type or subtype. A subtype is fully compatible with its parent type, but only over the subtype’s range.
Subtype declarations are described in Chapter 4.

The following subtype declaration (NEW_LOGIC) is a subrange of the type declaration in Example 3-14.
 Describing Designs • 3–21

Defining Designs
subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’;

Subtype declarations are allowed wherever type declarations are allowed: in architectures, packages,
entities, blocks, processes, and subprograms.

Constant Declarations
Constant declarations create named values of a given type. The value of a constant can be read but
not changed.

Constant declarations are allowed in architectures, packages, entities, blocks, processes, and subpro-
grams.

Example 3-15 shows some constant declarations.

Example 3-15: Constant Declarations

constant WIDTH: INTEGER := 8;

constant X : NEW_BIT := ’X’;

You can use constants in expressions, as described in Chapter 5, and as source values in assignment
statements, as described in Chapter 6.

Signal Declarations
Signal declarations create new named signals (wires) of a given type. Signals can be given default (ini-
tial) values. However, these initial values are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have associated resolution functions,
as described in the next section.

Example 3-16 shows two signal declarations.

Example 3-16: Signal Declarations

signal A, B: BIT;

signal INIT: INTEGER := -1;

Note: Ports are also signals, with the restriction that out ports cannot be read, and in ports cannot
be assigned a value. You create signals either by port declarations or by signal declarations.
You create ports only by port declarations.

You can declare signals in architectures, entities, and blocks, and use them in processes and subpro-
grams. Processes and subprograms cannot declare signals for internal use.

You can use signals in expressions, as described in Chapter 5. Signals are assigned values by signal
assignment statements, as described in Chapter 6.

Resolution Functions
Resolution functions are used with signals that can be connected (wired together). For example, if two
drivers are directly connected to a signal, the resolution function determines whether the signal value
is the AND, OR, or three-state function of the driving values.

Use resolution functions to assign the driving value when there are multiple drivers. For simulation,
you can write an arbitrary function to resolve bus conflicts.
3–22 • VeriBest FPGA Synthesis VHDL Reference Manual

Defining Designs
Note: A resolution function might change the value of a resolved signal, even if all drivers have the
same value.

The resolution function for a signal is part of that signal’s subtype declaration. You create a resolved
signal in four steps:

-- Step 1

type SIGNAL_TYPE is ...

-- signal’s base type is SIGNAL_TYPE

-- Step 2

subtype res_type is res_function SIGNAL_TYPE;

-- name of the subtype is res_type

-- name of function is res_function

-- signal type is res_type (a subtype of SIGNAL_TYPE)

...

-- Step 3

function res_function (DATA: ARRAY_TYPE)
 return SIGNAL_TYPE is

-- declaration of the resolution function

-- ARRAY_TYPE must be an unconstrained array of SIGNAL_TYPE

...

-- Step 4

signal resolved_signal_name: res_type;

-- resolved_signal_name is a resolved signal

...

1. The signal’s base type is declared.

2. The resolved signal’s subtype is declared as a subtype of the base type and includes the name of
the resolution function.

3. The resolution function itself is declared (and later defined).

4. Resolved signals are declared as resolved subtypes.

FPGA Express does not support arbitrary resolution functions. Only wired AND, wired OR, and
three-state functions are allowed. FPGA Express requires that you mark all resolution functions with a
special directive indicating the kind of resolution performed.

Note: FPGA Express considers the directive only when creating hardware. The body of the resolution
function is parsed but ignored. Using unsupported VHDL constructs (see Appendix C) gener-
ates errors.

Do not connect signals that use different resolution functions. FPGA Express supports only
one resolution function per network.
 Describing Designs • 3–23

Defining Designs
The three resolution function directives are

-- synopsys resolution_method wired_and

-- synopsys resolution_method wired_or

-- synopsys resolution_method three_state

Note: Pre-synthesis and post-synthesis simulation results might not match if the body of the resolu-
tion function used by the simulator does not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to use compiler directives for
resolution functions. The signal’s base type is the predefined type BIT.

Example 3-17: Resolved Signal and Its Resolution Function

package RES_PACK is

 function RES_FUNC(DATA: in BIT_VECTOR) return BIT;

 subtype RESOLVED_BIT is RES_FUNC BIT;

end;

package body RES_PACK is

 function RES_FUNC(DATA: in BIT_VECTOR) return BIT is

 -- pragma resolution_method wired_and

 begin

 -- The code in this function is ignored by FPGA Express

 -- but parsed for correct VHDL syntax

 for I in DATA’range loop

 if DATA(I) = ’0’ then

 return ’0’;

 end if;

 end loop;

 return ’1’;

 end;

end;

use work.RES_PACK.all;

entity WAND_VHDL is

 port(X, Y: in BIT; Z: out RESOLVED_BIT);

end WAND_VHDL;
3–24 • VeriBest FPGA Synthesis VHDL Reference Manual

Structural Design
architecture WAND_VHDL of WAND_VHDL is

begin

 Z <= X;

 Z <= Y;

end WAND_VHDL;

Variable Declarations
Variable declarations define a named value of a given type.

You can use variables in expressions, as described in Chapter 5. Variables are assigned values by
variable assignment statements, as described in Chapter 6.

Example 3-18 shows some variable declarations.

Example 3-18: Variable Declarations

variable A, B: BIT;

variable INIT: NEW_BIT;

Note: Variables are declared and used only in processes and subprograms, because processes and
subprograms cannot declare signals for internal use.

Structural Design
FPGA Express works with one or more designs. Each entity (and architecture) in a VHDL description
is translated to a single design in FPGA Express. Designs can also originate from formats other than
VHDL, such as equations, Programmable Logic Arrays (PLAs), state machines, other HDLs, or
netlists.

A design can contain instances of lower-level designs, connected by nets (signals) to the lower-level
design’s ports. These lower-level designs can consist of other entities from a VHDL design, designs
represented in some other Synopsys format, or cells from a technology library. By instantiating designs
within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and component instantiation state-
ments. To include a design, you must specify its interface with a component declaration. You can then
create an instance of that design by using the component instantiation statement.

If your design consists only of VHDL entities, every component declaration statement corresponds to
an entity in the design. If your design uses designs or technology library cells not described in VHDL,

X

Y
Z

AN2
 Describing Designs • 3–25

Structural Design
create component declarations without corresponding entities. You can then use FPGA Express to
associate the VHDL component with the non-VHDL design or cell.

Note: To simulate your VHDL design, you must provide entity and architecture descriptions for all
component declarations.

Using Hardware Components
VHDL includes constructs to use existing hardware components. These structural constructs can be
used to define a netlist of components.

The following sections describe how to use components and how FPGA Express configures these
components.

Component Declaration
You must declare a component in an architecture or package before you can use (instantiate) it. A
component declaration statement is similar to the entity specification statement described earlier, in
that it defines the component’s interface.

The syntax for a component declaration is

component identifier

 [generic(generic_declarations)]

 [port(port_declarations)]

end component ;

where identifier is the name of this type of component, and the syntax of
generic_declarations and port_declarations is the same as defined previously for entity
specifications.

Example 3-19 shows a simple component declaration statement.

Example 3-19: Component Declaration of a Two-Input AND Gate

component AND2

 port(I1, I2: in BIT;

 O1: out BIT);

end component;

Example 3-20 shows a component declaration statement that uses a generic parameter.
3–26 • VeriBest FPGA Synthesis VHDL Reference Manual

Structural Design
Example 3-20: Component Declaration of an N-Bit Adder

component ADD

 generic(N: POSITIVE);

 port(X, Y: in BIT_VECTOR(N-1 downto 0);

 Z: out BIT_VECTOR(N-1 downto 0);

 CARRY: out BIT)

end component;

Although the component declaration statement is similar to the entity specification, it serves a different
purpose. The component declaration is required to make the design entity AND2 or ADD usable, or vis-
ible, within an architecture. After a component is declared, it can be used in a design.

Sources of Components
A declared component can come from the same VHDL source file, from a different VHDL source file,
from another format such as Electronic Data Interchange Format (EDIF) or state table, or from a tech-
nology library. If the component is not in one of the current VHDL source files, it must already be com-
piled by FPGA Express.

When a design that uses components is compiled by FPGA Express, previously compiled components
are searched for by name in the following order:

1. In the current design.

2. In the input source file or files identified in the FPGA Express Implementation Window.

3. In the libraries of technology-specific FPGA components.

Consistency of Component Ports
FPGA Express checks for consistency among its VHDL entities. For other entities, the port names are
taken from the original design description.

• For components in a technology library, the port names are the input and output pin names.

• For EDIF designs, the port names are the EDIF port names.

The bit widths of each port must also match. FPGA Express verifies matching for VHDL components,
because the port types must be identical. For components from other sources, FPGA Express checks
when linking the component to the VHDL description.

Component Instantiation Statement
The component instantiation statement instantiates and connects components to form a netlist (struc-
tural) description of a design. A component instantiation statement can create a new level of design
hierarchy.
 Describing Designs • 3–27

Structural Design
The syntax of the component instantiation statement is

instance_name : component_name

[generic map (

 generic_name => expression

 { , generic_name => expression }

)]

port map (

 [port_name =>] expression

 { , [port_name =>] expression }

);

instance_name is the name of this instance of component type component_name.

The optional generic map assigns nondefault values to generics. Each generic_name is the name
of a generic, exactly as declared in the corresponding component declaration statement. Each
expression evaluates to an appropriate value.

The port map assigns the component’s ports to connections. Each port_name is the name of a port,
exactly as declared in the corresponding component declaration statement. Each expression evalu-
ates to a signal value.

FPGA Express uses the following two rules to decide which entity and architecture are to be associ-
ated with a component instantiation:

1. Each component declaration must have an entity with the same name: a VHDL entity, a design
from another source (format), or a library component. This entity is used for each component
instantiation associated with the component declaration.

2. If a VHDL entity has more than one architecture, the last architecture input is used for each compo-
nent instantiation associated with that entity. The .mra file determines the last architecture ana-
lyzed.

Mapping Generic Values
When you instantiate a component with generics, you can map generics to values. A generic without a
default value must be instantiated with a generic map value.

For example, a four-bit instantiation of the component ADD from Example 3-20 might use the following
generic map.

U1: ADD generic map (N => 4)
 port map (X, Y, Z, CARRY...);

The port map assigns component ports to actual signals; it is described in the next section.
3–28 • VeriBest FPGA Synthesis VHDL Reference Manual

Structural Design
Mapping Port Connections
You can specify port connections in component instantiation statements with either named or posi-
tional notation. With named notation, the port_name => construct identifies the specific ports of the
component. With positional notation, the expressions for the component ports are simply listed in the
declared port order.

Example 3-21 shows named and positional notation for the U5 component instantiation statement in
Example 3-22.

Example 3-21: Equivalent Named and Positional Association

U5: or2 port map (O => n6, I1 => n3, I2 => n1);

 -- Named association

U5: or2 port map (n3, n1, n6);

 -- Positional association

Note: When you use positional association, the instantiated port expressions (signals) must be in the
same order as the declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTER3 design entity from Example 3-
7.

Example 3-22: Structural Description of a Three-Bit Counter

architecture STRUCTURE of COUNTER3 is

 component DFF

 port(CLK, DATA: in BIT;

 Q: out BIT);

 end component;

 component AND2

 port(I1, I2: in BIT;

 O: out BIT);

 end component;

 component OR2

 port(I1, I2: in BIT;

 O: out BIT);

 end component;

 component NAND2

 port(I1, I2: in BIT;

 O: out BIT);

 end component;

 component XNOR2

 port(I1, I2: in BIT;

 O: out BIT);
 Describing Designs • 3–29

Structural Design
 end component;

 component INV

 port(I: in BIT;

 O: out BIT);

 end component;

 signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin

 u1: DFF port map(CLK, N1, N2);

 u2: DFF port map(CLK, N5, N3);

 u3: DFF port map(CLK, N9, N4);

 u4: INV port map(N2, N1);

 u5: OR2 port map(N3, N1, N6);

 u6: NAND2 port map(N1, N3, N7);

 u7: NAND2 port map(N6, N7, N5);

 u8: XNOR2 port map(N8, N4, N9);

 u9: NAND2 port map(N2, N3, N8);

 COUNT(0) <= N2;

 COUNT(1) <= N3;

 COUNT(2) <= N4;

end STRUCTURE;

Technology-Independent Component Instantiation
When you use a structural design style, you might want to instantiate logical components. Synopsys
provides generic technology library GTECH for this purpose. This generic technology library contains
technology-independent logical components such as:

• AND, OR, and NOR gates (2, 3, 4, 5, and 8)

• one-bit adders and half adders

• 2-of-3 majority

• multiplexors

• flip-flops and latches

• multiple-level logic gates, such as AND-NOT, AND-OR, AND-OR-INVERT

You can use these simple components to create technology-independent designs. Example 3-23
shows how an N-bit ripple-carry adder can be created from N one-bit adders.
3–30 • VeriBest FPGA Synthesis VHDL Reference Manual

Structural Design
Example 3-23: Design That Uses Technology-Independent Components

library GTECH;

use gtech.gtech_components.all;

entity RIPPLE_CARRY is

 generic(N: NATURAL);

 port(A, B: in BIT_VECTOR(N-1 downto 0);

 CARRY_IN: in BIT;

 SUM: out BIT_VECTOR(N-1 downto 0);

 CARRY_OUT: out BIT;);

end RIPPLE_CARRY;

architecture TECH_INDEP of RIPPLE_CARRY is

 signal CARRY: BIT_VECTOR(N downto 0);

begin

 CARRY(0) <= CARRY_IN;

 GEN: for I in 0 to N-1 generate

 U1: GTECH_ADD_ABC port map(

 A => A(I),

 B => B(I),
 C => CARRY(I),

 S => SUM(I),
 COUT => CARRY(I+1));

 end generate GEN;

 CARRY_OUT <= CARRY(N);

end TECH_INDEP;
 Describing Designs • 3–31

Structural Design
3–32 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 4
Data Types
VHDL is a strongly typed language. Every constant, signal, variable, function, and parameter is
declared with a type, such as BOOLEAN or INTEGER, and can hold or return only a value of that type.

VHDL predefines abstract data types, such as BOOLEAN, which are part of most programming lan-
guages, and hardware-related types, such as BIT, found in most hardware languages. VHDL pre-
defined types are declared in the STANDARD package, which is supplied with all VHDL
implementations (see Example 4-12). Data types addresses information about

• Enumeration Types

• Integer Types

• Array Types

• Record Types

• Predefined VHDL Data Types

• Unsupported Data Types

• Synopsys Data Types

• Subtypes

The advantage of strong typing is that VHDL tools can catch many common design errors, such as
assigning an eight-bit value to a four-bit-wide signal, or incrementing an array index out of its range.

The following code shows the definition of a new type, BYTE, as an array of eight bits, and a variable
declaration, ADDEND, that uses this type.

type BYTE is array(7 downto 0) of BIT;

variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data types. Some VHDL types are not
supported for synthesis, such as REAL and FILE.

The examples in this chapter show type definitions and associated object declarations. Although each
constant, signal, variable, function, and parameter is declared with a type, only variable and signal
declarations are shown here in the examples. Constant, function, and parameter declarations are
shown in Chapter 3.

VHDL also provides subtypes, which are defined as subsets of other types. Anywhere a type definition
can appear, a subtype definition can also appear. The difference between a type and a subtype is that
 Data Types • 4–1

Enumeration Types
a subtype is a subset of a previously defined parent (or base) type or subtype. Overlapping subtypes
of a given base type can be compared against and assigned to each other. All integer types, for exam-
ple, are technically subtypes of the built-in integer base type (see "Integer Types," later in this chapter).
Subtypes are described in the last section of this chapter.

Enumeration Types
An enumeration type is defined by listing (enumerating) all possible values of that type.

The syntax of an enumeration type definition is

type type_name is (enumeration_literal

 {, enumeration_literal});

type_name is an identifier, and each enumeration_literal is either an identifier (enum_6) or a
character literal (’A’).

An identifier is a sequence of letters, underscores, and numbers. An identifier must start with a letter
and cannot be a VHDL reserved word, such as TYPE. All VHDL reserved words are listed in
Chapter 11.

A character literal is any value of type CHARACTER, in single quotes.

Example 4-1 shows two enumeration type definitions and corresponding variable and signal declara-
tions.

Example 4-1: Enumeration Type Definitions

type COLOR is (BLUE, GREEN, YELLOW, RED);

type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);

variable HUE: COLOR;

signal SIG: MY_LOGIC;

. . .

HUE := BLUE;

SIG <= ’Z’;
4–2 • VeriBest FPGA Synthesis VHDL Reference Manual

Enumeration Types
Enumeration Overloading
You can overload an enumeration literal by including it in the definition of two or more enumeration
types. When you use such an overloaded enumeration literal, FPGA Express can usually determine
the literal’s type. However, under certain circumstances determination may be impossible. In these
cases, you must qualify the literal by explicitly stating its type (see ‘‘Qualified Expressions" in
Chapter 5). Example 4-2 shows how you can qualify an overloaded enumeration literal.

Example 4-2: Enumeration Literal Overloading

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

type PRIMARY_COLOR is (RED, YELLOW, BLUE);

...

A <= COLOR’(RED);

Enumeration Encoding
Enumeration types are ordered by enumeration value. By default, the first enumeration literal is
assigned the value 0, the next enumeration literal is assigned the value 1, and so forth.

FPGA Express automatically encodes enumeration values into bit vectors that are based on each
value’s position. The length of the encoding bit vector is the minimum number of bits required to
encode the number of enumerated values. For example, an enumeration type with five values has a
three-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with five values.

Example 4-3: Automatic Enumeration Encoding

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED ⇒ "000"

GREEN ⇒ "001"

YELLOW ⇒ "010"

BLUE ⇒ "011"

VIOLET ⇒ "100"

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify your own enumeration encodings
with the ENUM_ENCODING attribute. This interpretation is specific to FPGA Express.

A VHDL attribute is defined by its name and type, and is then declared with a value for the attributed
type, as shown in Example 4-4 below.

Note: Several VHDL synthesis-related attributes are declared in the ATTRIBUTES package supplied
with FPGA Express. This package is listed in Chapter 10. The section “Synthesis Attributes and
Constraints” on page 1 describes how to use these VHDL attributes.
 Data Types • 4–3

Enumeration Types
The ENUM_ENCODING attribute must be a STRING containing a series of vectors, one for each enu-
meration literal in the associated type. The encoding vector is specified by ’0’ s, ’1’ s, ’D’ s, ’U’ s,
and ’Z’ s separated by blank spaces. The meaning of these encoding vectors is described in the next
section. The first vector in the attribute string specifies the encoding for the first enumeration literal, the
second vector specifies the encoding for the second enumeration literal, and so on. The
ENUM_ENCODING attribute must immediately follow the type declaration.

Example 4-4 illustrates how the default encodings from Example 4-3 can be changed with the
ENUM_ENCODING attribute.

Example 4-4: Using the ENUM_ENCODING Attribute

attribute ENUM_ENCODING: STRING;

 -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

attribute ENUM_ENCODING of

 COLOR: type is "010 000 011 100 001";

 -- Attribute declaration

The enumeration values are encoded as follows:

RED = "010"

GREEN = "000"

YELLOW = "011"

BLUE = "100"

VIOLET = "001"

The result is GREEN<VIOLET<RED<YELLOW<BLUE

Note: The interpretation of the ENUM_ENCODING attribute is specific to FPGA Express. Other VHDL
tools, such as simulators, use the standard encoding (ordering).

Enumeration Encoding Values
The possible encoding values for the ENUM_ENCODING attribute are:

’0’ Bit value 0

’1’ Bit value 1

’D’ Don’t-care (can be either 0 or 1).

’U’ Unknown. If U appears in the encoding vector for an enumeration, you cannot use that
enumeration literal except as an operand to the = and /= operators. You can read an
enumeration literal encoded with a U from a variable or signal, but you cannot assign it.

For synthesis, the = operator returns FALSE and the /= operator returns TRUE when
either of the operands is an enumeration literal whose encoding contains U.

’Z’ High impedance. See ‘‘Three-State Inference" in Chapter 8 for more information.
4–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Integer Types
Integer Types
The maximum range of a VHDL integer type is −(¡¬¿−¿) to ¡¬¿−¿ (-2_147_483_647 ..
2_147_483_647). Integer types are defined as subranges of this anonymous built-in type. Multidigit
numbers in VHDL can include underscores (_) to make them easier to read.

FPGA Express encodes an integer value as a bit vector whose length is the minimum necessary to
hold the defined range and encodes integer ranges that include negative numbers as 2’s-complement
bit vectors.

The syntax of an integer type definition is

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range is a subrange of the anony-
mous integer type.

Example 4-5 shows some integer type definitions.

Example 4-5: Integer Type Definitions

type PERCENT is range -100 to 100;

 -- Represented as an 8-bit vector

 -- (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;

 -- Represented as a 32-bit vector

 -- This is the definition of the INTEGER type

Note: You cannot directly access the bits of an INTEGER or explicitly state the bit width of the type.
For these reasons, Synopsys provides overloaded functions for arithmetic. These functions are
defined in the std_logic package, listed in Chapter 10.

Array Types
An array is an object that is a collection of elements of the same type. VHDL supports N-dimensional
arrays, but FPGA Express supports only one-dimensional arrays. Array elements can be of any type.
An array has an index whose value selects each element. The index range determines how many ele-
ments are in the array and their ordering (low to high, or high downto low). An index can be of any
integer type.

You can declare multidimensional arrays by building one-dimensional arrays where the element type
is another one-dimensional array, as shown in Example 4-6.
 Data Types • 4–5

Array Types
Example 4-6: Declaration of Array of Arrays

type BYTE is array (7 downto 0) of BIT;

type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The difference between these two
arrays comes from the index range in the array type definition.

Constrained Array
A constrained array’s index range is explicitly defined; for example, an integer range (1 to 4). When
you declare a variable or signal of this type, it has the same index range.

The syntax of a constrained array type definition is

type array_type_name is

 array (integer_range) of type_name ;

array_type_name is the name of the new constrained array type, integer_range is a subrange of
another integer type, and type_name is the type of each array element.

Example 4-7 shows a constrained array definition.

Example 4-7: Constrained Array Type Definition

type BYTE is array (7 downto 0) of BIT;

 -- A constrained array whose index range is

 -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Array
You define an unconstrained array’s index range as a type, for example, INTEGER. This definition
implies that the index range can consist of any contiguous subset of that type’s values. When you
declare an array variable or signal of this type, you also define its actual index range. Different declara-
tions can have different index ranges.

The syntax of an unconstrained array type definition is

type array_type_name is

 array (range_type_name range <>)

 of element_type_name ;

array_type_name is the name of the new unconstrained array type,
range_type_name is the name of an integer type or subtype, and
element_type_name is the type of each array element.

Example 4-8 shows an unconstrained array type definition and a declaration that uses it.
4–6 • VeriBest FPGA Synthesis VHDL Reference Manual

Array Types
Example 4-8: Unconstrained Array Type Definition

type BIT_VECTOR is array(INTEGER range <>) of BIT;

 -- An unconstrained array definition

. . .

variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool remembers the index range of each
declaration. You can use array attributes to determine the range (bounds) of a signal or variable of an
unconstrained array type. With this information, you can write routines that use variables or signals of
an unconstrained array type, independently of any one array variable’s or signal’s bounds. The next
section describes array attributes and how they are used.

Array Attributes
FPGA Express supports the following predefined VHDL attributes for use with arrays:

• left

• right

• high

• low

• length

• range

• reverse_range

These attributes return a value corresponding to part of an array’s range. Table 4-1 shows the values
of the array attributes for the variable MY_VECTOR in Example 4-8.

Table 4-1: Array Index Attributes

Example 4-9 shows the use of array attributes in a function that ORs together all elements of a given
BIT_VECTOR (declared in Example 4-8) and returns that value.

MY_VECTOR’left 5

MY_VECTOR’right -5

MY_VECTOR’high 5

MY_VECTOR’low 5

MY_VECTOR’length 11

MY_VECTOR’range (5 down to -5)

MY_VECTOR’
reverse_range

(-5 to 5)
 Data Types • 4–7

Record Types
Example 4-9: Use of Array Attributes

function OR_ALL (X: in BIT_VECTOR) return BIT is

 variable OR_BIT: BIT;

 begin

 OR_BIT := ’0’;

 for I in X’range loop

 OR_BIT := OR_BIT or X(I);

 end loop;

 return OR_BIT;

 end;

Note that this function works for a BIT_VECTOR of any size.

Record Types
A record is a set of named fields of various types, unlike an array, which is composed of identical
anonymous entries. A record’s field can be of any previously defined type, including another record
type.

Note: Constants in VHDL of type record are not supported for synthesis (the initialization of records
is not supported).

Example 4-11 shows a record type declaration (BYTE_AND_IX), three signals of that type, and some
assignments.

Example 4-11: Record Type Declaration and Use

constant LEN: INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

type BYTE_AND_IX is

 record

 BYTE: BYTE_VEC;

 IX: INTEGER range 0 to LEN;

 end record;

signal X, Y, Z: BYTE_AND_IX;

signal DATA: BYTE_VEC;

signal NUM: INTEGER;

. . .
4–8 • VeriBest FPGA Synthesis VHDL Reference Manual

Predefined VHDL Data Types
X.BYTE <= "11110000";

X.IX <= 2;

DATA <= Y.BYTE;

NUM <= Y.IX;

Z <= X;

As shown in Example 4-11, you can read values from or assign values to records in two ways:

• By individual field name

X.BYTE <= DATA;

X.IX <= LEN;

• From another record object of the same type

Z <= X;

Note: A record type object’s individual fields are accessed by the object name, a period, and a field
name: X.BYTE or X.IX. To access an element of the BYTE field’s array, use the array notation
X.BYTE(2).

Predefined VHDL Data Types
IEEE VHDL describes two site-specific packages, each containing a standard set of types and opera-
tions: the STANDARD package and the TEXTIO package.

The STANDARD package of data types is included in all VHDL source files by an implicit use clause.
The TEXTIO package defines types and operations for communication with a standard programming
environment (terminal and file I/O). This package is not needed for synthesis, and therefore FPGA
Express does not support it.

The FPGA Express implementation of the STANDARD package is listed in Example 4-12. This STAN-
DARD package is a subset of the IEEE VHDL STANDARD package. Differences are described in
‘‘Unsupported Data Types" later in this chapter.
 Data Types • 4–9

Predefined VHDL Data Types
Example 4-12: FPGA Express STANDARD Package

package STANDARD is

 type BOOLEAN is (FALSE, TRUE);

 type BIT is (’0’, ’1’);

 type CHARACTER is (

 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

 BS, HT, LF, VT, FF, CR, SO, SI,

 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

 CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

 ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,

 ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,

 ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

 ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

 ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,

 ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,

 ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,

 ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

 ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,

 ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,

 ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,

 ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

 type INTEGER is range -2147483647 to 2147483647;

 subtype NATURAL is INTEGER range 0 to 2147483647;

 subtype POSITIVE is INTEGER range 1 to 2147483647;

 type STRING is array (POSITIVE range <>)

 of CHARACTER;

 type BIT_VECTOR is array (NATURAL range <>)

 of BIT;

end STANDARD;
4–10 • VeriBest FPGA Synthesis VHDL Reference Manual

Predefined VHDL Data Types
Data Type BOOLEAN
The BOOLEAN data type is actually an enumerated type with two values, FALSE and TRUE, where
FALSE < TRUE. Logical functions such as equality (=) and comparison (<) functions return a BOOL-
EAN value.

Convert a BIT value to a BOOLEAN value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type BIT
The BIT data type represents a binary value as one of two characters, ’0’ or ’1’ . Logical operations
such as and can take and return BIT values.

Convert a BOOLEAN value to a BIT value as follows:

if (BOOLEAN_VAR) then

 BIT_VAR := ’1’;

else

 BIT_VAR := ’0’;

end if;

Data Type CHARACTER
The CHARACTER data type enumerates the ASCII character set. Nonprinting characters are repre-
sented by a three-letter name, such as NUL for the null character. Printable characters are represented
by themselves, in single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;

. . .

CHARACTER_VAR := ’A’;

Data Type INTEGER
The INTEGER data type represents positive and negative whole numbers and zero.

Data Type NATURAL
The NATURAL data type is a subtype of INTEGER that is used to represent natural (nonnegative) num-
bers.

Data Type POSITIVE
The POSITIVE data type is a subtype of INTEGER that is used to represent positive (nonzero and
nonnegative) numbers.
 Data Types • 4–11

Unsupported Data Types
Data Type STRING
The STRING data type is an unconstrained array of CHARACTER data types. A STRING value is
enclosed in double quotation marks, as follows:

variable STRING_VAR: STRING(1 to 7);

. . .

STRING_VAR := "Rosebud";

Data Type BIT_VECTOR
The BIT_VECTOR data type represents an array of BIT values.

Unsupported Data Types
Some data types are either not useful for synthesis or are not supported. Unsupported types are
parsed but ignored by FPGA Express. These types are listed and described below.

Chapter 11 describes the level of FPGA Express support for each VHDL construct.

Physical Types
FPGA Express does not support physical types, such as units of measure (for example, nS). Because
physical types are relevant to the simulation process, FPGA Express allows but ignores physical type
declarations.

Floating Point Types
FPGA Express does not support floating point types, such as REAL. Floating point literals, such as
1.34, are allowed in the definitions of FPGA Express-recognized attributes.

Access Types
FPGA Express does not support access (pointer) types because no equivalent hardware construct
exists.

File Types
FPGA Express does not support file (disk file) types. A hardware file is a RAM or ROM.

SYNOPSYS Data Types
The std_logic_arith package provides arithmetic operations and numeric comparisons on array
data types. The package also defines two major data types: UNSIGNED and SIGNED. These data
types, unlike the predefined INTEGER type, provide access to the individual bits (wires) of a numeric
value. For more information, see Chapter 10.

Subtypes
A subtype is defined as a subset of a previously defined type or subtype. A subtype definition can
appear wherever a type definition is allowed.
4–12 • VeriBest FPGA Synthesis VHDL Reference Manual

Subtypes
Subtypes are a powerful way to use VHDL type checking to ensure valid assignments and meaningful
data handling. Subtypes inherit all operators and subprograms defined for their parent (base) types.

Subtypes are also used for resolved signals to associate a resolution function with the signal type.
(See "Signal Declarations" in Chapter 3 for more information.)

For example, in Example 4-12 NATURAL and POSITIVE are subtypes of INTEGER and they can be
used with any INTEGER function. These subtypes can be added, multiplied, compared, and assigned
to each other, as long as the values are within the appropriate subtype’s range. All INTEGER types and
subtypes are actually subtypes of an anonymous predefined numeric type.

Example 4-13 shows some valid and invalid assignments between NATURAL and POSITIVE values.

Example 4-13: Valid and Invalid Assignments between INTEGER Subtypes

variable NAT: NATURAL;

variable POS: POSITIVE;

. . .

POS := 5;

NAT := POS + 2;

. . .

NAT := 0;

POS := NAT; -- Invalid; out of range

For example, the type BIT_VECTOR is defined as
type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype MY_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

Example 4-14 shows that all functions and attributes that operate on BIT_VECTOR also operate on
MY_VECTOR.

Example 4-14: Attributes and Functions Operating on a Subtype

type BIT_VECTOR is array(NATURAL range <>) of BIT;

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

. . .

signal VEC1, VEC2: MY_VECTOR;

signal S_BIT: BIT;

variable UPPER_BOUND: INTEGER;

. . .

if (VEC1 = VEC2)

. . .

VEC1(4) <= S_BIT;

VEC2 <= "0000111100001111";

. . .

RIGHT_INDEX := VEC1’high;
 Data Types • 4–13

Subtypes
4–14 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 5
Expressions
Expressions perform arithmetic or logical computations by applying an operator to one or more oper-
ands. Operators specify the computation to be performed. Operands are the data for the computation.

Expressions are discussed as

• Operators

• Operands

In the following VHDL fragment, A and B are operands, + is an operator, and A + B is an expression.

C := A + B; -- Computes the sum of two values

You can use expressions in many places in a design description. Expressions can be:

• Assign to variables or signals or used as the initial values of constants.

• Used as operands to other operators.

• Used for the return value of functions.

• Used for the IN parameters in a subprogram call.

• Assigned to the OUT parameters in a procedure body.

• Used to control the actions of statements like if, loop, and case.

To understand expressions for VHDL, consider the individual components of operators and operands.

Operators

• Logical operators

• Relational operators

• Adding operators

• Unary (sign) operators

• Multiplying operators

• Miscellaneous arithmetic operators

Operands

• Computable operands
 Expressions • 5–1

Operators
• Literals

• Identifiers

• Indexed names

• Slice names

• Aggregates

• Attributes

• Function calls

• Qualified expressions

• Type conversions

Operators
A VHDL operator is characterized by

• Name

• Computation (function)

• Number of operands

• Type of operands (such as Boolean or Character)

• Type of result value

You can define new operators, like functions, for any type of operand and result value. The predefined
VHDL operators are listed in Table 5-1.

Table 5-1: Table 5-1Predefined VHDL Operators

Each row in the table lists operators with the same precedence. Each row’s operators have greater
precedence than those in the row above. An operator’s precedence determines whether it is applied
before or after adjoining operators.

Example 5-1 shows several expressions and their interpretations.

Type Operators Precedence

Logical and or nand nor xor Lowest

Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / mod rem

Miscellaneous ** abs not Highest
5–2 • VeriBest FPGA Synthesis VHDL Reference Manual

Operators
Example 5-1: Operator Precedence

A + B * C = A + (B * C)

not BOOL and (NUM = 4) = (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types of operands). For example, the
and operator can be overloaded to work with a new logic type. For more information, see ‘‘Operator
Overloading" in Chapter 3.

Logical Operators
Operands of a logical operator must be of the same type. The logical operators and, or, nand,
nor, xor, and not accept operands of type BIT, type BOOLEAN, and one-dimensional arrays of
BIT or BOOLEAN. Array operands must be the same size. A logical operator applied to two array oper-
ands is applied to pairs of the two arrays’ elements.

Example 5-2 shows some logical signal declarations and logical operations on them.

Example 5-2: Logical Operators

signal A, B, C: BIT_VECTOR(3 downto 0);

signal D, E, F, G: BIT_VECTOR(1 downto 0);

signal H, I, J, K: BIT;

signal L, M, N, O, P: BOOLEAN;

A <= B and C;

D <= E or F or G;

H <= (I nand J) nand K;

L <= (M xor N) and (O xor P);

Normally, to use more than two operands in an expression, you must use parentheses to group the
operands. Alternately you can combine a sequence of and, or, or xor operators without parentheses,
such as

A and B and C and D

However, sequences with different operators, such as

A or B xor C

do require parentheses.

Example 5-3 uses the declarations from Example 5-2 to show some common errors.

Example 5-3: Errors in Using Logical Operators

H <= I and J or K; -- Parenthesis required;

L <= M nand N nand O nand P; -- Parenthesis required;

A <= B and E; -- Operands must be the same size;

H <= I or L; -- Operands must be the same type;
 Expressions • 5–3

Operators
Figure 5-1: Common Errors Using Logical Operators

Relational Operators
Relational operators, such as = or >, compare two operands of the same base type and return a
BOOLEAN value.

IEEE VHDL defines the equality (=) and inequality (/=) operators for all types. Two operands are
equal if they represent the same value. For array and record types, IEEE VHDL compares correspond-
ing elements of the operands.

IEEE VHDL defines the ordering operators (<, <=, "" (relational operator)">>, and ="" (relational opera-
tor)">>=) for all enumerated types, integer types, and one-dimensional arrays of enumeration or inte-
ger types.

The internal order of a type’s values determines the result of the ordering operators. Integer values are
ordered from negative infinity to positive infinity. Enumerated values are in the same order as they
were declared, unless you have changed the encoding.

Note: If you set the encoding of your enumerated types (see ‘‘Enumeration Encoding" in Chapter 4),
the ordering operators compare your encoded value ordering, not the declaration ordering.
Because this interpretation is specific to FPGA Express, a VHDL simulator continues to use the
declaration’s order of enumerated types.

Arrays are ordered like words in a dictionary. The relative order of two array values is determined by
comparing each pair of elements in turn, beginning from the left bound of each array’s index range. If a
pair of array elements is not equal, the order of the different elements determines the order of the
arrays. For example, bit vector 101011 is less than 1011 because the fourth bit of each vector is dif-
ferent, and 0 is less than 1.
5–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Operators
If the two arrays have different lengths and the shorter array matches the first part of the longer array,
the shorter one is ordered before the longer. Thus, the bit vector 101 is less than 101000. Arrays are
compared from left to right, regardless of their index ranges (to or downto).

Example 5-4 shows several expressions that evaluate to TRUE.

Example 5-4: TRUE Relational Expressions

 ’1’ = ’1’

"101" = "101"

 "1" > "011" -- Array comparison

"101" < "110"

To interpret bit vectors such as 011 as signed or unsigned binary numbers, use the relational opera-
tors defined in the FPGA Express std_logic_arith package (listed in Appendix B). The third line in
Example 5-4 evaluates to FALSE if the operands are of type UNSIGNED.

UNSIGNED’"1" < UNSIGNED’"011" -- Numeric comparison

Example 5-5 shows some relational expressions and the resulting synthesized circuits.

Example 5-5: Relational Operators

signal A, B: BIT_VECTOR(3 downto 0);

signal C, D: BIT_VECTOR(1 downto 0);

signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);

H <= (C < D);

I <= (C >= D);

J <= (E > F);

Adding Operators
Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and - are predefined by FPGA Express for all integer operands. These
addition and subtraction operators perform conventional arithmetic, as shown in Example 5-6. For
adders and subtracters more than four bits wide, a synthetic library component is used (see Chapter
9).

The concatenation (&) operator is predefined for all one-dimensional array operands. The concatena-
tion operator builds arrays by combining the operands. Each operand of & can be an array or an ele-
ment of an array. Use & to add a single element to the beginning or end of an array, to combine two
arrays, or to build an array from elements, as shown in Example 5-6.
 Expressions • 5–5

Operators
5–6 • VeriBest FPGA Synthesis VHDL Reference Manual

Operators
Example 5-6: Adding Operators

signal A, D: BIT_VECTOR(3 downto 0);

signal B, C, G: BIT_VECTOR(1 downto 0);

signal E: BIT_VECTOR(2 downto 0);

signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C; -- Array & array

D <= not E & not F; -- Array & element

G <= not H & not I; -- Element & element

J <= K + L; -- Simple addition

Figure 5-2: Adding Operators
 Expressions • 5–7

Operators
Unary (Sign) Operators
A unary operator has only one operand. FPGA Express predefines unary operators + and - for all
integer types. The + operator has no effect. The - operator negates its operand. For example,

5 = +5

5 = -(-5)

Example 5-7 shows how unary negation is synthesized.

Example 5-7: Unary (Signed) Operators

signal A, B: INTEGER range -8 to 7;

A <= -B;

Figure 5-3: Unary (Signed) Operators

Multiplying Operators
FPGA Express predefines the multiplying operators (*, /, mod, and rem) for all integer types.

FPGA Express places some restrictions on the supported values for the right operands of the multiply-
ing operators, as follows:

• * Integer multiplication: no restrictions.

A multiplication operator is implemented as a synthetic library cell.

• / Integer division: The right operand must be a computable power of 2 (see "Computable Operands,"
later in this chapter). Neither operand can be negative.

This operator is implemented as a bit shift.

mod Modulus: Same as /.

rem Remainder: Same as /.
5–8 • VeriBest FPGA Synthesis VHDL Reference Manual

Operators
Example 5-8 shows some uses of the multiplying operators whose right operands are all powers of 2.
The resulting synthesized circuit is also shown.

Example 5-8: Multiplying Operators with Powers of 2

signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

 A <= B * 4;

 C <= D / 4;

 E <= F mod 4;

 G <= H rem 4;

Example 5-9 shows two multiplication operations, one with a four-bit operand times a two-bit constant
(B * 3), and one with two five-bit operands (X * Y). Because the synthetic library is enabled by
default, these multiplications are implemented as synthetic library cells.
 Expressions • 5–9

Operators
Example 5-9: Multiply Operator (*) Using Synthetic Cells

signal A, B: INTEGER range 0 to 15;

signal Y, Z: INTEGER range 0 to 31;

signal X: INTEGER range 0 to 1023;

. . .

 A <= B * 3;

 X <= Y * Z;

Miscellaneous Arithmetic Operators
FPGA Express predefines the absolute value (abs) and exponentiation (**) operators for all integer
types. One FPGA Express restriction placed on **, as follows:

** Exponentiation: Left operand must have a computable value of 2 (see ‘‘Computable Operands,"
later in this chapter).

Example 5-10 shows how these operators are used and synthesized.
5–10 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
Example 5-10: Miscellaneous Arithmetic Operators

signal A, B: INTEGER range -8 to 7;

signal C: INTEGER range 0 to 15;

signal D: INTEGER range 0 to 3;

A <= abs(B);

C <= 2 ** D;

Operands
Operands determine the data used by the operator to compute its value. An operand is said to return
its value to the operator.

There are many categories of operands. The simplest operand is a literal, such as the number 7, or an
identifier, such as a variable or signal name. An operand itself can be an expression. You create
expression operands by surrounding an expression with parentheses.

The operand categories are

Expressions:(A nand B)

Literals:’0’, "101", 435, 16#FF3E#

Identifiers: my_var, my_sig

Indexed names: my_array(7)

Slice names: my_array(7 to 11)
 Expressions • 5–11

Operands
Fields: my_record.a_field

Aggregates:my_array_type’(others => 1)

Attributes: my_array’range

Function calls: LOOKUP_VAL(my_var_1, my_var_2)

Qualified expressions:BIT_VECTOR’(’1’ & ’0’)

Type conversions: THREE_STATE(’0’)

The next two sections discuss operand bit widths and explain computable operands. Subsequent sec-
tions describe the operand types listed above.

Operand Bit Width
FPGA Express uses the bit width of the largest operand to determine the bit width needed to imple-
ment an operator in hardware. For example, an INTEGER operand is 32 bits wide by default. An addi-
tion of two INTEGER operands causes FPGA Express to build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit width of numeric operands. For example,
use a subrange of INTEGER when declaring types, variables, or signals.

type ENOUGH: INTEGER range 0 to 255;

variable WIDE: INTEGER range -1024 to 1023;

signal NARROW: INTEGER range 0 to 7;

Note: During optimization, FPGA Express removes hardware for unused bits.

Computable Operands
Some operators, such as the division operator, restrict their operands to be computable. A computable
operand is one whose value can be determined by FPGA Express. Computability is important because
noncomputable expressions can require logic gates to determine their value.

Following are examples of computable operands:

• Literal values

• for ... loop parameters, when the loop’s range is computable

• Variables assigned a computable expression

• Aggregates that contain only computable expressions

• Function calls with a computable return value

• Expressions with computable operand

• Qualified expressions, where the expression is computable

• Type conversions, when the expression is computable

• Value of the and or nand operators when one of the operands is a computable 0

• Value of the or or nor operators when one of the operands is a computable 1
5–12 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
Additionally, a variable is given a computable value if it is an OUT or INOUT parameter of a procedure
that assigns it a computable value.

Following are examples of noncomputable operands:

• Signals

• Ports

• Variables that are assigned different computable values that depend on a noncomputable condition

• Variables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by several computable and noncom-
putable expressions.

Example 5-11: Computable and Noncomputable Expressions

signal S: BIT;

. . .

function MUX(A, B, C: BIT) return BIT is

begin

 if (C = ’1’) then

 return(A);

 else

 return(B);

 end if;

end;

procedure COMP(A: BIT; B: out BIT) is

begin

 B := not A;

end;

process(S)

 variable V0, V1, V2: BIT;

 variable V_INT: INTEGER;

 subtype MY_ARRAY is BIT_VECTOR(0 to 3);

 variable V_ARRAY: MY_ARRAY;

begin

 V0 := ’1’; -- Computable (value is ’1’)

 V1 := V0; -- Computable (value is ’1’)

 V2 := not V1; -- Computable (value is ’0’)

 for I in 0 to 3 loop
 Expressions • 5–13

Operands
 V_INT := I; -- Computable (value depends

 end loop; -- on iteration)

 V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);

 -- Computable ("1000")

 V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)

 COMP(V1, V2);

 V1 := V2; -- Computable (value is ’0’)

 V0 := S and ’0’; -- Computable (value is ’0’)

 V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)

 V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

 if (S = ’1’) then

 V2 := ’0’; -- Computable (value is ’0’)

 else

 V2 := ’1’; -- Computable (value is ’1’)

 end if;

 V0 := V2; -- Noncomputable; V2 depends

 -- on S

 V1 := S; -- Noncomputable; S is signal

 V2 := V1; -- Noncomputable; V1 is no

 -- longer computable

end process;

Literals
A literal (constant) operand can be a numeric literal, a character literal, an enumeration literal, or a
string literal. The following sections describe these four kinds of literals.

Numeric Literals
Numeric literals are constant integer values. The two kinds of numeric literals are decimal and based.
A decimal literal is written in base 10. A based literal can be written in a base from 2 to 16 and is com-
posed of the base number, an octothorpe (#), the value in the given base, and another octothorpe (#);
for example, 2#101# is decimal 5.

The digits in either kind of numeric literal can be separated by an underscore (_) character.
Example 5-12 shows several different numeric literals, all representing the same value.
5–14 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
Example 5-12: Numeric Literals

170

1_7_0

10#170#

2#1010_1010#

16#AA#

Character Literals
Character literals are single characters enclosed in single quotation marks, for example, A. Character
literals can be used as values for operators and to define enumerated types, such as CHARACTER and
BIT. See Chapter 4 for more information about the legal character types.

Enumeration Literals
Enumeration literals are values of enumerated types. The two kinds of enumeration literals are charac-
ter literals and identifiers. Character literals were described previously. Enumeration identifiers are
those literals listed in an enumeration type definition. For example:

type SOME_ENUM is (ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);

If two enumerated types use the same literals, those literals are said to be overloaded. You must qual-
ify overloaded enumeration literals (see "Qualified Expressions," later in this chapter) when you use
them in an expression unless their type can be determined from context. See Chapter 4 for more infor-
mation.

Example 5-13 defines two enumerated types and shows some enumeration literal values.

Example 5-13: Enumeration Literals

type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);

type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA -- Enumeration identifier of type ENUM_1

’B’ -- Character literal of type ENUM_1

CCC -- Enumeration identifier of type ENUM_2

’D’ -- Character literal of type ENUM_2

ENUM_1’(ZZZ) -- Qualified because overloaded

String Literals
String literals are one-dimensional arrays of characters, enclosed in double quotes (" "). The two kinds
of string literals are character strings and bit strings. Character strings are sequences of characters in
double quotes; for example, "ABCD". Bit strings are similar to character strings, but represent binary,
octal, or hexadecimal values; for example, B"1101", O"15", and X"D" all represent decimal value
13.

A string value’s type is a one-dimensional array of an enumerated type. Each of the characters in the
string represents one element of the array.
 Expressions • 5–15

Operands
Example 5-14 shows some character-string literals.

Example 5-14: Character-String Literals

"10101"

"ABCDEF"

Note: Null string literals ("") are not supported.

Bit strings, like based numeric literals, are composed of a base specifier character, a double quotation
mark, a sequence of numbers in the given base, and another double quotation mark. For example,
B"0101" represents the bit vector 0101. A bit-string literal consists of the base specifier B, O, or X, fol-
lowed by a string literal. The bit-string literal is interpreted as a bit vector, a one-dimensional array of
the predefined type BIT. The base specifier determines the interpretation of the bit string as follows:

B (binary)
The value is in binary digits (bits, 0 or 1). Each bit in the string represents one BIT in the generated
bit vector (array).

O (octal)
The value is in octal digits (0 to 7). Each octal digit in the string represents three BITs in the gener-
ated bit vector (array).

X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each hexadecimal digit in the string represents
four BITs in the generated bit vector (array).

You can separate the digits in a bit-string literal value with underscores (_) for readability. Example 5-
15 shows several bit-string literals that represent the same value.

Example 5-15: Bit-String Literals

X"AAA"

B"1010_1010_1010"

O"5252"

B"101_010_101_010"

Identifiers
Identifiers are probably the most common operand. An identifier is the name of a constant, variable,
signal, entity, port, subprogram, or parameter and returns the object’s value to an operand.

Example 5-16 shows several kinds of identifiers and their usage. All identifiers are shown in boldface.

Example 5-16: Identifiers

entity EXAMPLE is

 port (INT_PORT: in INTEGER;

 BIT_PORT: out BIT);

end;

. . .

signal BIT_SIG: BIT;

signal INT_SIG: INTEGER;
5–16 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
. . .

INT_SIG <= INT_PORT; -- Signal assignment from port

BIT_PORT <= BIT_SIG; -- Signal assignment to port

function FUNC(INT_PARAM: INTEGER)

 return INTEGER;

end function;

. . .

constant CONST: INTEGER := 2;

variable VAR: INTEGER;

. . .

VAR := FUNC(INT_PARAM => CONST); -- Function call

Indexed Names
An indexed name identifies one element of an array variable or signal. Slice names identify a
sequence of elements in an array variable or signal; aggregates create array literals by giving a value
to each element of an instance of an array type. Slice names and aggregates are described in the next
two sections.

The syntax of an indexed name is

identifier (expression)

identifier must name a signal or variable of an array type. The expression must return a value
within the array’s index range. The value returned to an operator is the specified array element.

If expression is computable (see ‘‘Computable Operands," earlier in this chapter), the operand is
synthesized directly. If the expression is not computable, hardware that extracts the specified element
from the arrayis synthesized.

Example 5-17 shows two indexed names—one computable and one not computable.
 Expressions • 5–17

Operands
Example 5-17: Indexed Name Operands

signal A, B: BIT_VECTOR(0 to 3);

signal I: INTEGER range 0 to 3;

signal Y, Z: BIT;

Y <= A(I); -- Noncomputable index expression

Z <= B(3); -- Computable index expression

You can also use indexed names as assignment targets; see "Indexed Name Targets" in Chapter 6.

Slice Names
Slice names return a sequence of elements in an array. The syntax is

identifier (expression direction expression)

identifier must name a signal or variable of an array type. Each expression must return a value
within the array’s index range, and must be computable. See ‘‘Computable Operands," earlier in this
chapter.

The direction must be either to or downto. The direction of a slice must be the same as the direc-
tion of identifier array type. If the left and right expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specified array elements.

Example 5-18 uses slices to assign an eight-bit input to an eight-bit output, exchanging the lower and
upper four bits.
5–18 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
Example 5-18: Slice Name Operands

signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);

Z(4 to 7) <= A(0 to 3);

In Example 5-18, slices are also used as assignment targets. This usage is described in Chapter 6,
under ‘‘Slice Targets."

Limitations on Null Slices
FPGA Express does not support null slices. A null slice is indicated by a null range, such as
(4 to 3), or a range with the wrong direction, such as UP_VAR(3 downto 2) when the declared
range of UP_VAR is ascending (Example 5-19).

Example 5-19 shows three null slices and one noncomputable slice.

Example 5-19: Null and Noncomputable Slices

subtype DOWN is BIT_VECTOR(4 downto 0);

subtype UP is BIT_VECTOR(0 to 7);

. . .

variable UP_VAR: UP;

variable DOWN_VAR: DOWN;

. . .

UP_VAR(4 to 3) -- Null slice (null range)

UP_VAR(4 downto 0) -- Null slice (wrong direction)

DOWN_VAR(0 to 1) -- Null slice (wrong direction)

. . .

variable I: INTEGER range 0 to 7;

. . .

UP_VAR(I to I+1) -- Noncomputable slice
 Expressions • 5–19

Operands
Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range contains a noncomputable
expression.

Records and Fields
Records are composed of named fields of any type. For more information, see ‘‘Record Types" in
Chapter 4.

In an expression, you can refer to a record as a whole, or you can refer to a single field. The syntax of
field names is

record_name.field_name

record_name is the name of the record variable or signal, and field_name is the name of a field in
that record type. A field_name is separated from the record name by a period (.). Note that a
record_name is different for each variable or signal of that record type. A field_name is the field
name defined for that record type.

Example 5-20 shows a record type definition, and record and field access.

Example 5-20: Record and Field Access

type BYTE_AND_IX is

 record

 BYTE: BIT_VECTOR(7 downto 0);

 IX: INTEGER range 0 to 7;

 end record;

signal X: BYTE_AND_IX;

. . .

X -- record

X.BYTE -- field: 8-bit array

X.IX -- field: integer

A field can be of any type—including an array, record, or aggregate type. Refer to an element of a field
with that type’s notation, for example:

X.BYTE(2) -- one element from array field BYTE

X.BYTE(3 downto 0) -- 4-element slice of array field BYTE
5–20 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
Aggregates
Aggregates can be considered array literals, because they specify an array type and the value of each
array element. The syntax is

type_name’([choice =>] expression

 {, [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the Library Reference Manual (LRM).
type_name must be a constrained array type. The optional choice specifies an element index, a
sequence of indexes, or others. Each expression provides a value for the chosen elements, and
must evaluate to a value of the element’s type.

Example 5-21 shows an array type definition and an aggregate representing a literal of that array type.
The two sets of assignments have the same result.

Example 5-21: Simple Aggregate

subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X: MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B) -- Aggregate
 -- assignment
...
X(1) <= ’1’; -- Element
X(2) <= A nand B; -- assignment
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index with either positional or named notation. With positional notation,
each element is given the value of its expression in order, as shown in Example 5-21.

By using named notation, the choice => construct specifies one or more elements of the array. The
choice can contain an expression (such as (I mod 2) =>) to indicate a single element index, or a
range (such as 3 to 5 => or 7 downto 0 =>) to indicate a sequence of element indexes.

An aggregate can use both positional and named notation, but positional expressions must appear
before named (choice) expressions.

It is not necessary to specify all element indexes in an aggregate. All unassigned values are given a
value by including others => expression as the last element of the list.

Example 5-22 shows several aggregates representing the same value.

Example 5-22: Equivalent Aggregates

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);

MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);

MY_VECTOR’(’1’, ’1’, others => ’0’);

MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);

MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);
 Expressions • 5–21

Operands
The others expression must be the only expression in the aggregate. Example 5-23 shows two
equivalent aggregates.

Example 5-23: Equivalent Aggregates Using the others Expression

MY_VECTOR’(others => ’1’);

MY_VECTOR’(’1’, ’1’, ’1’, ’1’);

To use an aggregate as the target of an assignment statement, see ‘‘Aggregate Targets" in Chapter 6.

Attributes
VHDL defines attributes for various types. A VHDL attribute takes a variable or signal of a given type
and returns a value. The syntax of an attribute is

object’ attribute

FPGA Express supports the following predefined VHDL attributes for use with arrays, as described
under ‘‘Array Types" in Chapter 4:

• left

• right

• high

• low

• length

• range

• reverse_range

FPGA Express also supports the following predefined VHDL attributes for use with wait and if state-
ments, as described in Chapter 8, "Register and Three-State Inference":

• event

• stable

In addition to supporting predefined VHDL attributes listed above, FPGA Express has a defined set of
synthesis-related attributes. These FPGA Express-specific attributes can be placed in your VHDL
design description to direct optimization. See ‘‘Synthesis Attributes and Constraints" in Chapter 9 for
more information.

Function Calls
A function call executes a named function with the given parameter values. The value returned to an
operator is the function’s return value. The syntax of a function call is

function_name ([parameter_name =>] expression

 {, [parameter_name =>] expression })

function_name is the name of a defined function. The optional parameter_name is an expression
of formal parameters, as defined by the function. Each expression provides a value for its parame-
ter, and must evaluate to a type appropriate for that parameter.
5–22 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
You can specify parameters in positional or named notation, like aggregate values.

In positional notation, the parameter_name => construct is omitted. The first expression provides a
value for the function’s first parameter, the second expression provides a value for the second param-
eter, and so on.

In named notation, parameter_name => is specified before an expression; the named parameter
gets the value of that expression.

You can mix positional and named expressions in the same function call, as long as all positional
expressions appear before a named parameter expressions.

Function calls are implemented by logic unless you use the map_to_entity compiler directive. For
more information, see "Mapping Subprograms to Components" in Chapter 6, and "Component Implica-
tion Directives" in Chapter 9.

Example 5-24 shows a function declaration and several equivalent function calls.

Example 5-24: Function Calls

function FUNC(A, B, C: INTEGER) return BIT;

. . .

FUNC(1, 2, 3)

FUNC(B => 2, A => 1, C => 7 mod 4)

FUNC(1, 2, C => -3+6)

Qualified Expressions
Qualified expressions state the type of an operand to resolve ambiguities in an operand’s type. You
cannot use qualified expressions for type conversion (see "Type Conversions").

The syntax of a qualified expression is

type_name’(expression)

type_name is the name of a defined type. expression must evaluate to a value of an appropriate
type.

Note: A single quote, or tick, must appear between type_name and (expression). If the single
quote is omitted, the construction is interpreted as a type conversion (see "Type Conversions").

Example 5-25 shows a qualified expression that resolves an overloaded function by qualifying the type
of a decimal literal parameter.
 Expressions • 5–23

Operands
Example 5-25: A Qualified Decimal Literal

type R_1 is range 0 to 10; -- Integer 0 to 10

type R_2 is range 0 to 20; -- Integer 0 to 20

function FUNC(A: R_1) return BIT;

function FUNC(A: R_2) return BIT;

FUNC(5) -- Ambiguous; could be of type R_1,

 -- R_2, or INTEGER

FUNC(R_1’(5)) -- Unambiguous

Example 5-26 shows how qualified expressions resolve ambiguities in aggregates and enumeration lit-
erals.

Example 5-26: Qualified Aggregates and Enumeration Literals

type ARR_1 is array(0 to 10) of BIT;

type ARR_2 is array(0 to 20) of BIT;

. . .

(others => ’0’) -- Ambiguous; could be of

 -- type ARR_1 or ARR_2

ARR_1’(others => ’0’) -- Qualified; unambiguous

--

type ENUM_1 is (A, B);

type ENUM_2 is (B, C);

. . .

B -- Ambiguous; could be of

 -- type ENUM_1 or ENUM_2

ENUM_1’(B) -- Qualified; unambiguous

Type Conversions
Type conversions change an expression’s type. Type conversions are different from qualified expres-
sions because they change the type of their expression; whereas qualified expressions simply resolve
the type of an expression.

The syntax of a type conversion is

type_name(expression)
5–24 • VeriBest FPGA Synthesis VHDL Reference Manual

Operands
type_name is the name of a defined type. The expression must evaluate to a value of a type that
can be converted into type type_name.

• Type conversions can convert between integer types or between similar array types.

• Two array types are similar if they have the same length and if they have convertible or identical ele-
ment types.

• Enumerated types cannot be converted.

Example 5-27 shows some type definitions and associated signal declarations, followed by legal and
illegal type conversions.

Example 5-27: Legal and Illegal Type Conversions

type INT_1 is range 0 to 10;

type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;

type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);

type BIT_ARRAY_10 is array(11 to 20) of BIT;

type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT: INT_1;

signal S_ARRAY: ARRAY_1;

signal S_BIT_VEC: MY_BIT_VECTOR;

signal S_BIT: BIT;

 -- Legal type conversions

INT_2(S_INT)

 -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)

 -- Similar array type conversion

 -- Illegal type conversions

BOOLEAN(S_BIT);
 -- Can’t convert between enumerated types

INT_1(S_BIT);

 -- Can’t convert enumerated types to other types
 Expressions • 5–25

Operands
BIT_ARRAY_20(S_BIT_VEC);

 -- Array lengths not equal

ARRAY_1(S_BIT_VEC);

 -- Element types cannot be converted
5–26 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 6
Sequential Statements
Sequential statements like A := 3 are interpreted one after another, in the order in which they are
written. VHDL sequential statements can appear only in a process or subprogram. A VHDL process is
a group of sequential statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:

• Assignment Statements

• Variable Assignment Statement

• Signal Assignment Statement

• if Statement

• case Statement

• loop Statements

• next Statement

• exit Statement

• Subprograms

• return Statement

• wait Statement

• null Statement

Processes are composed of sequential statements, but processes are themselves concurrent state-
ments (see Chapter 7). All processes in a design execute concurrently. However, at any given time
only one sequential statement is interpreted within each process.

A process communicates with the rest of a design by reading or writing values to and from signals or
ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be called sequentially (as described
in this chapter) or concurrently (as described in Chapter 7).

Sequential statements are

assignment statements
that assign values to variables and signals.
 Sequential Statements • 6–1

Assignment Statements
flow control statements
that conditionally execute statements (if and case), repeat statements (for...loop), and skip
statements (next and exit).

subprograms
that define sequential algorithms for repeated use in a design (procedure and function).

wait statement
to pause until an event occurs (wait).

null statement
to note that no action is necessary (null).

Assignment Statements
An assignment statement assigns a value to a variable or signal. The syntax is

target := expression; -- Variable assignment

target <= expression; -- Signal assignment

target is a variable or signal (or part of a variable or signal, such as a subarray) that receives the
value of the expression. The expression must evaluate to the same type as the target. See
Chapter 5 for more information on expressions.

The difference in syntax between variable assignments and signal assignments is that variables use
:= and signals use <=. The basic semantic difference is that variables are local to a process or sub-
program, and their assignments take effect immediately.

Signals need not be local to a process or subprogram, and their assignments take effect at the end of
a process. Signals are the only means of communication between processes. For more information on
semantic differences, see ‘‘Signal Assignment,- later in this chapter.

Assignment Targets
Assignment statements have five kinds of targets:

• Simple names, such as my_var

• Indexed names, such as my_array_var(3)

• Slices, such as my_array_var(3 to 6)

• Field names, such as my_record.a_field

• Aggregates, such as (my_var1, my_var2)

A assignment target can be either a variable or a signal; the following descriptions refer to both.

Simple Name Targets
The syntax for an assignment to a simple name target is

identifier := expression; -- Variable assignment

identifier <= expression; -- Signal assignment
6–2 • VeriBest FPGA Synthesis VHDL Reference Manual

Assignment Statements
identifier is the name of a signal or variable. The assigned expression must have the same type
as the signal or variable. For array types, all elements of the array are assigned values.

Example 6-1 shows some assignments to simple name targets.

Example 6-1: Simple Name Targets

variable A, B: BIT;

signal C: BIT_VECTOR(1 to 4);

-- Target Expression

 A := ’1’; -- Variable A is assigned ’1’

 B := ’0’; -- Variable B is assigned ’0’

 C <= -1100"; -- Signal array C is assigned

 -- -1100"

Indexed Name Targets
The syntax for an assignment to an indexed name target is

identifier(index_expression) := expression;

 -- Variable assignment

identifier(index_expression) <= expression;

 -- Signal assignment

identifier is the name of an array type signal or variable. index_expression must evaluate to
an index value for the identifier array’s index type and bounds but does not have to be comput-
able (see ‘‘Computable Operands- in Chapter 5), but more hardware is synthesized if it is not.

The assigned expression must contain the array’s element type.

In Example 6-2, the elements for array variable A are assigned values as indexed names.

Example 6-2: Indexed Name Targets

variable A: BIT_VECTOR(1 to 4);

-- Target Expression;

 A(1) := ’1’; -- Assigns ’1’ to the first

 -- element of array A.

 A(2) := ’1’; -- Assigns ’1’ to the second

 -- element of array A.

 A(3) := ’0’; -- Assigns ’0’ to the third

 -- element of array A.

 A(4) := ’0’; -- Assigns ’0’ to the fourth

 -- element of array A.
 Sequential Statements • 6–3

Assignment Statements
Example 6-3 shows two indexed name targets. One of the targets is computable and the other is not.
Note the differences in the hardware generated for each assignment.

Example 6-3: Computable and Noncomputable Indexed Name Targets

signal A, B: BIT_VECTOR(0 to 3);

signal I: INTEGER range 0 to 3;

signal Y, Z: BIT;

A <= -0000";

B <= -0000";

A(I) <= Y; -- Noncomputable index expression

B(3) <= Z; -- Computable index expression

Slice Targets
The syntax for a slice target is

identifier(index_expr_1 direction index_expr_2)

identifier is the name of an array type signal or variable. Each index_expr expression must
evaluate to an index value for the identifier array’s index type and bounds. Both index_expr
expressions must be computable (see -Computable Operands- in Chapter 5), and must lie within the
bounds of the array. direction must match the identifier array type’s direction—either to or
downto.
6–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Assignment Statements
The assigned expression must contain the array’s element type.

In Example 6-4, array variables A and B are assigned the same value.

Example 6-4: Slice Targets

variable A, B: BIT_VECTOR(1 to 4);

-- Target Expression;

 A(1 to 2) := -11"; -- Assigns -11" to the first

 -- two elements of array A

 A(3 to 4) := -00"; -- Assigns -00" to the last

 -- two elements of array A

 B(1 to 4) := -1100";-- Assigns -1100" to array B

Field Targets
The syntax for a field target is

identifier.field_name

identifier is the name of a record type signal or variable, and field_name is the name of a field
in that record type, preceded by a period (.). The assigned expression must contain the identified
field’s type. A field can be of any type, including an array, record, or aggregate type.

Example 6-5 assigns values to the fields of record variables A and B.

Example 6-5: Field Targets

type REC is
 record
 NUM_FIELD: INTEGER range -16 to 15;
 ARRAY_FIELD: BIT_VECTOR(3 to 0);
 end record;

variable A, B: REC;

-- Target Expression;
 A.NUM_FIELD := -12; -- Assigns -12 to record A’s
 -- field NUM_FIELD

 A.ARRAY_FIELD := -0011"; -- Assigns -0011" to record
 -- A’s field ARRAY_FIELD
 A.ARRAY_FIELD(3) := ’1’; -- Assigns ’1’ to the most-
 -- significant bit of record
 -- A’s field ARRAY_FIELD

 B := A; -- Assigns values of record
 -- A to corresponding fields
 -- of B

For more information about field targets see -Record Types- in Chapter 4.
 Sequential Statements • 6–5

Assignment Statements
Aggregate Targets
The syntax for an assignment to an aggregate target is

([choice =>] identifier

 {,[choice =>] identifier}) := array_expression;

 -- Variable assignment

([choice =>] identifier

 {,[choice =>] identifier}) <= array_expression;

 -- Signal assignment

An aggregate assignment assigns array_expression’s element values to one or more variable or
signal identifiers.

Each choice (optional) is an index expression selecting an element or a slice of the assigned
array_expression. Each identifier must have the element type of array_expression. An
identifier can be an array type.

Example 6-6 shows some aggregate targets.

Example 6-6: Aggregate Targets

signal A, B, C, D: BIT;

signal S: BIT_VECTOR(1 to 4);

. . .

variable E, F: BIT;

variable G: BIT_VECTOR(1 to 2);

variable H: BIT_VECTOR(1 to 4);

-- Positional notation

S <= (’0’, ’1’, ’0’, ’0’);

(A, B, C, D) <= S; -- Assigns ’0’ to A

 -- Assigns ’1’ to B

 -- Assigns ’0’ to C

 -- Assigns ’0’ to D

-- Named notation

(3 => E, 4 => F,

 2 => G(1), 1 => G(2)) := H;

 -- Assigns H(1) to G(2)

 -- Assigns H(2) to G(1)

 -- Assigns H(3) to E

 -- Assigns H(4) to F
6–6 • VeriBest FPGA Synthesis VHDL Reference Manual

Variable Assignment Statement
You can assign array element values to the identifiers by position or by name. In positional notation,
the choice => construct is not used. Identifiers are assigned array element values in order, from the
left array bound to the right array bound.

In named notation, the choice => construct identifies specific elements of the assigned array. A
choice index expression indicates a single element, such as 3. The type of identifier must match
the assigned expression’s element type.

Positional and named notation can be mixed, but positional associations must appear before named
associations.

Variable Assignment Statement
A variable assignment changes the value of a variable. The syntax is

target := expression;

expression determines the assigned value; its type must be compatible with target. See
Chapter 5 for further information about expressions. target names the variables that receive the
value of expression. See -Assignment Targets- in the previous section for a description of variable
assignment targets.

When a variable is assigned a value, the assignment takes place immediately. A variable keeps its
assigned value until it is assigned a new value.

Signal Assignment Statement
A signal assignment changes the value being driven on a signal by the current process. The syntax is

target <= expression;

expression determines the assigned value; its type must be compatible with target. See
Chapter 5 for further information about expressions. target names the signals that receive the value
of expression. See -Assignment Targets- in this chapter for a description of signal assignment tar-
gets.

Signals and variables behave differently when they are assigned values. The differences lie in the way
the two kinds of assignments take effect, and how that affects the values read from either variables or
signals.

Variable Assignment
When a variable is assigned a value, the assignment takes place immediately. A variable keeps its
assigned value until it is assigned a new value.

Signal Assignment
When a signal is assigned a value, the assignment does not necessarily take effect because the value
of a signal is determined by the processes (or other concurrent statements) that drive it.
 Sequential Statements • 6–7

if Statement
• If several values are assigned to a given signal in one process, only the last assignment is effective.
Even if a signal in a process is assigned, read, and reassigned, the value read (either inside or out-
side the process) is the last assignment value.

• If several processes (or other concurrent statements) assign values to one signal, the drivers are
wired together. The resulting circuit depends on the expressions and the target technology. It may
be invalid, wired AND, wired OR, or a three-state bus. Refer to ‘‘Driving Signals- in Chapter 7 for
more information.

Example 6-7 shows the different effects of variable and signal assignments.

Example 6-7: Signal and Variable Assignments

signal S1, S2: BIT;
signal S_OUT: BIT_VECTOR(1 to 8);
. . .
process(S1, S2)
 variable V1, V2: BIT;
begin
 V1 := ’1’; -- This sets the value of V1
 V2 := ’1’; -- This sets the value of V2
 S1 <= ’1’; -- This assignment is the driver for S1
 S2 <= ’1’; -- This has no effect because of the
 -- assignment later in this process

 S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
 S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
 S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below

 V1 := ’0’; -- This sets the new value of V1
 V2 := ’0’; -- This sets the new value of V2
 S2 <= ’0’; -- This assignment overrides the
 -- previous one since it is the last
 -- assignment to this signal in this
 -- process

 S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
 S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
 S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;

if Statement
The if statement executes a sequence of statements. The sequence depends on the value of one or
more conditions. The syntax is

if condition then

 { sequential_statement }

{ elsif condition then

 { sequential_statement } }

[else

 { sequential_statement }]
6–8 • VeriBest FPGA Synthesis VHDL Reference Manual

if Statement
end if;

Each condition must be a Boolean expression. Each branch of an if statement can have one or
more sequential_statements.

Evaluating condition
An if statement evaluates each condition in order. The first (and only the first) TRUE condition
causes the execution of its branch’s statements. The remainder of the if statement is skipped.

If none of the conditions are TRUE, and the else clause is present, those statements are executed.

If none of the conditions are TRUE, and no else is present, none of the statements is executed.

Example 6-8 shows an if statement and a corresponding circuit.

Example 6-8: if Statement

signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then

 Z <= A;

elsif (P2 = ’0’) then

 Z <= B;

else

 Z <= C;

end if;

Using the if Statement to Imply Registers and Latches
Some forms of the if statement can be used like the wait statement, to test for signal edges and
therefore imply synchronous logic. This usage causes FPGA Express to infer registers or latches, as
described in Chapter 8, ‘‘Register and Three-State Inference.-
 Sequential Statements • 6–9

case Statement
case Statement
The case statement executes one of several sequences of statements, depending on the value of a
single expression. The syntax is

case expression is

 when choices =>

 { sequential_statement }

 { when choices =>

 { sequential_statement } }

end case;

expression must evaluate to an INTEGER or an enumerated type, or an array of enumerated types,
such as BIT_VECTOR. Each of the choices must be of the form

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range (such as 1 to 3). The
type of choice_expression determines the type of each choice. Each value in the range of the
choice_expression type must be covered by one choice.

The final choice can be others, which matches all remaining (unchosen) values in the range of the
expression type. The others choice, if present, matches expression only if no other choices
match.

The case statement evaluates expression and compares that value to each choice value. The
statements following each when clause is evaluated only if the choice value matches the expres-
sion value.

The following restrictions are placed on choices:

• No two choices can overlap.

• If no others choice is present, all possible values of expression must be covered by the set of
choices.

Using Different Expression Types
Example 6-9 shows a case statement that selects one of four signal assignment statements by using
an enumerated expression type.

Example 6-9: case Statement That Uses an Enumerated Type

type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);

signal VALUE: ENUM;

signal A, B, C, D, Z: BIT;

case VALUE is

 when PICK_A =>
6–10 • VeriBest FPGA Synthesis VHDL Reference Manual

case Statement
 Z <= A;

 when PICK_B =>

 Z <= B;

 when PICK_C =>

 Z <= C;

 when PICK_D =>

 Z <= D;

end case;

Example 6-10 shows a case statement again used to select one of four signal assignment statements,
this time by using an integer expression type with multiple choices.

Example 6-10: case Statement with Integers

signal VALUE is INTEGER range 0 to 15;

signal Z1, Z2, Z3, Z4: BIT;

Z1 <= ’0’;

Z2 <= ’0’;

Z3 <= ’0’;

Z4 <= ’0’;

case VALUE is

 when 0 => -- Matches 0

 Z1 <= ’1’;

 when 1 | 3 => -- Matches 1 or 3

 Z2 <= ’1’;

 when 4 to 7 | 2 => -- Matches 2, 4, 5, 6, or 7

 Z3 <= ’1’;

 when others => -- Matches remaining values,

 -- 8 through 15

 Z4 <= ’1’;

end case;
 Sequential Statements • 6–11

case Statement
Invalid case Statements
Example 6-11 shows four invalid case statements.

Example 6-11: Invalid case Statements

signal VALUE: INTEGER range 0 to 15;

signal OUT_1: BIT;

case VALUE is -- Must have at least one when

end case; -- clause

case VALUE is -- Values 2 to 15 are not

 when 0 => -- covered by choices

 OUT_1 <= ’1’;

 when 1 =>

 OUT_1 <= ’0’;

end case;

case VALUE is -- Choices 5 to 10 overlap

 when 0 to 10 =>

 OUT_1 <= ’1’;

 when 5 to 15 =>

 OUT_1 <= ’0’;

end case;
6–12 • VeriBest FPGA Synthesis VHDL Reference Manual

loop Statements
loop Statements
A loop statement repeatedly executes a sequence of statements. The syntax is

[label :] [iteration_scheme] loop

 { sequential_statement }

 { next [label] [when condition] ; }

 { exit [label] [when condition] ; }

end loop [label];

The optional label names the loop and is useful for building nested loops. Each type of
iteration_scheme is described in this section.

The next and exit statements are sequential statements used only within loops. The next state-
ment skips the remainder of the current loop and continues with the next loop iteration. The exit
statement skips the remainder of the current loop and continues with the next statement after the
exited loop.

VHDL provides three types of loop statements, each with a different iteration scheme:

loop
The basic loop statement has no iteration scheme. Enclosed statements are executed repeatedly for-
ever until an exit or next statement is encountered.

while .. loop
The while .. loop statement has a Boolean iteration scheme. If the iteration condition evaluates to
TRUE, enclosed statements are executed once. The iteration condition is then reevaluated. While the
iteration condition remains true, the loop is repeatedly executed. When the iteration condition evalu-
ates to FALSE, the loop is skipped, and execution continues with the next statement after the loop.

for .. loop
The for .. loop statement has an integer iteration scheme, where the number of repetitions is
determined by an integer range. The loop is executed once for each value in the range. After the last
value in the iteration range is reached, the loop is skipped, and execution continues with the next
statement after the loop.

Caution Noncomputable loops (loop and while..loop statements) must have at least one wait
statement in each enclosed logic branch. Otherwise, a combinational feedback loop is
created. See ‘‘wait Statement,- later in this chapter, for more information.

Conversely, computable loops (for..loop statements) must not contain wait statements.
Otherwise, a race condition might result.
 Sequential Statements • 6–13

loop Statements
loop Statement
The loop statement, with no iteration scheme, repeats enclosed statements indefinitely. The syntax is

[label :] loop

 { sequential_statement }

end loop [label];

The optional label names this loop.

sequential_statement can be any statement described in this chapter. Two sequential statements
are used only with loops: the next statement, which skips the remainder of the current loop iteration,
and the exit statement, which terminates the loop. These statements are described in the next two
sections.

Note: A loop statement must have at least one wait statement in each enclosed logic branch. See
‘‘wait Statement,- later in this chapter, for an example.

while .. loop Statement
The while .. loop statement repeats enclosed statements as long as its iteration condition evalu-
ates to TRUE. The syntax is

[label :] while condition loop

 { sequential_statement }

end loop [label];

The optional label names this loop. condition is any Boolean expression, such as ((A = ’1’)
or (X < Y)) .

sequential_statement can be any statement described in this chapter. Two sequential state-
ments are used only with loops: the next statement, which skips the remainder of the current loop iter-
ation, and the exit statement, which terminates the loop. These statements are described in the next
two sections.

Note: A while..loop statement must have at least one wait statement in each enclosed logic
branch. See -wait Statement,- later in this chapter, for an example.

for .. loop Statement
The for .. loop statement repeats enclosed statements once for each value in an integer range.
The syntax is

[label :] for identifier in range loop

 { sequential_statement }

end loop [label];

The optional label names this loop.

The use of identifier is specific to the for .. loop statement:
6–14 • VeriBest FPGA Synthesis VHDL Reference Manual

loop Statements
• identifier is not declared elsewhere. It is automatically declared by the loop itself and is local to
the loop. A loop identifier overrides any other identifier with the same name but only within the loop.

• The value of identifier can be read only inside its loop (identifier does not exist outside the
loop). You cannot assign a value to a loop identifier.

FPGA Express currently requires that range must be a computable integer range(see ‘‘Computable
Operands- in Chapter 5), in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer.

sequential_statement can be any statement described in this chapter. Two sequential state-
ments are used only with loops: the next statement, which skips the remainder of the current loop iter-
ation, and the exit statement, which terminates the loop. These statements are described in the next
two sections.

Note: A for..loop statement must not contain any wait statements.

A for .. loop statement executes as follows:

1. A new, local, integer variable is declared with the name identifier.

2. identifier is assigned the first value of range, and the sequence of statements is executed
once.

3. identifier is assigned the next value in range, and the sequence of statements is executed
once more.

4. Step 3 is repeated until identifier is assigned to the last value in range. The sequence of state-
ments is then executed for the last time, and execution continues with the statement following end
loop. The loop is then inaccessible.

Example 6-12 shows two equivalent code fragments.

Example 6-12: for..loop Statement with Equivalent Fragment

variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement

for I in 1 to 3 loop

 A(I) <= B(I);

end loop;

-- Second fragment is three equivalent statements

A(1) <= B(1);

A(2) <= B(2);

A(3) <= B(3);
 Sequential Statements • 6–15

next Statement
You can use a loop statement to operate on all elements of an array without explicitly depending on
the size of the array. Example 6-13 shows how the VHDL array attribute ’range can be used—in this
case to invert each element of bit vector A.

Example 6-13: for..loop Statement Operating on an Entire Array

variable A, B: BIT_VECTOR(1 to 10);

. . .

for I in A’range loop

 A(I) := not B(I);

end loop;

Unconstrained arrays and array attributes are described under ‘‘Array Types- in Chapter 4.

next Statement
The next statement terminates the current iteration of a loop, then continues with the first statement in
the loop. The syntax is

next [label] [when condition] ;

A next statement with no label terminates the current iteration of the innermost enclosing loop.
When you specify a loop label, the current iteration of that named loop is terminated.

The optional when clause executes its next statement when its condition (a Boolean expression)
evaluates to TRUE.
6–16 • VeriBest FPGA Synthesis VHDL Reference Manual

next Statement
Example 6-14 uses the next statement to copy bits conditionally from bit vector B to bit vector A only
when the next condition evaluates to TRUE.

Example 6-14: next Statement

signal A, B, COPY_ENABLE: BIT_VECTOR (1 to 8);

. . .

A <= -00000000";

. . .

-- B is assigned a value, such as -01011011"

-- COPY_ENABLE is assigned a value, such as -11010011"

. . .

for I in 1 to 8 loop

 next when COPY_ENABLE(I) = ’0’;

 A(I) <= B(I);

end loop;

Example 6-15 shows the use of nested next statements in named loops. This example processes:

• The first element of vector X against the first element of vector Y,

• The second element of vector X against each of the first two elements of vector Y,

• The third element of vector X against each of the first three elements of vector Y,

The processing continues in this fashion until it is completed.
 Sequential Statements • 6–17

exit Statement
Example 6-15: Named next Statement

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop

. . .

 B_LOOP: for J in Y’range loop

 . . .

 next A_LOOP when I < J;

 . . .

 end loop B_LOOP;

. . .

end loop A_LOOP;

exit Statement
The exit statement terminates a loop. Execution continues with the statement following end loop.
The syntax is

exit [label] [when condition] ;

An exit statement with no label terminates the innermost enclosing loop. When you identify a loop
label, that named loop is terminated, as shown earlier in Example 6-15.

The optional when clause executes its exit statement when its condition (a Boolean expression)
evaluates TRUE.

The exit and next statements are equivalent constructs. Both statements use identical syntax, and
both skip the remainder of the enclosing (or named) loop. The only difference between the two state-
ments is that exit terminates its loop, and next continues with the next loop iteration (if any).

Example 6-16 compares two bit vectors. An exit statement exits the comparison loop when a differ-
ence is found.

Example 6-16: Comparator Using the exit Statement

signal A, B: BIT_VECTOR(1 downto 0);

signal A_LESS_THAN_B: Boolean;

. . .

A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop

 if (A(I) = ’1’ and B(I) = ’0’) then

 A_LESS_THAN_B <= FALSE;

 exit;

 elsif (A(I) = ’0’ and B(I) = ’1’) then
6–18 • VeriBest FPGA Synthesis VHDL Reference Manual

Subprograms
 A_LESS_THAN_B <= TRUE;

 exit;

 else

 null; -- Continue comparing

 end if;

end loop;

Subprograms
Subprograms are independent, named algorithms. A subprogram is either a procedure (zero or
more in, inout, or out parameters) or a function (zero or more in parameters and one return
value). Subprograms are called by name from anywhere within a VHDL architecture or a package
body. Subprograms can be called sequentially (as described later in this chapter) or concurrently (as
described in Chapter 7).

In hardware terms, a subprogram call is similar to module instantiation, except that a subprogram call
becomes part of the current circuit, whereas module instantiation adds a level of hierarchy to the
design. A synthesized subprogram is always a combinational circuit (use a process to create a
sequential circuit).

Subprograms, like packages, have subprogram declarations and subprogram bodies. A subprogram
declaration specifies its name, parameters, and return value (for functions). A subprogram body then
implements the operation you want.

Often, a package contains only type and subprogram declarations for use by other packages. The
bodies of the declared subprograms are then implemented in the bodies of the declaring packages.

The advantage of the separation between declarations and bodies is that subprogram interfaces can
be declared in public packages during system development. One group of developers can use the
public subprograms as another group develops the corresponding bodies. You can modify package
bodies, including subprogram bodies, without affecting existing users of that package’s declarations.
You can also define subprograms locally inside an entity, block, or process.

FPGA Express implements procedure and function calls with combinational logic, unless you use the
map_to_entity compiler directive (see ‘‘Mapping Subprograms to Components),- later in this chap-
ter). FPGA Express does not allow inference of sequential devices, such as latches or flip-flops, in
subprograms.
 Sequential Statements • 6–19

Subprograms
Example 6-17 shows a package containing some procedure and function declarations and bodies.
The example itself is not synthesizable; it just creates a template. Designs that instantiate procedure
P, however, compile normally.

Example 6-17: Subprogram Declarations and Bodies

package EXAMPLE is

 procedure P (A: in INTEGER; B: inout INTEGER);

 -- Declaration of procedure P

 function INVERT (A: BIT) return BIT;

 -- Declaration of function INVERT

end EXAMPLE;

package body EXAMPLE is

 procedure P (A: in INTEGER; B: inout INTEGER) is

 -- Body of procedure P

 begin

 B := A + B;

 end;

 function INVERT (A: BIT) return BIT is

 -- Body of function INVERT

 begin

 return (not A);

 end;

end EXAMPLE;

For more information about subprograms, see ‘‘Subprograms- in Chapter 3.

Subprogram Calls
Subprograms can have zero or more parameters. A subprogram declaration defines each parameter’s
name, mode, and type. These are a subprogram’s formal parameters. When the subprogram is called,
each formal parameter is given a value, termed the actual parameter. Each actual parameter’s value
(of an appropriate type) can come from an expression, a variable, or a signal.

The mode of a parameter specifies whether the actual parameter can be read from (mode in), written
to (mode out), or both read from and written to (mode inout). Actual parameters that use modes out
and inout must be variables or signals, including indexed names (A(1)) and slices (A(1 to 3)), but
cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:
6–20 • VeriBest FPGA Synthesis VHDL Reference Manual

Subprograms
procedure
Can have multiple parameters that use modes in, inout, and out. Does not itself return a value.

Procedures are used when you want to update some parameters (modes out and inout), or when
you do not need a return value. An example might be a procedure with one inout bit vector parame-
ter that inverted each bit in place.

function
Can have multiple parameters, but only parameters that use mode in. Returns its own function value.
Part of a function definition specifies its return value type (also called the function type).

Functions are used when you do not need to update the parameters and you want a single return
value. For example, the arithmetic function ABS returns the absolute value of its parameter.

Procedure Calls
A procedure call executes the named procedure with the given parameters. The syntax is

procedure_name [([name =>] expression

 { , [name =>] expression })] ;

Each expression is called an actual parameter; expression is often just an identifier. If a name is
present (positional notation), it is a formal parameter name associated with the actual parameter’s
expression.

Formal parameters are matched to actual parameters by positional or named notation. Named and
positional notation can be mixed, but positional parameters must appear before named parameters.

Conceptually, a procedure call is performed in three steps. First, the values of the in and inout
actual parameters are assigned to their associated formal parameters. Second, the procedure is exe-
cuted. Third, the values of the inout and out formal parameters are assigned to the actual parame-
ters.

In the synthesized hardware, the procedure’s actual inputs and outputs are wired to the procedure’s
internal logic.

Example 6-18 shows a local procedure named SWAP that compares two elements of an array and
exchanges these elements if they are out of order. SWAP is repeatedly called to sort an array of three
numbers.
 Sequential Statements • 6–21

Subprograms
Example 6-18: Procedure Call to Sort an Array

package DATA_TYPES is

 type DATA_ELEMENT is range 0 to 3;

 type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;

end DATA_TYPES;

use WORK.DATA_TYPES.ALL;

entity SORT is

 port(IN_ARRAY: in DATA_ARRAY;

 OUT_ARRAY: out DATA_ARRAY);

end SORT;

architecture EXAMPLE of SORT is

begin

 process(IN_ARRAY)

 procedure SWAP(DATA: inout DATA_ARRAY;

 LOW, HIGH: in INTEGER) is

 variable TEMP: DATA_ELEMENT;

 begin

 if(DATA(LOW) > DATA(HIGH)) then -- Check data

 TEMP := DATA(LOW);

 DATA(LOW) := DATA(HIGH); -- Swap data

 DATA(HIGH) := TEMP;

 end if;

 end SWAP;

 variable MY_ARRAY: DATA_ARRAY;

 begin

 MY_ARRAY := IN_ARRAY; -- Read input to variable

 -- Pair-wise sort

 SWAP(MY_ARRAY, 1, 2); -- Swap first and second

 SWAP(MY_ARRAY, 2, 3); -- Swap second and third

 SWAP(MY_ARRAY, 1, 2); -- Swap first and second again

 OUT_ARRAY <= MY_ARRAY; -- Write result to output

 end process;

end EXAMPLE;
6–22 • VeriBest FPGA Synthesis VHDL Reference Manual

Subprograms
Function Calls
A function call is similar to a procedure call, except that a function call is a type of expression because
it returns a value.

Example 6-19 shows a simple function definition and two calls to that function.

Example 6-19: Function Call

function INVERT (A : BIT) return BIT is

 begin

 return (not A);

 end;

...

process

 variable V1, V2, V3: BIT;

begin

 V1 := ’1’;

 V2 := INVERT(V1) xor 1;

 V3 := INVERT(’0’);

end process;

For more information, see ‘‘Function Calls,- under ‘‘Operands- in Chapter 5.
 Sequential Statements • 6–23

return Statement
return Statement
The return statement terminates a subprogram. This statement is required in function definitions and
is optional in procedure definitions. The syntax is

return expression ; -- Functions

return ; -- Procedures

The required expression provides the function’s return value. Every function must have at least one
return statement. The expression’s type must match the declared function type. A function can have
more than one return statement. Only one return statement is reached by a given function call.

A procedure can have one or more return statements, but no expression is allowed. A return
statement, if present, is the last statement executed in a procedure.

In Example 6-20, the function OPERATE returns either the AND or the OR of its parameters A and B.
The return depends on the value of its parameter OPERATION.

Example 6-20: Use of Multiple return Statements

function OPERATE(A, B, OPERATION: BIT) return BIT is

begin

 if (OPERATION = ’1’) then

 return (A and B);

 else

 return (A or B);

 end if;

end OPERATE;

Mapping Subprograms to Components (Entities)
In VHDL, entities cannot be invoked from within behavioral code. Procedures and functions cannot
exist as entities (components), but must be represented by gates. You can overcome this limitation
with the compiler directive map_to_entity, which causes FPGA Express to implement a function or
procedure as a component instantiation. Procedures and functions that use map_to_entity are
represented as components in designs in which they are called.

You can also use the FPGA Express Implementation Window to create a new level of hierarchy from a
VHDL subprogram, as described in the FPGA Express User’s Guide.
6–24 • VeriBest FPGA Synthesis VHDL Reference Manual

return Statement
When you add a map_to_entity directive to a subprogram definition, FPGA Express assumes the
existence of an entity with the identified name and the same interface. FPGA Express does not check
this assumption until it links the parent design. The matching entity must have the same input and out-
put port names. If the subprogram is a function, you must also provide a return_port_name direc-
tive, where the matching entity has an output port of the same name.

These two directives are called component implication directives:

-- pragma map_to_entity entity_name

-- pragma return_port_name port_name

Insert these directives after the function or procedure definition. For example:

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

 TWO_BIT is

 -- pragma map_to_entity MUX_ENTITY

 -- pragma return_port_name Z

...

When FPGA Express encounters the map_to_entity directive, it parses but ignores the contents of
the subprogram definition. Use -- pragma translate_off and -- pragma translate_on to
hide simulation-specific constructs in a map_to_entity subprogram.

Note: The matching entity (entity_name) does not need to be written in VHDL. It can be in any for-
mat that FPGA Express supports.

Caution The behavioral description of the subprogram is not checked against the functionality of the
entity overloading it. Presynthesis and post-synthesis simulation results might not match if
differences in functionality exist between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication directives.
 Sequential Statements • 6–25

return Statement
Example 6-21: Using Component Implication Directives on a Function

package MY_PACK is

 subtype TWO_BIT is BIT_VECTOR(1 to 2);

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

 TWO_BIT;

end;

package body MY_PACK is

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

 TWO_BIT is

 -- pragma map_to_entity MUX_ENTITY

 -- pragma return_port_name Z

 -- contents of this function are ignored but should

 -- match the functionality of the module MUX_ENTITY

 -- so pre- and post simulation will match

 begin

 if(C = ’1’) then

 return(A);

 else

 return(B);

 end if;

 end;

end;

use WORK.MY_PACK.ALL;

entity TEST is

 port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_BIT);

end;

architecture ARCH of TEST is

begin

 process

 begin

 TEST_OUT <= MUX_FUNC(not A, A, C);

 -- Component implication call

 end process;

end;

use WORK.MY_PACK.ALL;
6–26 • VeriBest FPGA Synthesis VHDL Reference Manual

return Statement
-- the following entity ’overloads’ the function

-- MUX_FUNC above

entity MUX_ENTITY is

 port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);

end;

architecture ARCH of MUX_ENTITY is

begin

 process

 begin

 case C is

 when ’1’ => Z <= A;

 when ’0’ => Z <= B;

 end case;

 end process;

end;

Example 6-22 shows the same design as Example 6-21, but without the creation of an entity for the
function. The compiler directives have been removed.
 Sequential Statements • 6–27

return Statement
Example 6-22: Using Gates to Implement a Function

package MY_PACK is

 subtype TWO_BIT is BIT_VECTOR(1 to 2);

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)

 return TWO_BIT;

end;

package body MY_PACK is

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
 return TWO_BIT is

 begin

 if(C = ’1’) then

 return(A);

 else

 return(B);

 end if;

 end;

end;

use WORK.MY_PACK.ALL;

entity TEST is

 port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);

end;

architecture ARCH of TEST is

begin

 process

 begin

 Z <= MUX_FUNC(not A, A, C);

 end process;

end;
6–28 • VeriBest FPGA Synthesis VHDL Reference Manual

wait Statement
wait Statement
A wait statement suspends a process until a positive-going edge or negative-going edge is detected
on a signal. The syntax is

wait until signal = value ;

wait until signal’event and signal = value ;

wait until not signal’stable
 and signal = value ;

signal is the name of a single-bit signal—a signal of an enumerated type encoded with one bit (see
‘‘Enumeration Encoding- in Chapter 4). value must be one of the literals of the enumerated type. If
the signal type is BIT, the awaited value is either ’1’ for a positive-going edge or ’0’ for a nega-
tive-going edge.

Note: The three forms of the wait statement, a subset of IEEE VHDL, are specific to the current
implementation of FPGA Express.

Inferring Synchronous Logic
A wait statement implies synchronous logic, where signal is usually a clock signal. The next sec-
tion describes how FPGA Express infers and implements this logic.

Example 6-23 shows three equivalent wait statements (all positive-edge triggered).

Example 6-23: Equivalent wait Statements

wait until CLK = ’1’;

wait until CLK’event and CLK = ’1’;

wait until not CLK’stable and CLK = ’1’;

When a circuit is synthesized, the hardware in the three forms of wait statements does not differ.

Example 6-24 shows a wait statement used to suspend a process until the next positive edge (a
0-to-1 transition) on signal CLK.

Example 6-24: wait for a Positive Edge

signal CLK: BIT;

...

process

begin

 wait until CLK’event and CLK = ’1’;

 -- Wait for positive transition (edge)

 ...

end process;
 Sequential Statements • 6–29

wait Statement
Note: IEEE VHDL specifies that a process containing a wait statement must not have a sensitivity
list. See ‘‘Process Statements- in Chapter 7 for more information.

Example 6-25 shows how a wait statement is used to describe a circuit where a value is incremented
on each positive clock edge.

Example 6-25: Loop Using a wait Statement

process

begin

y <= 0;

wait until (clk’event and clk = ’1’);

while (y < MAX) loop

wait until (clk’event and clk = ’1’);

x <= y ;

y <= y + 1;

end loop;

end process;

Example 6-26 shows how multiple wait statements describe a multicycle circuit. The circuit provides
an average value of its input A over four clock cycles.

Example 6-26: Using Multiple wait Statements

process

begin

 wait until CLK’event and CLK = ’1’;

 AVE <= A;

 wait until CLK’event and CLK = ’1’;

 AVE <= AVE + A;

 wait until CLK’event and CLK = ’1’;

 AVE <= AVE + A;

 wait until CLK’event and CLK = ’1’;

 AVE <= (AVE + A)/4;

end process;

Example 6-27 shows two equivalent descriptions. The first description uses implicit state logic, and the
second uses explicit state logic.
6–30 • VeriBest FPGA Synthesis VHDL Reference Manual

wait Statement
Example 6-27: wait Statements and State Logic

-- Implicit State Logic

process

begin

 wait until CLOCK’event and CLOCK = ’1’;

 if (CONDITION) then

 X <= A;

 else

 wait until CLOCK’event and CLOCK = ’1’;

 end if;

end process;

-- Explicit State Logic

...

type STATE_TYPE is (SO, S1);

variable STATE : STATE_TYPE;

...

process

begin

 wait until CLOCK’event and CLOCK = ’1’;

 case STATE is

 when S0 =>

 if (CONDITION) then

 X <= A;

 STATE := S0; -- Set STATE here to avoid an

 -- extra feedback loop in the

 -- synthesized logic.

 else

 STATE := S1;

 end if;

 when S1 =>

 STATE := S0;

 end case;

end process;

Note: wait statements can be used anywhere in a process except in for..loop statements or sub-
programs. However, if any path through the logic contains one or more wait statements, all
paths must contain at least one wait statement.

Example 6-28 shows how a circuit with synchronous reset can be described with wait statements in
an infinite loop. The reset signal must be checked immediately after each wait statement. The assign-
ment statements in Example 6-28 (X <= A; and Y <= B;) simply represent the sequential state-
ments used to implement your circuit.
 Sequential Statements • 6–31

wait Statement
Example 6-28: Synchronous Reset Using wait Statements

process

begin

 RESET_LOOP: loop

 wait until CLOCK’event and CLOCK = ’1’;

 next RESET_LOOP when (RESET = ’1’);

 X <= A;

 wait until CLOCK’event and CLOCK = ’1’;

 next RESET_LOOP when (RESET = ’1’);

 Y <= B;

 end loop RESET_LOOP;

end process;

Example 6-29 shows two invalid uses of wait statements. These limitations are specific to FPGA
Express.

Example 6-29: Invalid Uses of the wait Statement

...

type COLOR is (RED, GREEN, BLUE);

attribute ENUM_ENCODING : STRING;

attribute ENUM_ENCODING of COLOR : type is -100 010 001";

signal CLK : COLOR;

...

process

 begin

 wait until CLK’event and CLK = RED;

 -- Illegal: clock type is not encoded with one bit

 ...

 end;

...

process

 begin

 if (X = Y) then

 wait until CLK’event and CLK = ’1’;

 ...

 end if;

 -- Illegal: not all paths contain wait statements

 ...

 end;
6–32 • VeriBest FPGA Synthesis VHDL Reference Manual

wait Statement
Combinational vs. Sequential Processes
If a process has no wait statements, the process is synthesized with combinational logic. Computa-
tions performed by the process react immediately to changes in input signals.

If a process uses one or more wait statements, it is synthesized with sequential logic. The process
computations are performed only once for each specified clock edge (positive or negative edge). The
results of these computations are saved until the next edge by storing them in flip-flops.

The following values are stored in flip-flops:

• Signals driven by the process; see ‘‘Signal Assignment Statement- at the beginning of this chapter.

• State vector values, where the state vector can be implicit or explicit (as in Example 6-27).

• Variables that may be read before they are set.

Note: Like the wait statement, some uses of the if statement can also imply synchronous logic,
causing FPGA Express to infer registers or latches. These methods are described in Chapter 8,
under ‘‘Register and Three-State Inference.-

Example 6-30 uses a wait statement to store values across clock cycles. The example code com-
pares the parity of a data value with a stored value. The stored value (called CORRECT_PARITY) is set
from the NEW_CORRECT_PARITY signal if the SET_PARITY signal is TRUE.

Example 6-30: Parity Tester Using the wait Statement

signal CLOCK: BIT;

signal SET_PARITY, PARITY_OK: Boolean;

signal NEW_CORRECT_PARITY: BIT;

signal DATA: BIT_VECTOR(0 to 3);

...

process

 variable CORRECT_PARITY, TEMP: BIT;

begin

 wait until CLOCK’event and CLOCK = ’1’;

 -- Set new correct parity value if requested

 if (SET_PARITY) then

 CORRECT_PARITY := NEW_CORRECT_PARITY;

 end if;

 -- Compute parity of DATA

 TEMP := ’0’;

 for I in DATA’range loop

 TEMP := TEMP xor DATA(I);

 end loop;

 -- Compare computed parity with the correct value

 PARITY_OK <= (TEMP = CORRECT_PARITY);

end process;
 Sequential Statements • 6–33

null Statement
Note that two flip-flops are in the synthesized schematic for Example 6-30. The first (input) flip-flop
holds the value of CORRECT_PARITY. A flip-flop is needed here because CORRECT_PARITY is read
(when it is compared to TEMP) before it is set (if SET_PARITY is FALSE). The second (output) flip-flop
stores the value of PARITY_OK between clock cycles. The variable TEMP is not given a flip-flop
because it is always set before it is read.

null Statement
The null statement explicitly states that no action is required. The null statement is often used in
case statements because all choices must be covered, even if some of the choices are ignored. The
syntax is

null;

Example 6-31 shows a typical usage of the null statement.

Example 6-31: null Statement

signal CONTROL: INTEGER range 0 to 7;

signal A, Z: BIT;

...

Z <= A;

case CONTROL is

 when 0 | 7 => -- If 0 or 7, then invert A

 Z <= not A;

 when others =>

 null; -- If not 0 or 7, then do nothing

end case;
6–34 • VeriBest FPGA Synthesis VHDL Reference Manual

null Statement
 Sequential Statements • 6–35

null Statement
6–36 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 7
Concurrent Statements
A VHDL architecture contains a set of concurrent statements. Each concurrent statement defines one
of the interconnected blocks or processes that describe the overall behavior or structure of a design.
Concurrent statements in a design execute continuously, unlike sequential statements (see
Chapter 6), which execute one after another.

The two main concurrent statements are

process statement
A process statement defines a process. Processes are composed of sequential statements (see
Chapter 6), but processes are themselves concurrent statements. All processes in a design execute
concurrently. However, at any given time only one sequential statement is interpreted within each pro-
cess. A process communicates with the rest of a design by reading or writing values to and from sig-
nals or ports declared outside the process.

block statement
A block statement defines a block. Blocks are named collections of concurrent statements, optionally
using locally defined types, signals, subprograms, and components.

VHDL provides two concurrent versions of sequential statements: concurrent procedure calls and con-
current signal assignments.

The component instantiation statement references a previously defined hardware component.

Finally, the generate statement creates multiple copies of any concurrent statement.

The concurrent statements consist of

• process Statements

• block Statement

• Concurrent Procedure Calls

• Concurrent Signal Assignments

• Component Instantiations

• generate Statements
 Concurrent Statements • 7–1

process Statements
process Statements
A process statement contains an ordered set of sequential statements. The syntax is

[label:] process [(sensitivity_list)]

 { process_declarative_item }

begin

 { sequential_statement }

end process [label] ;

An optional label names the process. The sensitivity_list is a list of all signals (including
ports) read by the process, in the following format:

signal_name {, signal_name}

The hardware synthesized by FPGA Express is sensitive to all signals read by the process. To guaran-
tee that a VHDL simulator sees the same results as the synthesized hardware, a process sensitivity list
must contain all signals whose changes require resimulation of that process. FPGA Express checks
sensitivity lists for completeness and issues warning messages for any signals that are read inside a
process but are not in the sensitivity list. An error is issued if a clock signal is read as data in a process.

Note: IEEE VHDL does not allow a sensitivity list if the process includes a wait statement.

A process_declarative_item declares subprograms, types, constants, and variables local to the
process. These items can be any of the following items:

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Variable declaration

Each sequential_statement is described in Chapter 6.

Conceptually, the behavior of a process is defined by the sequence of its statements. After the last
statement in a process is executed, execution continues with the first statement. The only exception is
during simulation: if a process has a sensitivity list, the process is suspended (after its last statement)
until a change occurs in one of the signals in the sensitivity list.

If a process has one or more wait statements (and therefore no sensitivity list), the process is sus-
pended at the first wait statement whose wait condition is FALSE.

The hardware synthesized for a process is either combinational (not clocked) or sequential (clocked).
If a process includes a wait or if signal’event statement, its hardware contains sequential com-
ponents. The wait and if statements are described in Chapter 6.
7–2 • VeriBest FPGA Synthesis VHDL Reference Manual

process Statements
Note: The process statements provide a natural means for describing conceptually sequential algo-
rithms. If the values computed in a process are inherently parallel, consider using concurrent
signal assignment statements (see ‘‘Concurrent Signal Assignments," later in this chapter).

Combinational Process Example
Example 7-1 shows a process that implements a simple modulo-10 counter. The example process is
sensitive to (reads) two signals: CLEAR and IN_COUNT. It drives one signal, OUT_COUNT. If CLEAR is
’1’ or IN_COUNT is 9, then OUT_COUNT is set to zero. Otherwise, OUT_COUNT is set to one more than
IN_COUNT.

Example 7-1: Modulo-10 Counter Process

entity COUNTER is

 port (CLEAR: in BIT;

 IN_COUNT: in INTEGER range 0 to 9;

 OUT_COUNT: out INTEGER range 0 to 9);

end COUNTER;

architecture EXAMPLE of COUNTER is

begin

 process(IN_COUNT, CLEAR)

 begin

 if (CLEAR = ’1’ or IN_COUNT = 9) then

 OUT_COUNT <= 0;

 else

 OUT_COUNT <= IN_COUNT + 1;

 end if;

 end process;

end EXAMPLE;
 Concurrent Statements • 7–3

process Statements
Sequential Process Example
Because the process in Example 7-1 contains no wait statements, it is synthesized with combina-
tional logic. An alternate implementation of the counter is to retain the count value internally in the pro-
cess with a wait statement.

Example 7-2 shows an implementation of a counter as a sequential (clocked) process. On each 0-to-1
CLOCK transition, if CLEAR is ’1’ or COUNT is 9, COUNT is set to zero; otherwise, COUNT is incre-
mented by 1.

Example 7-2: Modulo-10 Counter Process with wait Statement

entity COUNTER is

 port (CLEAR: in BIT;

 CLOCK: in BIT;

 COUNT: buffer INTEGER range 0 to 9);

end COUNTER;

architecture EXAMPLE of COUNTER is

begin

 process

 begin

 wait until CLOCK’event and CLOCK = ’1’;

 if (CLEAR = ’1’ or COUNT >= 9) then

 COUNT <= 0;
7–4 • VeriBest FPGA Synthesis VHDL Reference Manual

process Statements
 else

 COUNT <= COUNT + 1;

 end if;

 end process;

end EXAMPLE;

In Example 7-2, the value of the variable COUNT is stored in four flip-flops. These flip-flops are gener-
ated because COUNT can be read before it is set, so its value must be maintained from the previous
clock cycle. See ‘‘wait Statement" in Chapter 6 for more information.

Driving Signals
If a process assigns a value to a signal, the process is a driver of that signal. If more than one process
or other concurrent statement drives a signal, that signal has multiple drivers.

Example 7-3 shows two three-state buffers driving the same signal (SIG). Chapter 8 shows how to
describe a three-state device in technology-independent VHDL, in the section on ‘‘Three-State Infer-
ence."

Example 7-3: Multiple Drivers of a Signal

A_OUT <= A when ENABLE_A else ’Z’;

B_OUT <= B when ENABLE_B else ’Z’;

process(A_OUT)

begin

 SIG <= A_OUT;

end process;

process(B_OUT)
 Concurrent Statements • 7–5

block Statement
begin

 SIG <= B_OUT;

end process;

Bus resolution functions assign the value for a multiply-driven signal. See ‘‘Resolution Functions,"
under ‘‘Subprograms" in Chapter 3, for more information.

block Statement
A block statement names a set of concurrent statements. Use blocks to organize concurrent state-
ments hierarchically.

The syntax is

label: block

 { block_declarative_item }

begin

 { concurrent_statement }

end block [label];

The required label names the block.

A block_declarative_item declares objects local to the block and can be any of the following
items:

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Signal declaration

• Component declaration

The order of each concurrent_statement in a block is not significant, because each statement is
always active.

Note: FPGA Express does not support guarded blocks.
7–6 • VeriBest FPGA Synthesis VHDL Reference Manual

Concurrent Procedure Calls
Objects declared in a block are visible to that block and to all blocks nested within. When a child block
(inside a parent block) declares an object with the same name as an object in the parent block, the
child’s declaration overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Example 7-4: Nested Blocks

B1: block

 signal S: BIT; -- Declaration of "S" in block B1

begin

 S <= A and B; -- "S" from B1

 B2: block

 signal S: BIT; -- Declaration of "S" in block B2

 begin

 S <= C and D; -- "S" from B2

 B3: block

 begin

 Z <= S; -- "S" from B2

 end block B3;

 end block B2;

 Y <= S; -- "S" from B1

end block B1;

Concurrent Procedure Calls
A concurrent procedure call is a procedure call used as a concurrent statement; it is used in an archi-
tecture or a block, rather than in a process. A concurrent procedure call is equivalent to a process con-
taining a single sequential procedure call. The syntax is the same as that of a sequential procedure
call:

procedure_name [([name =>] expression

 { , [name =>] expression })] ;
 Concurrent Statements • 7–7

Concurrent Procedure Calls
The equivalent process is sensitive to all in and inout parameters of the procedure. Example 7-5
shows a procedure declaration, then a concurrent procedure call and its equivalent process.

Example 7-5: Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A, B: in BIT;
 signal SUM: out BIT);

...

ADD(A, B, SUM); -- Concurrent procedure call

...

process(A, B) -- The equivalent process

begin

 ADD(A, B, SUM); -- Sequential procedure call

end process;

FPGA Express implements procedure and function calls with logic, unless you use the
map_to_entity compiler directive (see ‘‘Mapping Subprograms to Components (Entities)," in Chap-
ter 6).

A common use for concurrent procedure calls is to obtain many copies of a procedure. For example,
assume that a class of BIT_VECTOR signals must contain only one bit with value 1 and the rest of the
bits value 0. Suppose you have several signals of varying widths that you want monitored at the same
time. One approach is to write a procedure to detect the error in a BIT_VECTOR signal, then make a
concurrent call to that procedure for each signal.

Example 7-6 shows a procedure CHECK that determines whether a given bit vector contains exactly
one element with value ’1’ ; if this is not the case, CHECK sets its out parameter ERROR to TRUE.
7–8 • VeriBest FPGA Synthesis VHDL Reference Manual

Concurrent Signal Assignments
Example 7-6: Procedure Definition for Example 7-7

procedure CHECK(signal A: in BIT_VECTOR;
 signal ERROR: out Boolean) is

 variable FOUND_ONE: Boolean := FALSE;
 -- Set TRUE when a ’1’
 -- is seen
begin
 for I in A’range loop -- Loop across all bits
 -- in the vector
 if A(I) = ’1’ then -- Found a ’1’
 if FOUND_ONE then -- Have we already found one?
 ERROR <= TRUE; -- Found two ’1’s
 return; -- Terminate procedure
 end if;

 FOUND_ONE := TRUE; -- Note that we have
 end if; -- seen a ’1’
 end loop;

 ERROR <= not FOUND_ONE; -- Error will be TRUE
 -- if no ’1’ found
end;

Example 7-7 shows the CHECK procedure called concurrently for four different-sized bit vector signals.

Example 7-7: Concurrent Procedure Calls

BLK: block

 signal S1: BIT_VECTOR(0 to 0);

 signal S2: BIT_VECTOR(0 to 1);

 signal S3: BIT_VECTOR(0 to 2);

 signal S4: BIT_VECTOR(0 to 3);

 signal E1, E2, E3, E4: Boolean;

begin

 CHECK(S1, E1); -- Concurrent procedure call

 CHECK(S2, E2);

 CHECK(S3, E3);

 CHECK(S4, E4);

end block BLK;

Concurrent Signal Assignments
A concurrent signal assignment is equivalent to a process containing that sequential assignment.
Thus, each concurrent signal assignment defines a new driver for the assigned signal. The simplest
form of the concurrent signal assignment is

target <= expression;
 Concurrent Statements • 7–9

Concurrent Signal Assignments
target is a signal that receives the value of expression.

Example 7-8 shows the value of the expression A and B concurrently assigned to signal Z.

Example 7-8: Concurrent Signal Assignment

BLK: block

 signal A, B, Z: BIT;

begin

 Z <= A and B;

end block BLK;

The other two forms of concurrent signal assignment are conditional signal assignment and selected
signal assignment.

Conditional Signal Assignment
Another form of concurrent signal assignment is the conditional signal assignment. The syntax is

target <= { expression when condition else }

 expression;

target is a signal that receives the value of an expression. The expression used is the first one
whose Boolean condition is TRUE.

When a conditional signal assignment statement is executed, each condition is tested in order as
written. The first condition that evaluates TRUE has its expression assigned to target. If no
condition is TRUE, the final expression is assigned to the target. If two or more conditions
are TRUE, only the first one is effective, just like the first TRUE branch of an if statement.
7–10 • VeriBest FPGA Synthesis VHDL Reference Manual

Concurrent Signal Assignments
Example 7-9 shows a conditional signal assignment, where the target is the signal Z. The signal Z is
assigned from one of the signals A, B, or C. The signal depends on the value of the expressions
ASSIGN_A and ASSIGN_B. Note that the assignment of A takes precedence over that of B, and the
assignment of B takes precedence over that of C, because the first TRUE condition controls the assign-
ment.

Example 7-9: Conditional Signal Assignment

 Z <= A when ASSIGN_A = ’1’ else

 B when ASSIGN_B = ’1’ else

 C;

Example 7-10 shows a process equivalent to the conditional signal assignment in Example 7-9.

Example 7-10: Process Equivalent to Conditional Signal Assignment

process(A, ASSIGN_A, B, ASSIGN_B, C)

begin

 if ASSIGN_A = ’1’ then

 Z <= A;

 elsif ASSIGN_B = ’1’ then

 Z <= B;

 else

 Z <= C;

 end if;

end process;

Selected Signal Assignment
The final kind of concurrent signal assignment is the selected signal assignment. The syntax is

with choice_expression select

 target <= { expression when choices, }

 expression when choices;
 Concurrent Statements • 7–11

Concurrent Signal Assignments
target is a signal that receives the value of an expression. The expression selected is the first
one whose choices include the value of choice_expression. The syntax of choices is the same
as that of the case statement:

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range (such as 1 to 3). The
type of choice_expression determines the type of each choice. Each value in the range of the
choice_expression type must be covered by one choice.

The final choice can be others, which matches all remaining (unchosen) values in the range of the
choice_expression type. The others choice, if present, matches choice_expression only if
none of the other choices match.

The with..select statement evaluates choice_expression and compares that value to each
choice value. The when clause with the matching choice value has its expression assigned to
target.

The following restrictions are placed on choices:

• No two choices can overlap.

• If no others choice is present, all possible values of choice_expression must be covered by the
set of choices.

Example 7-11 shows target Z assigned from A, B, C, or D. The assignment depends on the current
value of CONTROL.

Example 7-11: Selected Signal Assignment

signal A, B, C, D, Z: BIT;

signal CONTROL: bit_vector(1 down to 0);

. . .

with CONTROL select

 Z <= A when "00",

 B when "01",

 C when "10",

 D when "11";

Example 7-12 shows the process equivalent to the selected signal assignment statement in Example
7-11.
7–12 • VeriBest FPGA Synthesis VHDL Reference Manual

Component Instantiations
Example 7-12: Process Equivalent to Selected Signal Assignment

process(CONTROL, A, B, C, D)

begin

 case CONTROL is

 when 0 =>

 Z <= A;

 when 1 =>

 Z <= B;

 when 2 =>

 Z <= C;

 when 3 =>

 Z <= D;

 end case;

end process;

Component Instantiations
A component instantiation references a previously defined hardware component, in the current design,
at the current level of hierarchy. You can use component instantiations to define a design hierarchy.
You can also use parts not defined in VHDL, such as components from an FPGA technology library,
parts defined in the Verilog hardware description language, or the generic technology library. Compo-
nent instantiation statements can be used to build netlists in VHDL.

A component instantiation statement indicates

• A name for this instance of the component.

• The name of a component to include in the current entity.

• The connection method for a component’s ports.

The syntax is

instance_name : component_name port map (

 [port_name =>] expression

 {, [port_name =>] expression });

instance_name names this instance of the component type component_name.

The port map connects each port of this instance of component_name to a signal-valued expres-
sion in the current entity. The value of expression can be a signal name, an indexed name, a slice
name, or an aggregate. If expression is the VHDL reserved word open, the corresponding port is
left unconnected.

You can map ports to signals by named or positional notation. You can include both named and posi-
tional connections in the port map, but you must place all positional connections before any named
connections.
 Concurrent Statements • 7–13

Component Instantiations
Note: For named association, the component port names must exactly match the declared compo-
nent’s port names. For positional association, the actual port expressions must be in the same
order as the declared component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate) followed by three equivalent
component instantiation statements.

Example 7-13: Component Declaration and Instantiations

component ND2

 port(A, B: in BIT; C: out BIT);

end component;

. . .

signal X, Y, Z: BIT;

. . .

U1: ND2 port map(X, Y, Z); -- positional

U2: ND2 port map(A => X, C => Z, B => Y);-- named

U3: ND2 port map(X, Y, C => Z); -- mixed

Example 7-14 shows the component instantiation statement defining a simple netlist. The three
instances, U1, U2, and U3, are instantiations of the 2-input NAND gate component declared in
Example 7-13.

Example 7-14: A Simple Netlist

signal TEMP_1, TEMP2: BIT;

. . .

 U1: ND2 port map(A, B, TEMP_1);

 U2: ND2 port map(C, D, TEMP_2);

 U3: ND2 port map(TEMP_1, TEMP_2, Z);
7–14 • VeriBest FPGA Synthesis VHDL Reference Manual

generate Statements
generate Statements
A generate statement creates zero or more copies of an enclosed set of concurrent statements. The
two kinds of generate statements are

for... generate
the number of copies is determined by a discrete range

if... generate

zero or one copy is made, conditionally

for .. generate Statement
The syntax is

label: for identifier in range generate

 { concurrent_statement }

end generate [label] ;

The required label names this statement (useful for nested generate statements).

The use of the identifier in this construct is similar to that of the for..loop statement:

• identifier is not declared elsewhere. It is automatically declared by the generate statement
itself and is entirely local to the loop. A loop identifier overrides any other identifier with the same
name but only within the loop.

• The value identifier can be read only inside its loop, but you cannot assign a value to a loop
identifier. In addition, the value of identifier cannot be assigned to any parameter whose mode
is out or inout.

FPGA Express requires that range must be a computable integer range, in either of these forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer.

Each concurrent_statement can be any of the statements described in this chapter, including
other generate statements.

A for..generate statement executes as follows:

1. A new local integer variable is declared with the name identifier.

2. identifier is assigned the first value of range, and each concurrent statement is executed
once.

3. identifier is assigned the next value in range, and each concurrent statement is executed
once more.

4. Step 3 is repeated until identifier is assigned the last value in range. Each concurrent state-
ment is then executed for the last time, and execution continues with the statement following
end generate. The loop identifier is deleted.
 Concurrent Statements • 7–15

generate Statements
Example 7-15 shows a code fragment that combines and interleaves two four-bit arrays A and B into
an eight-bit array C.

Example 7-15: for..generate Statement

signal A, B : bit_vector(3 downto 0);

signal C : bit_vector(7 downto 0);

signal X : bit;

. . .

GEN_LABEL: for I in 3 downto 0 generate

 C(2*I + 1) <= A(I) nor X;

 C(2*I) <= B(I) nor X;

end generate GEN_LABEL;

The most common usage of the generate statement is to create multiple copies of components, pro-
cesses, or blocks. Example 7-16 demonstrates this usage with components. Example 7-17 shows how
to generate multiple copies of processes.Example 7-16 shows VHDL array attribute ’range used with
the for..generate statement to instantiate a set of COMP components that connect corresponding
elements of bit vectors A and B.
7–16 • VeriBest FPGA Synthesis VHDL Reference Manual

generate Statements
Example 7-16: for..generate Statement Operating on an Entire Array

component COMP

 port (X : in bit;

 Y : out bit);

end component;

. . .

signal A, B: BIT_VECTOR(0 to 7);

. . .

GEN: for I in A’range generate

 U: COMP port map (X => A(I),

 Y => B(I));

end generate GEN;

Unconstrained arrays and array attributes are described under ‘‘Array Types" in Chapter 4. Array
attributes are shown in Example 4-9.

 if . . generate Statement
The syntax is

label: if expression generate

 { concurrent_statement }

end generate [label] ;

label identifies (names) this statement. expression is any expression that evaluates to a Boolean
value. A concurrent_statement is any of the statements described in this chapter, including other
generate statements.

Note: Unlike the if statement described in Chapter 6, the if..generate statement has no else or
elsif branches.
 Concurrent Statements • 7–17

generate Statements
You can use the if..generate statement to generate a regular structure that has different circuitry at
its ends. Use a for..generate statement to iterate over the desired width of a design, and a set of
if..generate statements to define the beginning, middle, and ending sets of connections.

Example 7-17 shows a technology-independent description of the following N-bit serial-to-parallel con-
verter. Data is clocked into an N-bit buffer from right to left. On each clock cycle, each bit in an N-bit
buffer is shifted up one bit, and the incoming DATA bit is moved into the low-order bit.

Example 7-17 Typical Use of if..generate Statements

entity CONVERTER is

 generic(N: INTEGER := 8);

 port(CLK, DATA: in BIT;

 CONVERT: buffer BIT_VECTOR(N-1 downto 0));

end CONVERTER;

architecture BEHAVIOR of CONVERTER is

 signal S : BIT_VECTOR(CONVERT’range);

begin

 G: for I in CONVERT’range generate

 G1: -- Shift (N-1) data bit into high-order bit

 if (I = CONVERT’left) generate

 process begin

 wait until (CLK’event and CLK = ’1’);

 CONVERT(I) <= S(I-1);

 end process;

 end generate G1;

 G2: -- Shift middle bits up

 if (I > CONVERT’right and

 I < CONVERT’left) generate

 S(I) <= S(I-1) and CONVERT(I);

 process begin

 wait until (CLK’event and CLK = ’1’);

 CONVERT(I) <= S(I-1);

 end process;

 end generate G2;

 G3: -- Move DATA into low-order bit

 if (I = CONVERT’right) generate

 process begin

 wait until (CLK’event and CLK = ’1’);
7–18 • VeriBest FPGA Synthesis VHDL Reference Manual

generate Statements
 CONVERT(I) <= DATA;

 end process;

 S(I) <= CONVERT(I);

 end generate G3;

 end generate G;

end BEHAVIOR;

Example 7-17: (Continued) Typical Use of if..generate Statements
 Concurrent Statements • 7–19

generate Statements
7–20 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 8
Register and Three-State Inference
You can generally use several different, but logically equivalent, VHDL descriptions to describe a cir-
cuit.

To write VHDL descriptions to produce efficient synthesized circuits, consider the following topics:

• Register Inference

• Three-State Inference

You can use VHDL to make your design more efficient in terms of the synthesized circuit’s area and
speed, as follows:

• A design that needs some, but not all, of its variables or signals stored during operation can be writ-
ten to minimize the number of latches or flip-flops required.

• A design that is described more easily with several levels of hierarchy can be synthesized more effi-
ciently if part of the design hierarchy is collapsed during synthesis.

Register Inference
FPGA Express provides register inferencing using the wait and if statements.

A register is a simple, one-bit memory device, either a flip-flop or a latch. A flip-flop is an edge-trig-
gered memory device. A latch is a level-sensitive memory device.

Use the wait statement to imply flip-flops in a synthesized circuit. FPGA Express creates flip-flops for
all signals, and some variables assigned values in a process with a wait statement.

The if statement can be used to imply registers (flip-flops or latches) for signals and variables in the
branches of the if statement.

To use register inferences, describe latches and flip-flops, and learn efficient use of registers, familiar-
ize yourself with

• Using register inference

• Describing latches

• Describing flip-flops

• Efficient use of registers
 Register and Three-State Inference • 8–1

Register Inference
Using Register Inference
Using register inference involves describing clock signals and using wait and if statements for regis-
ter inferencing. Recommended models for different types of inferred registers and current Synopsys
restrictions must also be considered.

Describing Clocked Signals
FPGA Express can infer asynchronous memory elements from VHDL descriptions written in a natural
style.

Use the wait and if statements to test for the rising or falling edge of a signal. The most common
usages are

process

begin

 wait until (edge);

 ...

end process;

...

process (sensitivity_list)

begin

 if (edge)

 ...

 end if;

end process;

Another form is

process (sensitivity_list)

begin

 if (...) then

 ...

 elsif (...)

 ...

 elsif (edge) then

 ...

 end if;

end process;

edge refers to an expression that tests for the positive or negative edge of a signal. The syntax of an
edge expression is
8–2 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
SIGNAL’event and SIGNAL = ’1’ -- rising edge

NOT SIGNAL’stable and SIGNAL = ’1’ -- rising edge

SIGNAL’event and SIGNAL = ’0’ -- falling edge

NOT SIGNAL’stable and SIGNAL = ’0’ -- falling edge

In a wait statement, edge can also be

signal = ’1’ -- rising edge

signal = ’0’ -- falling edge

An edge expression must be the only condition of an if or an elsif statement. You can have only
one edge expression in an if statement, and the if statement must not have an else clause. An
edge expression cannot be part of another logical expression nor used as an argument.

if (edge and RST = ’1’)

 -- Illegal usage; edge must be only condition

Any_function(edge);

 -- Illegal usage; edge cannot be an argument

if X > 5 then

 sequential_statement;

elsif edge then

 sequential_statement;

else

 sequential_statement;

end if;

 -- Illegal usage; do not use edge as an intermediate expression.

These lines illustrate three incorrect uses of the edge expression. In the first group, the edge expres-
sion is part of a larger Boolean expression. In the second group, the edge expression is used as an
argument. In the third group, the edge expression is used as an intermediate condition.

wait vs if Statements
Sometimes you can use the wait and if statements interchangeably. The if statement is usually
preferred, because it provides greater control over the inferred register’s capabilities, as described in
the next section.

IEEE VHDL requires that a process with a wait statement must not have a sensitivity list.
 Register and Three-State Inference • 8–3

Register Inference
An if edge statement can appear anywhere in a process. The sensitivity list of the process must con-
tain all signals read in the process, including the edge signal. In general, the following guidelines
apply:

• Synchronous processes (processes that compute values only on clock edges) must be sensitive to
the clock signal.

• Asynchronous processes (processes that compute values on clock edges and when asynchronous
conditions are TRUE) must be sensitive to the clock signal (if any), and to inputs that affect asynchro-
nous behavior.

Recommended Use of Register Inference Capabilities
The register inference capability can support styles of description other than those described here.
However, for best results:

• Restrict each process to a single type of memory-element inferencing: latch, latch with asynchro-
nous set or reset, flip-flop, flip-flop with asynchronous reset, or flip-flop with synchronous reset.

• Use the following templates.

LATCH: process(sensitivity_list)

 begin

 if LATCH_ENABLE then
 ...

 end if;

 end process;

LATCH_ASYNC_SET:

 ...

attribute async_set_reset of SET : signal is "true";

 ...

 process(sensitivity_list)

 begin

 if SET then

 Q <= ’1’;

 elsif LATCH_ENABLE then
 ...

 end if;

 end process;

FF: process(CLK)

 begin

 if edge then
 ...

 end if;

 end process;
8–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
FF_ASYNC_RESET:

 process(RESET, CLK)

 begin

 if RESET then

 Q <= ’0’;

 elsif edge then

 Q <= ...;

 end if;

 end process;

FF_SYNC_RESET:

 process(RESET, CLK)

 begin

 if edge then
 if RESET then

 Q <= ’0’;

 else

 Q <= ...;

 end if;

 end if;

 end process;

Examples of these templates are provided in ‘‘Describing Latches" and ‘‘Describing Flip-Flops," later in
this chapter.

Restrictions on Register Capabilities
Do not use more than one if edge expression in a process.

 process(CLK_A, CLK_B)

 begin

 if(CLK_A’event and CLK_A = ’1’) then

 A <= B;

 end if;

 if(CLK_B’event and CLK_B = ’1’) then -- Illegal

 C <= B;

 end if;

 end process;
 Register and Three-State Inference • 8–5

Register Inference
Do not assign a value to a variable or signal on a FALSE branch of an if edge statement. This
assignment is equivalent to checking for the absence of a clock edge, which has no hardware counter-
part.

 process(CLK)

 begin

 if(CLK’event and CLK = ’1’) then

 SIG <= B;

 else

 SIG <= C; -- Illegal

 end if;

 end process;

If a variable is assigned a value inside an edge construct, do not read that variable later in the same
process.

process(CLK)

 variable EDGE_VAR, ANY_VAR: BIT;

begin

 if (CLK’event and CLK = ’1’) then

 EDGE_SIGNAL <= X;

 EDGE_VAR := Y;

 ANY_VAR := EDGE_VAR; -- Legal

 end if;

 ANY_VAR := EDGE_VAR; -- Illegal

end process;

Do not use an edge expression as an operand.

if not(CLK’event and CLK = ’1’) then -- Illegal

Delays in Registers
If you use delay specifications with values that may be registered, the simulation to behave differently
from the logic synthesized by FPGA Express. For example, the description in Example 8-1 contains
delay information that causes FPGA Express to synthesize a circuit that behaves unexpectedly.
8–6 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-1: Delays in Registers

component flip_flop (

 D, clock: in BIT;

 Q: out BIT;);

end component;

process (A, C, D, clock);

 signal B: BIT;

begin

B <= A after 100ns;

F1: flip_flop port map (A, C, clock),

F2: flip_flop port map (B, D, clock);

end process;

In Example 8-1, B changes 100 nanoseconds after A changes. If the clock period is fewer than 100
nanoseconds, output D is one or more clock cycles behind output C when the circuit is simulated.
However, because FPGA Express ignores the delay information, A and B change values at the
same time, and so do C and D. This behavior is not the same as in the simulated circuit.

When you use delay information in your designs, make sure the delays do not affect registered values.
In general, you can safely include delay information in your description if it does not change the value
that gets clocked into a flip-flop.

Describing Latches
FPGA Express infers latches from incompletely specified conditional expressions. In Example 8-2,
the if statement infers a latch because there is no else clause:

Example 8-2: Latch Inference

process(GATE, DATA)

begin

 if (GATE = ’1’) then

 Q <= DATA;

 end if;

end process;

Figure 8-1: Latch Inference

The inferred latch uses CLK as its clock and DATA as its data input, as shown in Example 8-2.
 Register and Three-State Inference • 8–7

Register Inference
Automatic Latch Inferencing
A signal or variable that is not driven under all conditions becomes a latched value. As shown in Exam-
ple 8-3, TEMP becomes a latched value because it is assigned only when PHI is 1.

Example 8-3: Automatically Inferred Latch

if(PHI = ’1’) then

 TEMP <= A;

end if;

Figure 8-2: Automatically Inferred Latch

To avoid inferred latches, assign a value to the signal under all conditions, as shown in Example 8-4.

Example 8-4: Fully Specified Signal: No Latch Inference

if (PHI = ’1’) then

 TEMP <= A;

else

 TEMP <= ’0’;

end if;
8–8 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Restrictions on Latch Inference Capabilities
You cannot read a conditionally assigned variable after the if statement in which it is assigned. A con-
ditionally assigned variable is assigned a new value under some, but not all, conditions.

Therefore, a variable must always have a value before it is read.

signal X, Y: BIT;

. . .

process

 variable VALUE: BIT;

begin

 if (condition) then

 VALUE := X;

 end if;

 Y <= VALUE; -- Illegal

end;

In simulation, latch inference occurs because signals and variables can hold state over time. A signal
or variable holds its value until that value is reassigned. FPGA Express inserts a latch to duplicate this
holding of state in hardware.

Variables declared locally within a subprogram do not hold their value over time. Every time a subpro-
gram is used, its variables are reinitialized. Therefore, FPGA Express does not infer latches for vari-
ables declared in subprograms. In Example 8-5, no latches are inferred.

Example 8-5: Function without Inferred Latch

function MY_FUNC(DATA, GATE : BIT) return BIT is

 variable STATE: BIT;

begin

 if GATE then

 STATE := DATA;

 end if;

 return STATE;

end;

. . .

Q <= MY_FUNC(DATA, GATE);

Figure 8-3: Function without Inferred Latch
 Register and Three-State Inference • 8–9

Register Inference
Example—Design with Two-Phase Clocks
By using the latch inference capability, you can describe network structures, such as two-phase sys-
tems in a technology-independent manner. Example 8-6 shows a simple two-phase system with
clocks PHI_1 and PHI_2.

Example 8-6: Two-Phase Clocks

entity LATCH_VHDL is

 port(PHI_1, PHI_2, A : in BIT;

 t: out BIT);

end LATCH_VHDL;

architecture EXAMPLE of LATCH_VHDL is

 signal TEMP, LOOP_BACK: BIT;

begin

 process(PHI_1, A, LOOP_BACK)

 begin

 if(PHI_1 = ’1’) then

 TEMP <= A and LOOP_BACK;

 end if;

 end process;

 process(PHI_2, TEMP)

 begin

 if(PHI_2 = ’1’) then

 LOOP_BACK <= not TEMP;

 end if;

 end process;

 t <= LOOP_BACK;

end EXAMPLE;

Figure 8-4: Two-Phase Clocks
8–10 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
FPGA Express does not automatically infer dual-phase latches (devices with master and slave clocks).
To use these devices, you must instantiate them as components, as described in Chapter 3.

Describing Flip-Flops
Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7: Inferred Flip-Flop

process(CLK, DATA)

begin

 if (CLK’event and CLK = ’1’) then

 Q <= DATA;

 end if;

end process;

Figure 8-5: Inferred Flip-Flop

Flip-Flop with Asynchronous Reset
Example 8-8 shows how to specify a flip-flop with an asynchronous reset.

Example 8-8: Inferred Flip-Flop with Asynchronous Reset

process(RESET_LOW, CLK, SYNC_DATA)

begin

 if RESET_LOW = ’0’ then

 Q <= ’0’;

 elsif (CLK’event and CLK = ’1’) then

 Q <= SYNC_DATA;

 end if;

end process;
 Register and Three-State Inference • 8–11

Register Inference
Note how the flip-flop in Example 8-8 is wired.

■ The D input of the flip-flop is wired to SYNC_DATA.

■ If the reset condition is computable (see "Computable Operands" in Chapter 5), either the SET or
CLEAR pin of the flip-flop is wired to the RESET (or RESET_LOW) signal, as shown in
Example 8–8.

■ If the reset condition (ANY_SIGNAL in Example 8–9) is not computable, SET is wired to
(ANY_SIGNAL AND ASYNC_DATA) and CLEAR is wired to (ANY_SIGNAL AND
NOT(ASYNC_DATA)), as shown in Example 8–9.

Example 8-9 shows an inferred flip-flop with an asynchronous reset, where the reset condition is not
computable.

Example 8-9: Inferred Flip-Flop with Asynchronous Set or Clear

process (CLK, ANY_SIGNAL, ASYNC_DATA, SYNC_DATA)

 begin

 if (ANY_SIGNAL) then

 Q <= ASYNC_DATA;

 elsif (CLK’event and CLK = ’1’) then

 Q <= SYNC_DATA;

 end if;

 end process;

Example—Synchronous Design with Asynchronous Reset
Example 8-10 describes a synchronous finite state machine (FSM) with an asynchronous reset.
8–12 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-10: Synchronous Finite State Machine with Asynchronous Reset

package MY_TYPES is

 type STATE_TYPE is (S0, S1, S2, S3);

end MY_TYPES;

use WORK.MY_TYPES.ALL;

entity STATE_MACHINE is

 port(CLK, INC, A, B: in BIT; RESET: in Boolean;

 t: out BIT);

end STATE_MACHINE;

architecture EXAMPLE of STATE_MACHINE is

 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

begin

 SYNC: process(CLK, RESET)

 begin

 if (RESET) then

 CURRENT_STATE <= S0;

 elsif (CLK’event and CLK = ’1’) then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process SYNC;

 FSM: process(CURRENT_STATE, A, B)

 begin

 t <= A; -- Default assignment

 NEXT_STATE <= S0; -- Default assignment

 if (INC = ’1’) then

 case CURRENT_STATE is

 when S0 =>

 NEXT_STATE <= S1;

 when S1 =>

 NEXT_STATE <= S2;

 t <= B;

 when S2 =>

 NEXT_STATE <= S3;

 when S3 =>

 null;

 end case;

 end if;

 end process FSM;
 Register and Three-State Inference • 8–13

Register Inference
end EXAMPLE;

Figure 8-6: Synchronous Finite State Machine with Asynchronous Reset

Attributes
New attributes used to assist register inference are discussed in this section. The attributes are
defined in a VHDL library called Synopsys Attribute’s package.

attribute async_set_reset : string;

attribute sync_set_reset : string;

attribute async_set_reset_local : string;

attribute sync_set_reset_local : string;

attribute async_set_reset_local_all : string;

attribute sync_set_reset_local_all : string;

attribute one_hot : string;

attribute one_cold : string;

async_set_reset

The async_set_reset attribute is attached to single-bit signals using the attribute construct. FPGA
Express checks signals with the async_set_reset attribute set to TRUE to determine whether these
signals asynchronously set or reset a latch in the entire design.

The syntax of async_set_reset is

 attribute async_set_reset of signal_name,. : signal is "true";

Latch with Asynchronous Set or Clear Inputs
The asynchronous clear signal for a latch is inferred by driving the "Q" pin of your latch to 0. The asyn-
chronous set signal for a latch is inferred by driving the "Q" pin of your latch to 1. Although FPGA
Express does not require that the clear (set) be the first condition in your conditional branch, it is best
to write your VHDL in this manner.
8–14 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-11 shows how to specify a latch with an asynchronous clear input. To specify a latch with
an asynchronous set, change the logic as indicated by the comments.

Example 8-11: Inferred Latch with Asynchronous Clear Input

attribute async_set_reset of clear : signal is "true";

process(clear, gate, a)

begin

 if (clear = ’1’) then

 q <= ’0’ ;

 elsif (gate = ’1’) then

 q <= a;

 end if;

end process;

Figure 8-7: Inferred Latch with Asynchronous Clear

sync_set_reset
The sync_set_reset attribute is attached to single-bit signals with the attribute constructs. FPGA
Express checks signals with the sync_set_reset attribute set to TRUE to determine whether these
signals synchronously set or reset a flip-flop in the entire design.

The syntax of sync_set_reset is

 attribute sync_set_reset of signal_name,... : signal is "true";

Flip-Flop with Synchronous Reset Input
Example 8-12 shows how to specify a flip-flop with a synchronous reset.

Example 8-12: Inferred Flip-Flop with Synchronous Reset Input

attribute sync_set_reset of RESET, SET : signal is "true";

process(RESET, CLK)

begin

 if (CLK’event and CLK = ’1’) then

 if RESET = ’1’ then

 Q <= ’0’;
 Register and Three-State Inference • 8–15

Register Inference
 else

 Q <= DATA_A;

 end if;

 end if;

end process;

process (SET, CLK)

begin

 if (CLK’event and CLK = ’1’) then

 if SET = ’1’ then

 T <= ’1’;

 else

 T <= DATA_B;

 end if;

 end if;

end process;

async_set_reset_local
The async_set_reset_local attribute is attached to the label of a process with a value of a dou-
ble-quoted list of single-bit signals. Every signal in the list is treated as though it has the
async_set_reset attribute attached in the specified process.

The syntax of async_set_reset_local is

attribute async_set_reset_local of process_label : label is
 "signal_name,...";

Example 8-13: Asynchronous Set/Reset on a Single Block

library IEEE;

library synopsys;

use IEEE.std_logic_1164.all;

use synopsys.attributes.all;

entity e_async_set_reset_local is

port(reset, set, gate: in std_logic; y, t: out std_logic);

end e_async_set_reset_local;
8–16 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
architecture rtl of e_async_set_reset_local is

attribute async_set_reset_local of direct_set_reset : label
is "reset, set";

begin

 direct_set_reset: process (reset, set)

 begin

 if (reset = ’1’) then

 y <= ’0’; -- asynchronous reset

 elsif (set = ’1’) then

 y <= ’1’; -- asynchronous set

 end if;

 end process direct_set_reset;

 gated_data: process (gate, reset, set)

 begin

 if (gate = ’1’) then

 if (reset = ’1’) then

 t <= ’0’; -- gated data

 elsif (set = ’1’) then

 t <= ’1’; -- gated data

 end if;

 end if;

 end process gated_set_reset;

end rtl;

Figure 8-8: Asynchronous Set/Reset on a Single Block

y

z

reset

set
 Register and Three-State Inference • 8–17

Register Inference
sync_set_reset_local
The sync_set_reset_local attribute is attached to the label of a process with a value of a double-
quoted list of single-bit signals. Every signal in the list is treated as though it has the
sync_set_reset attribute attached in the specified process.

The syntax of sync_set_reset_local is
8–18 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
attribute sync_set_reset_local of process_label : label is
"signal_name,..."

Example 8-14: Synchronous Set/Reset on a Single Block

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local is
port(clk, reset, set, gate : in std_logic; y, t: out std_logic);
end e_sync_set_reset_local;

architecture rtl of e_sync_set_reset_local is
attribute sync_set_reset_local of clocked_set_reset : label is "reset,
set";
begin

 clocked_reset: process (clk, reset, set)
 begin
 if (clk’event and clk = ’1’) then
 if (reset = ’1’) then
 y <= ’0’; -- synchronous reset
 else
 y <= ’1’; -- synchronous set
 end if;
 end if;
 end process clocked_set_reset;

 gated_data: process (clk, gate, reset, set)
 begin
 if (clk’event and clk = ’1’) then
 if (gate = ’1’) then
 if (reset = ’1’) then
 t <= ’0’; -- gated data
 elsif (set = ’1’) then
 t <= ’1’; -- gated data
 end if;
 end if;
 end if;
 end process gated_set_reset;

end rtl;
 Register and Three-State Inference • 8–19

Register Inference
Figure 8-9: Synchronous Set/Reset on a Single Block

async_set_reset_local_all
The async_set_reset_local_all attribute is attached to a process label. The attribute
async_set_reset_local_all specifies that all the signals in the process are used to detect an
asynchronous set or reset condition for inferred latches or flip-flops.

The syntax of async_set_reset_local_all is

attribute async_set_reset_local_all of process_label,... : label is "true";

z

y

set

d2

reset

clk

d1
8–20 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-15: Asynchronous Set/Reset on Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_async_set_reset_local_all is
port(reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_async_set_reset_local_all;

architecture rtl of e_async_set_reset_local_all is
attribute async_set_reset_local_all of
 direct_set_reset, direct_set_reset_too: label is "true";
begin
 direct_set_reset: process (reset, set)
 begin
 if (reset = ’1’) then
 y <= ’0’; -- asynchronous reset
 elsif (set = ’1’) then
 y <= ’1’; -- asynchronous set
 end if;
 end process direct_set_reset;

 direct_set_reset_too: process (gate, reset, set)
 begin
 if (gate = ’1’) then
 if (reset = ’1’) then
 t <= ’0’; -- asynchronous reset
 elsif (set = ’1’) then
 t <= ’1’; -- asynchronous set
 end if;
 end if;
 end process direct_set_reset_too;

 gated_data: process (gate2, reset, set)
 begin
 if (gate = ’1’) then
 if (reset = ’1’) then
 w <= ’0’; -- gated data
 elsif (set = ’1’) then
 w <= ’1’; -- gated data
 end if;
 end if;
 end process gated_set_reset;

end rtl;
 Register and Three-State Inference • 8–21

Register Inference
Figure 8-10: Asynchronous Set/Reset on Part of a Design

sync_set_reset_local_all
The sync_set_reset_local_all attribute is attached to a process label. The attribute
sync_set_reset_local_all specifies that all the signals in the process are used to detect a syn-
chronous set or reset condition for inferred latches or flip-flops.

The syntax of sync_set_reset_local_all is

attribute sync_set_reset_local_all of process_label,... : label is "true";
8–22 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-11: Example 8-16Synchronous Set/Reset on a Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local_all is
port(clk, reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_sync_set_reset_local_all;

architecture rtl of e_sync_set_reset_local_all is
attribute sync_set_reset_local_all of
 clocked_set_reset, clocked_set_reset_too: label is "true";
begin

 clocked_set_reset: process (clk, reset, set)
 begin
 if (clk’event and clk = ’1’) then
 if (reset = ’1’) then
 y <= ’0’; -- synchronous reset
 elsif (set = ’1’) then
 y <= ’1’; -- synchronous set
 end if;
 end if;
 end process clocked_set_reset;

 clocked_set_reset_too: process (clk, gate, reset, set)
 begin
 if (clk’event and clk = ’1’) then
 if (gate = ’1’) then
 if (reset = ’1’) then
 t <= ’0’; -- synchronous reset
 elsif (set = ’1’) then
 t <= ’1’; -- synchronous set
 end if;
 end if;
 end if;
 end process clocked_set_reset_too;

 gated_data: process (clk, gate2, reset, set)
 begin
 if (clk’event and clk = ’1’) then
 if (gate = ’1’) then
 if (reset = ’1’) then
 w <= ’0’; -- gated data
 elsif (set = ’1’) then
 w <= ’1’; -- gated data
 end if;
 end if;
 end if;
 end process gated_set_reset;

end rtl;
 Register and Three-State Inference • 8–23

Register Inference
Figure 8-11: Synchronous Set/Reset on a Part of a Design

Note: Use the one_hot and one_cold directives to implement D-type flip-flops with asynchronous
set and reset signals. These two attributes tell FPGA Express that only one of the objects in the
list are active at a time. If you are defining active high signals, use one_hot. For active low,
use one_cold. Each attribute has two objects specified.

one_hot
The one_hot directive takes one argument of a double-quoted list of signals separated by commas.
This attribute indicates that the group of signals are one_hot, in other words, at any time, no more
than one signal can have a Logic 1 value. You must make sure that the group of signals are really
one_hot. FPGA Express does not produce any logic to check this assertion.

The syntax of one_hot is

attribute one_hot signal_name,... : label is "true";
8–24 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-17: Using one_hot for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_hot is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_hot of reset, set : signal is "true";
end e_one_hot;

architecture rtl of e_one_hot is
begin
 direct_set_reset: process (reset, set)
 begin
 if (reset = ’1’) then
 y <= ’0’; -- asynchronous reset by "reset"
 elsif (set = ’1’) then
 y <= ’1’; -- asynchronous set by "set"
 end if;
 end process direct_set_reset;
 direct_set_reset_too: process (reset2, set2)
 begin
 if (reset2 = ’1’) then
 t <= ’0’; -- asynchronous reset by "reset2"
 elsif (set2 = ’1’) then
 t <= ’1’; -- asynchronous set by "~reset2 set2"
 end if;
 end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
 assert not (reset=’1’ and set=’1’)
 report "One-hot violation"
 severity Error;
end process;
-- synopsys synthesis_on
end rtl;
 Register and Three-State Inference • 8–25

Register Inference
Figure 8-12: Using one_hot for Set and Reset

one_cold
The one_cold directive is similar to the one_hot directive. one_cold indicates that no more than
one signal in the group can have a Logic 0 value at any time.

The syntax of one_cold is

attribute one_cold signal_name,... : label is "true";

y

z

set

reset

set2

reset2
8–26 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
Example 8-18 Using one_cold for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_cold is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_cold of reset, set : signal is "true";
end e_one_cold;

architecture rtl of e_one_cold is
begin

 direct_set_reset: process (reset, set)
 begin
 if (reset = ’0’) then
 y <= ’0’; -- asynchronous reset by "not reset"
 elsif (set = ’0’) then
 y <= ’1’; -- asynchronous set by "not set"
 end if;
 end process direct_set_reset;

 direct_set_reset_too: process (reset2, set2)
 begin
 if (reset2 = ’0’) then
 t <= ’0’; -- asynchronous reset by "not reset2"
 elsif (set2 = ’0’) then
 t <= ’1’; -- asynchronous set by "(not reset2) (not set2)"
 end if;
 end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
 assert not (reset=’0’ and set=’0’)
 report "One-cold violation"
 severity Error;
end process;
-- synopsys synthesis_on

end rtl;
 Register and Three-State Inference • 8–27

Register Inference
Figure 8-13: Using one_cold for Set and Reset

FPGA Express Latch and Flip-Flop Inference
FPGA Express inferes latches and flip-flops as follows:

• Asynchronous Flip-Flop Resets
FPGA Express reports asynchronous set and reset conditions of flip-flops.

• Asynchronous Latch Resets
FPGA Express interprets each control object of a latch as synchronous. If you want to asynchro-
nously set or reset a latch, set this variable to TRUE.

• Flip-Flop Feedback Loops
FPGA Express removes all flip-flop feedback loops. For example, feedback loops inferred from a
statement such as Q=Q are removed. With the state feedback removed from a simple D flip-flop, it
becomes a synchronous loaded flip-flop.

• Flip-Flop Inverted Feedback Loops
FPGA Express removes all inverted flip-flop feedback loops. For example, feedback loops inferred
from a statement such as Q=Q are removed and synthesized as T flip-flops.

y

z

reset

set

reset2

set2
8–28 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
• Reporting Inferred Modules
FPGA Express generates a brief report on inferred latches, flip-flops, or three-state devices.

Efficient Use of Registers
Organize your HDL description so that you build only as many flip-flops as the design requires. Exam-
ple 8-19 shows a description where too many flip-flops are implied.

Example 8-19: Circuit with Six Implied Registers

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ex8_13 is

port (clk , reset : in std_logic;

 and_bits , or_bits , xor_bits : out std_logic

);

end ex8_13;

architecture rtl of ex8_13 is

begin

process

variable count : std_logic_vector (2 downto 0);

begin

 wait until (clk’event and clk = ’1’);

 if (reset = ’1’) then

 count := "000";

 else count := count + 1;

 end if;

 and_bits <= count(2) and count(1) and count(0);

 or_bits <= count(2) or count(1) or count(0);

 xor_bits <= count(2) xor count(1) xor count(0);

end process;

end rtl;
 Register and Three-State Inference • 8–29

Register Inference
Figure 8-14: Circuit with Six Implied Registers

In Example 8-19, the outputs AND_BITS, OR_BITS, and XOR_BITS depend solely on the value of
COUNT. Because COUNT is registered, the three outputs do not need to be registered. To avoid imply-
ing extra registers, assign the outputs from within a process that does not have a wait statement.
Example 8-20 shows a description with two processes, one with a wait statement and one without.
This description style lets you choose the signals that are registered and those that are not.

Example 8-20: Circuit with Three Implied Registers

use work.ARITHMETIC.all;

entity COUNT is

 port(CLOCK, RESET: in BIT;
 AND_BITS, OR_BITS, XOR_BITS : out BIT);

end COUNT;

architecture RTL of COUNT is

 signal COUNT : UNSIGNED (2 downto 0);

begin

 REG: process -- Registered logic

 begin

 wait until CLOCK’event and CLOCK = ’1’;

 if (RESET = ’1’) then

 COUNT <= "000";

 else

 COUNT <= COUNT + 1;

 end if;

 end process;
8–30 • VeriBest FPGA Synthesis VHDL Reference Manual

Register Inference
 COMBIN: process(COUNT) -- Combinational logic

 begin

 AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);

 OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);

 XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);

 end process;

end RTL;

Figure 8-15: Circuit with Three Implied Registers

This technique of separating combinational logic from registered or sequential logic is useful when
describing finite state machines.

See the following examples in Appendix A:

• Moore machine

• Mealy machine

• Count zeros—sequential version

• Soft drink machine controller—state machine version

Example—Using Synchronous and Asynchronous Processes
You might want to keep some of the values computed by a process in flip-flops, while allowing other
values to change between clock edges.

You can do this by splitting your algorithm between two processes, one with a wait statement and
one without. Put the registered (synchronous) assignments into the wait process. Put the other
(asynchronous) assignments into the other process. Use signals to communicate between the two pro-
cesses.

For example, suppose you want to build a design with the following characteristics:

• Inputs A_1, A_2, A_3 and A_4 change asynchronously.

• Output t is driven from one of A_1, A_2, A_3, or A_4.

• Input CONTROL is valid only on the positive edge of CLOCK. The value at the edge determines which
of the four inputs is selected during the next clock cycle.
 Register and Three-State Inference • 8–31

Register Inference
• Output t must always reflect changes in the value of the currently selected signal.

The implementation of this design requires two processes. The process with a wait statement syn-
chronizes the CONTROL value. The other process multiplexes the output, based on the synchronized
control. The signal SYNC_CONTROL communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible implementation.

Example 8-21: Two Processes: One Synchronous, One Asynchronous

entity SYNC_ASYNC is

 port (CLOCK: in BIT;

 CONTROL: in INTEGER range 0 to 3;

 A: in BIT_VECTOR(0 to 3);

 t: out BIT);

end SYNC_ASYNC;

architecture EXAMPLE of SYNC_ASYNC is

 signal SYNC_CONTROL: INTEGER range 0 to 3;

begin

 process

 begin

 wait until CLOCK’event and CLOCK = ’1’;

 SYNC_CONTROL <= CONTROL;

 end process;

 process (A, SYNC_CONTROL)

 begin

 t <= A(SYNC_CONTROL);

 end process;

end EXAMPLE;
8–32 • VeriBest FPGA Synthesis VHDL Reference Manual

Three-State Inference
Figure 8-16: Two Processes: One Synchronous, One Asynchronous

Three-State Inference
FPGA Express can infer three-state gates (high-impedance output) from enumeration encoding in
VHDL. After inferrence, FPGA Express maps the gates to a specified technology library. See "Enu-
meration Encoding" in Chapter 4 for more information.

When a variable is assigned the value of ’Z’ , the output of the three-state gate is disabled. Example
8-22 shows the VHDL for a three-state gate

Example 8-22: Creating a Three-State Gate in VHDL

signal OUT_VAL, IN_VAL: std_logic;

...

if (COND) then

 OUT_VAL <= IN_VAL;

else

 OUT_VAL <= ’Z’; -- assigns high-impedance

end if;

You can assign a high impedance value to a four-bit wide bus with "ZZZZ".

One three-state device is inferred from a single process. Example 8-23 infers only one three-state
device.
 Register and Three-State Inference • 8–33

Three-State Inference
Example 8-23: Inferring One Three-State Device from a Single Process

process (sela, a, selb, b) begin

 t <= ’z’;

 if (sela = ’1’) then

 t <= a;

 if (selb = ’1’) then

 t <= b;

end process;

Example 8-24 infers two three-state devices.

Example 8-24: Inferring Two Three-State Devices

process (sela, a) begin

 if (sela = ‘1’) then

 t = a;

 else t = ‘z’;

end process;

process (selb, b) begin

 if (selb = ‘1’) then

 t = b;

 else t = ‘z’;

end process;

The VHDL conditional assignment may also be used for three-state inferencing.

Assigning the Value Z
Assigning variables the value Z is allowed. The value Z can also appear in function calls, return state-
ments, and aggregates. However, except for comparisons to Z, you cannot use Z in an expression.
Example 8-25 shows an incorrect use of Z (in an expression), and Example 8-26 shows a correct use
of Z (in a comparison).

Example 8-25: Incorrect Use of the Value Z in an Expression

OUT_VAL <= ’Z’ and IN_VAL;

...

Example 8-26: Correct Expression Comparing to Z

if IN_VAL = ’Z’ then

...
8–34 • VeriBest FPGA Synthesis VHDL Reference Manual

Three-State Inference
Caution Expressions comparing to Z are synthesized as though values are not equal to Z.

For example:

if X = ’Z’ then

...

is synthesized as:

if FALSE then

...

If you use expressions comparing values to ’Z’, the presynthesis and postsynthesis simulation
results might differ. For this reason, FPGA Express issues a warning when it synthesizes such com-
parisons.

Latched Three-State Variables
When a variable is latched (or registered) in the same process in which it is three-stated, the enable of
the three-state Z is also latched (or registered). This process is shown in Example 8-27.

Example 8-27: Three-State Inferred with Registered Enable

-- Creates a flip-flop on input and on enable

if (THREESTATE = ’0’) then

 OUTPUT <= ’Z’;

elsif (CLK’event and CLK = ’1’) then

 if (CONDITION) then

 OUTPUT <= INPUT;

 end if;

end if;

Figure 8-17: Three-State Inferred with Registered Enable

In Example 8-27, the three-state gate has a registered enable signal. Example 8-28 uses two pro-
cesses to instantiate a three-state with a flip-flop only on the input.
 Register and Three-State Inference • 8–35

Three-State Inference
Example 8-28: Example 8-28Latched Three-State with Flip-flop on Input

entity LATCH_3S is

 port(CLK, THREESTATE, INPUT: in std_logic;

 OUTPUT: out std_logic; CONDITION: in Boolean);

end LATCH_3S;

architecture EXAMPLE of LATCH_3S is

 signal TEMP: std_logic;

begin

 process(CLK, CONDITION, INPUT)

 begin -- creates three-state

 if (CLK’event and CLK = ’1’) then

 if (CONDITION) then

 TEMP <= INPUT;

 end if;

 end if;

 end process;

 process(THREESTATE, TEMP)

 begin

 if (THREESTATE = ’0’) then

 OUTPUT <= ’Z’;

 else

 OUTPUT <= TEMP;

 end if;

 end process;

end EXAMPLE;

Figure 8-18: Latched Three-State with Flip-Flop on Input
8–36 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 9
FPGA Express Directives
Synopsys has defined several methods of providing circuit design information directly in your VHDL
source code.

• Using FPGA Express directives, you can direct the translation from VHDL to components with spe-
cial VHDL comments. These synthetic comments turn translation on or off, specify one of several
hard-wired resolution methods, and provide a means to map subprograms to hardware components.

• Using Synopsys-defined VHDL attributes, you can add synthesis-related signal and constraint infor-
mation to ports, components, and entities. This information is used by FPGA Express during synthe-
sis.

To familiarize yourself with FPGA Express directives, consider the following topics:

• Notation for FPGA Express Directives

• FPGA Express Directives

• Synthesis Attributes and Constraints

Notation for FPGA Express Directives
FPGA Express directives are special VHDL comments (synthetic comments) that affect the actions of
FPGA Express. These comments are just a special case of regular VHDL comments, so they are
ignored by other VHDL tools. Synthetic comments are used only to direct the actions of FPGA
Express.

Synthetic comments begin with two hyphens (--), just like a regular comment. If the word following
these characters is pragma or synopsys, the remaining comment text is interpreted by FPGA
Express as a directive.

Note: FPGA Express displays a syntax error if an unrecognized directive is encountered after
-- synopsys or -- pragma.

FPGA Express Directives
The three types of directives are

• Translation stop and start Directives

-- pragma translate_off

-- pragma translate_on

-- pragma synthesis_off
 FPGA Express Directives • 9–1

FPGA Express Directives
-- pragma synthesis_on

• Resolution function directives

-- pragma resolution_method wired_and

-- pragma resolution_method wired_or

-- pragma resolution_method three_state

• Component implication directives

-- pragma map_to_entity entity_name

-- pragma return_port_name port_name

Other directives such as the map_to operator are used to drive inference of HDL operators such as *,
+, and -.

Translation Stop and Start Directives
Translation directives stop and start the translation of a VHDL source file by FPGA Express.

-- pragma translate_off

-- pragma translate_on

The translate_off and translate_on directives instruct FPGA Express to stop and start synthe-
sizing VHDL source code. The VHDL code between these two directives is, however, checked for syn-
tax.

Translation is enabled at the beginning of each VHDL source file. You can use translate_off and
translate_on directives anywhere in the text.

The synthesis_off and synthesis_on directives are the recommended mechanisms for hiding
simulation-only constructs from synthesis. Any text between these directives is checked for syntax,
but no corresponding hardware is synthesized. The behavior of the synthesis_off and
synthesis_on directives is not affected by the variable hdlin_translate_off_skip_text.

Example 9-1 shows how you can use the directives to protect a simulation driver.
9–2 • VeriBest FPGA Synthesis VHDL Reference Manual

FPGA Express Directives
Example 9-1: Using synthesis_on and synthesis_off Directives

-- The following test driver for entity EXAMPLE

-- should not be translated:

--

-- pragma synthesis_off

-- Translation stops

entity DRIVER is

end;

architecture VHDL of DRIVER is

 signal A, B : INTEGER range 0 to 255;

 signal SUM : INTEGER range 0 to 511;

 component EXAMPLE

 port (A, B: in INTEGER range 0 to 255;

 SUM: out INTEGER range 0 to 511);

 end component;

begin

 U1: EXAMPLE port map(A, B, SUM);

 process

 begin

 for I in 0 to 255 loop

 for J in 0 to 255 loop

 A <= I;

 B <= J;

 wait for 10 ns;

 assert SUM = A + B;

 end loop;

 end loop;

 end process;

end;

-- pragma synthesis_on

-- Code from here on is translated

entity EXAMPLE is

 port (A, B: in INTEGER range 0 to 255;

 SUM: out INTEGER range 0 to 511);

end;

architecture VHDL of EXAMPLE is

begin

 SUM <= A + B;

end;
 FPGA Express Directives • 9–3

FPGA Express Directives
Resolution Function Directives
Resolution function directives determine the resolution function associated with resolved signals (see
‘‘Signal Declarations“ in Chapter 3). FPGA Express does not currently support arbitrary resolution
functions. It does support the following three methods:

-- pragma resolution_method wired_and

-- pragma resolution_method wired_or

-- pragma resolution_method three_state

Note: Do not connect signals that use different resolution functions. FPGA Express supports only one
resolution function per network.

Component Implication Directives
Component implication directives map VHDL subprograms onto existing components or VHDL enti-
ties. These directives are described under ‘‘Mapping Subprograms to Components“ in Chapter 6:

-- pragma map_to_entity entity_name

-- pragma return_port_name port_name
9–4 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 10
Synopsys Packages
Three Synopsys packages are included with this release:

• std_logic_1164 Package

Defines a standard for designers to use when describing the interconnection data types used in
VHDL modeling.

• std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison functions for SIGNED, UNSIGNED, INTE-
GER, STD_ULOGIC, STD_LOGIC, and STD_LOGIC_VECTOR types.

• std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions for the std_logic_1164 package.

To understand the contents of each package, review the following sections.

std_logic_1164 Package
This package defines the IEEE standard for designers to use when describing the interconnection data
types used in VHDL modeling. The logic system defined in this package might be insufficient for mod-
eling switched transistors, because such a requirement is out of the scope of this effort. Furthermore,
mathematics, primitives, and timing standards are considered orthogonal issues as they relate to this
package and are therefore beyond the scope of this effort.

The std_logic_1164 package contains Synopsys synthesis directives. Three functions, however,
are not currently supported for synthesis: rising_edge, falling_edge, and is_x.

To use this package in a VHDL source file, include the following lines at the top of the source file:

library IEEE;

use IEEE.std_logic_1164.all;

When you analyze your VHDL source file, FPGA Express automatically finds the IEEE library and the
std_logic_1164 package. However, you must analyze the use packages not contained in the IEEE
and Synopsys libraries before processing a source file that uses them.
 Synopsys Packages • 10–1

std_logic_arith Package
std_logic_arith Package
Functions defined in the std_logic_arith package provide conversion to and from the predefined
VHDL data type INTEGER, and arithmetic, comparison, and Boolean operations. This package lets
you perform arithmetic operations and numeric comparisons on array data types. The package defines
some arithmetic operators (+, -, *, and abs) and the relational operators (<, >, <=, >=, =, and /=).
Note that IEEE VHDL does not define arithmetic operators for arrays and defines the comparison
operators in a manner inconsistent with an arithmetic interpretation of array values.

The package also defines two major data types of its own: UNSIGNED and SIGNED. Details can be
found in ‘‘Synopsys Data Types" later in this appendix. The std_logic_arith package is legal
VHDL; you can use it for both synthesis and simulation.

The std_logic_arith package can be configured to work on any array of single-bit types. You
encode single-bit types in one bit with the ENUM_ENCODING attribute.

You can make the vector type (for example, std_logic_vector) synonymous with either SIGNED
or UNSIGNED. This way, if you plan to use mostly UNSIGNED numbers, you do not need to convert
your vector type to call UNSIGNED functions. The disadvantage of making your vector type synony-
mous with either UNSIGNED or SIGNED is that it causes the standard VHDL comparison functions (=, /
=, <, >, <=, and >=) to be redefined.

Table 10-1 shows that the standard comparison functions for BIT_VECTOR do not match the SIGNED
and UNSIGNED functions.

Table 10-1: UNSIGNED, SIGNED and BIT_VECTOR Comparison Functions

Using the Package
The std_logic_arith package is in the $synopsys/packages/IEEE/src/
std_logic_arith.vhd subdirectory of the Synopsys root directory. To use this package in a VHDL
source file, include the following lines at the top of the source file:

library IEEE;

use IEEE.std_logic_arith.all;

Synopsys packages are preanalyzed and do not require further analyzing.

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

"000" = "000" TRUE TRUE TRUE

"00" = "000" TRUE TRUE FALSE

"100" = "0100" TRUE FALSE FALSE

"000" < "000" FALSE FALSE FALSE

"00" < "000" FALSE FALSE TRUE

"100" < "0100" FALSE TRUE FALSE
10–2 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
Modifying the Package
The std_logic_arith package is written in standard VHDL. You can modify or add to it. The appro-
priate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an INTEGER, you can write the function shown
in Example 10-1. This MVL_TO_INTEGER function returns the integer value corresponding to the vec-
tor when the vector is interpreted as an unsigned (natural) number. If unknown values are in the vec-
tor, the return value is -1.

Example 10-1: New Function Based on a std_logic_arith Package Function

library IEEE;

use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR)

 return INTEGER is

 -- pragma built_in SYN_FEED_THRU

 variable uns: UNSIGNED (ARG’range);

begin

 for i in ARG’range loop

 case ARG(i) is

 when ’0’ | ’L’ => uns(i) := ’0’;

 when ’1’ | ’H’ => uns(i) := ’1’;

 when others => return -1;

 end case;

 end loop;

 return CONV_INTEGER(uns);

end;

Note the use of the CONV_INTEGER function in Example 10-1.

FPGA Express performs almost all synthesis directly from the VHDL descriptions. However, several
functions are hard wired for efficiency. These functions can be identified by the following comment in
their declarations

-- pragma built_in

This statement marks functions as special, causing the body to be ignored. Modifying the body does
not change the synthesized logic unless you remove the built_in comment. If you want new func-
tionality, use the built_in functions; this is more efficient than removing the built_in and modify-
ing the body.
 Synopsys Packages • 10–3

std_logic_arith Package
Data Types
The std_logic_arith package defines two data types, UNSIGNED and SIGNED:

type UNSIGNED is array (natural range <>) of std_logic;

type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type BIT_VECTOR, but the std_logic_arith
package defines the interpretation of variables and signals of these types as numeric values. With the
install_vhdl conversion script, you can change these data types to arrays of other one-bit types.

UNSIGNED
The UNSIGNED data type represents an unsigned numeric value. FPGA Express interprets the number
as a binary representation, with the farthest left bit being most significant. For example, the decimal
number 8 can be represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED, a larger vector holds a larger number. A
four-bit variable holds values up to decimal 15; an eight-bit variable holds values up to 255, and so on.
By definition, negative numbers cannot be represented in an UNSIGNED variable. Zero is the smallest
value that can be represented.

Example 10-2 illustrates some UNSIGNED declarations. Note that the most significant bit is the farthest
left array bound, rather than the high or low range value.

Example 10-2: UNSIGNED Declarations

variable VAR: UNSIGNED (1 to 10);

 -- 11-bit number

 -- VAR(VAR’left) = VAR(1) is the most significant bit

signal SIG: UNSIGNED (5 downto 0);

 -- 6-bit number

 -- SIG(SIG’left) = SIG(5) is the most significant bit

SIGNED
The SIGNED data type represents a signed numeric value. FPGA Express interprets the number as a
2’s complement binary representation, with the farthest left bit as the sign bit. For example, you can
represent decimal 5 and -5 as

SIGNED’("0101") -- represents +5

SIGNED’("1011") -- represents -5

When you declare SIGNED variables or signals, a larger vector holds a larger number. A four-bit vari-
able holds values from -8 to 7; an eight-bit variable holds values from –128 to 127. Note that a SIGNED
value cannot hold as large a value as an UNSIGNED value with the same bit width.
10–4 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
Example 10-3 shows some SIGNED declarations. Note that the sign bit is the farthest left bit, rather
than the highest or lowest.

Example 10-3: SIGNED Declarations

variable S_VAR: SIGNED (1 to 10);

 -- 11-bit number

 -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0);

 -- 6-bit number

 -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions
The std_logic_arith package provides three sets of functions to convert values between its
UNSIGNED and SIGNED types, and the predefined type INTEGER. This package also provides the
std_logic_vector.

Example 10-4 shows the declarations of these conversion functions. BIT and BIT_VECTOR types are
shown.

Example 10-4: Conversion Functions

subtype SMALL_INT is INTEGER range 0 to 1;

function CONV_INTEGER(ARG: INTEGER) return INTEGER;

function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;

function CONV_INTEGER(ARG: SIGNED) return INTEGER;

function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER;

 SIZE: INTEGER) return UNSIGNED;

function CONV_UNSIGNED(ARG: UNSIGNED;

 SIZE: INTEGER) return UNSIGNED;

function CONV_UNSIGNED(ARG: SIGNED;

 SIZE: INTEGER) return UNSIGNED;

function CONV_UNSIGNED(ARG: STD_ULOGIC;

 SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;

 SIZE: INTEGER) return SIGNED;

function CONV_SIGNED(ARG: UNSIGNED;

 SIZE: INTEGER) return SIGNED;

function CONV_SIGNED(ARG: SIGNED;
 Synopsys Packages • 10–5

std_logic_arith Package
 SIZE: INTEGER) return SIGNED;

function CONV_SIGNED(ARG: STD_ULOGIC;

 SIZE: INTEGER) return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;

 SIZE: INTEGER) return STD_LOGIC_VECTOR;

function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED;

 SIZE: INTEGER) return STD_LOGIC_VECTOR;

function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;

 SIZE: INTEGER) return STD_LOGIC_VECTOR;

function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;

 SIZE: INTEGER) return STD_LOGIC_VECTOR;

Note that there are four versions of each conversion function.

The operator overloading mechanism of VHDL determines the correct version from the function call’s
argument types.

The CONV_INTEGER functions convert an argument of type INTEGER, UNSIGNED, SIGNED, or
STD_ULOGIC to an INTEGER return value. The CONV_UNSIGNED and CONV_SIGNED functions con-
vert an argument of type INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC to an UNSIGNED or SIGNED
return value whose bit width is SIZE.

The CONV_INTEGER functions have a limitation on the size of operands. VHDL defines INTEGER val-
ues as between -2147483647 and 2147483647. This range corresponds to a 31-bit UNSIGNED value
or a 32-bit SIGNED value. You cannot convert an argument outside this range to an INTEGER.

The CONV_UNSIGNED and CONV_SIGNED functions require two operands. The first operand is the
value converted. The second operand is an INTEGER that specifies the expected size of the converted
result. For example, the following function call returns a 10-bit UNSIGNED value representing the value
in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is smaller than the expected bit width (such
as representing the value 2 in a 24-bit number), the value is bit-extended appropriately. FPGA
Express places zeros in the more significant (left) bits for an UNSIGNED return value and uses sign
extension for a SIGNED return value.

You can use the conversion functions to extend a number’s bit width even if conversion is not required.
For example:

CONV_SIGNED(SIGNED’("110"), 8) % "11111110"

An UNSIGNED or SIGNED return value is truncated when its bit width is too small to hold the ARG value.
For example:

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"
10–6 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
Arithmetic Functions
The std_logic_arith package provides arithmetic functions for use with combinations of Synop-
sys’ UNSIGNED and SIGNED data types and the predefined types STD_ULOGIC and INTEGER. These
functions produce adders and subtracters.

There are two sets of arithmetic functions: binary functions with two arguments, such as A+B or A*B,
and unary functions with one argument, such as -A. The declarations for these functions are shown in
Examples 10-5 and 10-6.
 Synopsys Packages • 10–7

std_logic_arith Package
Example 10-5: Binary Arithmetic Functions

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "+"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "+"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: INTEGER) return SIGNED;
function "+"(L: INTEGER; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "-"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "-"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: INTEGER) return SIGNED;
function "-"(L: INTEGER; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return
 STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
10–8 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
function "*"(L: SIGNED; R: SIGNED) return SIGNED;
function "*"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "*"(L: UNSIGNED; R: SIGNED) return SIGNED;

Example 10-6: Example 9-6Unary Arithmetic Functions

function "+"(L: UNSIGNED) return UNSIGNED;

function "+"(L: SIGNED) return SIGNED;

function "-"(L: SIGNED) return SIGNED;

function "ABS"(L: SIGNED) return SIGNED;

These functions determine the width of their return values as follows:

1. When only one UNSIGNED or SIGNED argument is present, the width of the return value is the
same as that argument.

2. When both arguments are either UNSIGNED or SIGNED, the width of the return value is the larger of
the two argument widths. An exception is that when an UNSIGNED number is added to or sub-
tracted from a SIGNED number of the same size or smaller, the return value is a SIGNED number
one bit wider than the UNSIGNED argument. This size guarantees that the return value is large
enough to hold any (positive) value of the UNSIGNED argument.

The number of bits returned by + and - is illustrated in Table 10-2.

signal U4: UNSIGNED (3 downto 0);

signal U8: UNSIGNED (7 downto 0);

signal S4: SIGNED (3 downto 0);

signal S8: SIGNED (7 downto 0);

Table 10-2: Number of Bits Returned by + and -

In some circumstances, you might need to obtain a carry-out bit from the + or - operation. To do this,
extend the larger operand by one bit. The high bit of the return value is the carry-out bit, as illustrated
in Example 10-7.

+ or - U4 U8 S4 S8

U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
 Synopsys Packages • 10–9

std_logic_arith Package
Example 10-7: Using the Carry-Out Bit

process

 variable a, b, sum: UNSIGNED (7 downto 0);

 variable temp: UNSIGNED (8 downto 0);

 variable carry: BIT;

begin

 temp := CONV_UNSIGNED(a,9) + b;

 sum := temp(7 downto 0);

 carry := temp(8);

end process;

Comparison Functions
The std_logic_arith package provides functions to compare UNSIGNED and SIGNED data types
to each other and to the predefined type INTEGER. FPGA Express compares the numeric values of
the arguments, returning a Boolean value. For example, the following expression evaluates to TRUE.

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith comparison functions are similar to the built-in VHDL comparison functions.
The only difference is that the std_logic_arith functions accommodate signed numbers and vary-
ing bit widths. The predefined VHDL comparison functions perform bit-wise comparisons and so do not
have the correct semantics for comparing numeric values (see ‘‘Relational Operators" in Chapter 5).

These functions produce comparators. The function declarations are listed in two groups, ordering
functions (<, <=, >, and >=) and equality functions (= and /=), in Examples 10-8 and 10-9.
10–10 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
Example 10-8: Ordering Functions

function "<"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED; R: SIGNED) return Boolean;
function "<"(L: UNSIGNED; R: SIGNED) return Boolean;
function "<"(L: SIGNED; R: UNSIGNED) return Boolean;
function "<"(L: UNSIGNED; R: INTEGER) return Boolean;
function "<"(L: INTEGER; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED; R: INTEGER) return Boolean;
function "<"(L: INTEGER; R: SIGNED) return Boolean;

function "<="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED; R: SIGNED) return Boolean;
function "<="(L: UNSIGNED; R: SIGNED) return Boolean;
function "<="(L: SIGNED; R: UNSIGNED) return Boolean;
function "<="(L: UNSIGNED; R: INTEGER) return Boolean;
function "<="(L: INTEGER; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED; R: INTEGER) return Boolean;
function "<="(L: INTEGER; R: SIGNED) return Boolean;

function "" functions">">"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED; R: SIGNED) return Boolean;
function ">"(L: UNSIGNED; R: SIGNED) return Boolean;
function ">"(L: SIGNED; R: UNSIGNED) return Boolean;
function ">"(L: UNSIGNED; R: INTEGER) return Boolean;
function ">"(L: INTEGER; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED; R: INTEGER) return Boolean;
function ">"(L: INTEGER; R: SIGNED) return Boolean;

function ="" functions">">="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED; R: SIGNED) return Boolean;
function ">="(L: UNSIGNED; R: SIGNED) return Boolean;
function ">="(L: SIGNED; R: UNSIGNED) return Boolean;
function ">="(L: UNSIGNED; R: INTEGER) return Boolean;
function ">="(L: INTEGER; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED; R: INTEGER) return Boolean;
function ">="(L: INTEGER; R: SIGNED) return Boolean;
 Synopsys Packages • 10–11

std_logic_arith Package
Example 10-9: Equality Functions

function "="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "="(L: SIGNED; R: SIGNED) return Boolean;
function "="(L: UNSIGNED; R: SIGNED) return Boolean;
function "="(L: SIGNED; R: UNSIGNED) return Boolean;
function "="(L: UNSIGNED; R: INTEGER) return Boolean;
function "="(L: INTEGER; R: UNSIGNED) return Boolean;
function "="(L: SIGNED; R: INTEGER) return Boolean;
function "="(L: INTEGER; R: SIGNED) return Boolean;

function "/="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED; R: SIGNED) return Boolean;
function "/="(L: UNSIGNED; R: SIGNED) return Boolean;
function "/="(L: SIGNED; R: UNSIGNED) return Boolean;
function "/="(L: UNSIGNED; R: INTEGER) return Boolean;
function "/="(L: INTEGER; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED; R: INTEGER) return Boolean;
function "/="(L: INTEGER; R: SIGNED) return Boolean;

Shift Functions
The std_logic_arith package provides functions for shifting the bits in SIGNED and UNSIGNED
numbers. These functions produce shifters. Example 10-10 shows the shift function declarations.

Example 10-10: Shift Functions

function SHL(ARG: UNSIGNED;

 COUNT: UNSIGNED) return UNSIGNED;

function SHL(ARG: SIGNED;

 COUNT: UNSIGNED) return SIGNED;

function SHR(ARG: UNSIGNED;

 COUNT: UNSIGNED) return UNSIGNED;

function SHR(ARG: SIGNED;

 COUNT: UNSIGNED) return SIGNED;

The SHL function shifts the bits of its argument ARG to the left by COUNT bits. SHR shifts the bits of its
argument ARG to the right by COUNT bits.

The SHL functions work the same for both UNSIGNED and SIGNED values of ARG, shifting in zero bits
as necessary. The SHR functions treat UNSIGNED and SIGNED values differently. If ARG is an
UNSIGNED number, vacated bits are filled with zeros; if ARG is a SIGNED number, the vacated bits are
copied from the sign bit of ARG.

Example 10-11 shows some shift function calls and their return values.
10–12 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
Example 10-11: Shift Operations

variable U1, U2: UNSIGNED (7 downto 0);

variable S1, S2: SIGNED (7 downto 0);

variable COUNT: UNSIGNED (1 downto 0);

. . .

U1 := "01101011";

U2 := "11101011";

S1 := "01101011";

S2 := "11101011";

COUNT := CONV_UNSIGNED(ARG => 3, SIZE => 2);

. . .

SHL(U1, COUNT) = "01011000"

SHL(S1, COUNT) = "01011000"

SHL(U2, COUNT) = "01011000"

SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"

SHR(S1, COUNT) = "00001101"

SHR(U2, COUNT) = "00011101"

SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts
You can use shift operations for simple multiplication and division of UNSIGNED numbers, if you multi-
ply or divide by a power of two.

For example, to divide the following UNSIGNED variable U by 4:

variable U: UNSIGNED (7 downto 0) := "11010101";

variable quarter_U: UNSIGNED (5 downto 0);

quarter_U := SHR(U, "01");
 Synopsys Packages • 10–13

std_logic_arith Package
ENUM_ENCODING Attribute
Place the synthesis attribute ENUM_ENCODING on your primary logic type (see ‘‘Enumeration Encod-
ing" in Chapter 4). This attribute allows FPGA Express to interpret your logic correctly.

pragma built_in
Label your primary logic functions with the built_in pragma. This pragma allows FPGA Express to
interpret your logic functions easily. When you use a built_in pragma, FPGA Express parses but
ignores the body of the function. Instead, FPGA Express directly substitutes the appropriate logic for
the function. You need not use built_in pragmas; however using these pragmas result in run times
that are ten times faster.

Use built_in pragmas by placing a comment in the declaration part of a function. FPGA Express
interprets a comment as a directive if the first word of the comment is pragma.

Example 10-12 shows the use of built_in pragmas.

Example 10-12: Using a built_in pragma

function "XOR" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

 -- pragma built_in SYN_XOR

 begin

 if (L = ’1’) xor (R = ’1’) then

 return ’1’;

 else

 return ’0’;

 end if;

end "XOR";

Two-Argument Logic Functions
Synopsys provides six built-in functions to perform two-argument logic functions:

• SYN_AND

• SYN_OR

• SYN_NAND

• SYN_NOR

• SYN_XOR

• SYN_XNOR

You can use these functions on single-bit arguments or equal-length arrays of single bits.

Example 10-13 shows a function that generates the logical AND of two equal-size arrays.
10–14 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_arith Package
Example 10-13: Built-In AND for Arrays

function "AND" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

 -- pragma built_in SYN_AND

 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);

 variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);

 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);

begin

 assert L’length = R’length;

 MY_L := L;

 MY_R := R;

 for i in RESULT’range loop

 if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then

 RESULT(i) := ’1’;

 else

 RESULT(i) := ’0’;

 end if;

 end loop;

 return RESULT;

end "AND";

One-Argument Logic Functions
Synopsys provides two built-in functions to perform one-argument logic functions:

• SYN_NOT

• SYN_BUF

You can use these functions on single-bit arguments or equal-length arrays of single bits. Example 10-
14 shows a function that generates the logical NOT of an array.

Example 10-14: Built-In NOT for Arrays

function "NOT" (L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

 -- pragma built_in SYN_NOT

 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);

 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);

begin

 MY_L := L;

 for i in result’range loop

 if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then

 RESULT(i) := ’1’;
 Synopsys Packages • 10–15

std_logic_arith Package
 elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then

 RESULT(i) := ’0’;

 else

 RESULT(i) := ’X’;

 end if;

 end loop;

 return RESULT;

end "NOT";

end;

Type Conversion
The built-in function SYN_FEED_THRU performs fast type conversion between unrelated types. The
synthesized logic from SYN_FEED_THRU wires the single input of a function to the return value. This
connection can save the CPU time required to process a complicated conversion function, as shown in
Example 10-15.

Example 10-15: Use of SYN_FEED_THRU

type COLOR is (RED, GREEN, BLUE);

attribute ENUM_ENCODING : STRING;

attribute ENUM_ENCODING of COLOR : type is "01 10 11";

...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is

 -- pragma built_in SYN_FEED_THRU

begin

 case L is

 when RED => return "01";

 when GREEN => return "10";

 when BLUE => return "11";

 end case;

end COLOR_TO_BV;

translate_off Directive
If there are constructs in your "types" package that are not supported for synthesis, or that produce
warning messages, you may need to use the FPGA Express directive
-- synopsys translate_off.

You can make liberal use of the translate_off directive when you use built_in pragmas
because FPGA Express ignores the body of built_in functions. For examples of illustrating how to
use the translate_off directive, see the std_logic_arith.vhd package.
10–16 • VeriBest FPGA Synthesis VHDL Reference Manual

std_logic_misc Package
std_logic_misc Package
The std_logic_misc package resides in the Synopsys libraries directory ($synopsys/packages/
IEEE/src/std_logic_misc.vhd). This package declares the primary data types supported by the
Synopsys VSS Family.

Boolean reduction functions use one argument, an array of bits, and return a single bit. For example,
the and-reduction of "101" is "0", the logical AND of all three bits.

Several functions in the std_logic_misc package provide Boolean reduction operations for the pre-
defined type STD_LOGIC_VECTOR. Example 10-16 shows the declarations of these functions.

Example 10-16: Boolean Reduction Functions

function AND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function OR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function NOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function XOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function AND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

function OR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

function NOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

function XOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

These functions combine the bits of the STD_LOGIC_VECTOR, as the name of the function indicates.
For example, XOR_REDUCE returns the XOR value of all bits in ARG.

Example 10-17 shows some reduction function calls and their return values.

Example 10-17: Boolean Reduction Operations

AND_REDUCE("111") = ’1’

AND_REDUCE("011") = ’0’

OR_REDUCE("000") = ’0’

OR_REDUCE("001") = ’1’

XOR_REDUCE("100") = ’1’

XOR_REDUCE("101") = ’0’

NAND_REDUCE("111") = ’0’

NAND_REDUCE("011") = ’1’
 Synopsys Packages • 10–17

std_logic_misc Package
NOR_REDUCE("000") = ’1’

NOR_REDUCE("001") = ’0’

XNOR_REDUCE("100") = ’0’

XNOR_REDUCE("101") = ’1’
10–18 • VeriBest FPGA Synthesis VHDL Reference Manual

Chapter 11
HDL Constructs
Many VHDL language constructs, although useful for simulation and other stages in the design pro-
cess, are not relevant to synthesis. Because these constructs cannot be synthesized, they are not sup-
ported by FPGA Express.

This appendix provides a list of all VHDL language constructs with the level of support for each, fol-
lowed by a list of VHDL reserved words.

This appendix describes

• VHDL Construct Support

• VHDL Reserved Words

VHDL Construct Support
A construct can be fully supported, ignored, or unsupported. Ignored and unsupported constructs are
defined as follows:

• Ignored means that the construct is allowed in the VHDL source, but is ignored by FPGA Express.

• Unsupported means that the construct is not allowed in the VHDL source and that FPGA Express
flags the construct as an error. If errors are found in a VHDL description, the description is not trans-
lated (synthesized).

Constructs are listed in the following order:

• Design units

• Data types

• Declarations

• Specifications

• Names

• Operators

• Operands and expressions

• Sequential statements

• Concurrent statements

• Predefined language environment
 HDL Constructs • 11–1

VHDL Construct Support
Design Units
entity

The entity statement part is ignored.

Generics are supported, but only of type INTEGER.

Default values for ports are ignored.

architecture
Multiple architectures are allowed.

Global signal interaction between architectures is unsupported.

configuration
Configuration declarations and block configurations are supported, but only to specify the top-level
architecture for a top-level entity.

Attribute specifications, use clauses, component configurations, and nested block configurations are
unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.

subprogram
Default values for parameters are unsupported. Assigning to indexes and slices of unconstrained out
parameters is unsupported, unless the actual parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a static value.

Resolution functions are supported for wired-logic and three-state functions only.

Subprograms can only be declared in packages and in the declaration part of an architecture.

Data Types
enumeration

Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported.

Integer types are automatically converted to bit vectors whose width is as small as possible to accom-
modate all possible values of the type’s range, either in unsigned binary for nonnegative ranges, or in
2’s-complement form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types is ignored in delay specifications.
11–2 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Construct Support
floating
Floating-point type declarations are ignored. The use of floating-point types is unsupported except for
floating-point constants used with Synopsys-defined attributes (see Chapter 9).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types is unsupported.

file
File type declarations are ignored, and the use of file types is unsupported.

incomplete type declarations
Incomplete type declarations are unsupported.

Declarations
constant

Constant declarations are supported, except for deferred constant declarations.

signal
register and bus declarations are unsupported.

Resolution functions are supported for wired and three-state functions only.

Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

file
File declarations are unsupported.

interface
buffer and linkage are translated to out and inout, respectively.

alias
Alias declarations are ignored.

component
Component declarations that list a name other than a valid entity name are unsupported.
 HDL Constructs • 11–3

VHDL Construct Support
attribute
Attribute declarations are fully supported. However, the use of user-defined attributes is unsupported.

Specifications
attribute

others and all are unsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined attributes is unsupported.

configuration
Configuration specifications are unsupported.

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of user-defined attributes is unsupported.

Names
simple

Simple names are fully supported.

selected
Selected (qualified) names outside of a use clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception. Indexing an unconstrained out parameter in a
procedure is unsupported.

slice
Slice names are fully supported, with one exception. Using a slice of an unconstrained out parameter
in a procedure is unsupported unless the actual parameter is an identifier.

attribute
Only the following predefined attributes are supported: base, left, right, high, low, range,
reverse_range, and length.

event and stable attributes are supported only as described with the wait and if statements (see
Chapter 6).

User-defined attribute names are unsupported.

The use of attributes with selected names (name.name’attribute) is unsupported.
11–4 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Construct Support
Operators
logical

Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are both fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported.

The / (division), mod, and rem operators are supported only when both operands are constant or
when the right operand is a constant power of 2.

miscellaneous
The ** operator is supported only when both operands are constant or when the left operand is 2.

The abs operator is fully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.

Operands and Expressions
based literals

Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals
Physical literals are ignored.

strings
Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.
 HDL Constructs • 11–5

VHDL Construct Support
function calls
Function conversions on input ports are not supported, because type conversions on formal ports in a
connection specification are unsupported.

qualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.

static expressions
Static expressions are fully supported.

universal expressions
Floating-point expressions are unsupported, except in a Synopsys-recognized attribute definition.

Infinite-precision expressions are not supported.

Precision is limited to 32 bits; all intermediate results are converted to integer.

Sequential Statements
wait

The wait statement is unsupported unless it is of one the following forms:

wait until clock = VALUE;

wait until clock’ event and clock = VALUE;

wait until not clock’ stable and clock = VALUE;

where VALUE is 0, 1 or an enumeration literal whose encoding is 0 or 1. A wait statement in this form
is interpreted to mean “wait until the falling (VALUE is 0) or rising (VALUE is 1) edge of the signal
named clock.”

wait statements cannot be used in subprograms or in for loops.

assertion
assertion statements are ignored.

signal
Guarded signal assignment is unsupported.

transport and after are ignored.

Multiple waveform elements in signal assignment statements are unsupported.

variable
variable statements are fully supported.
11–6 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Construct Support
procedure call
Type conversion on formal parameters is unsupported.

Assignment to single bits of vectored ports is unsupported.

if
if statements are fully supported.

case
case statements are fully supported.

loop
for loops are supported, with two constraints: the loop index range must be globally static, and the
loop body must not contain a wait statement.

while loops are supported, but the loop body must contain at least one wait statement.

loop statements with no iteration scheme (infinite loops) are supported, but the loop body must con-
tain at least one wait statement.

next
next statements are fully supported.

exit
exit statements are fully supported.

return
return statements are fully supported.

null
null statements are fully supported.

Concurrent Statements
block

Guards on block statements are unsupported.

Ports and generics in block statements are unsupported.

process
Sensitivity lists in process statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guarded and transport keywords are ignored. Multiple waveforms are unsupported.
 HDL Constructs • 11–7

VHDL Construct Support
component instantiation
Type conversion on the formal port of a connection specification is unsupported.

generate
generate statements are fully supported.

Predefined Language Environment
severity_level type

severity_level type is unsupported.

time type
time type is unsupported.

now function
now function is unsupported.

TEXTIO package
The TEXTIO package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base, left, right, high, low, range,
reverse_range, and length.

The event and stable attributes are supported only in the if and wait statements, as described in
Chapter 6.
11–8 • VeriBest FPGA Synthesis VHDL Reference Manual

VHDL Reserved Words
VHDL Reserved Words
The following words are reserved for the VHDL language and cannot be used as identifiers:

abs if select

access in severity

after inout signal

alias is subtype

all

and label then

architecture library to

array linkage transport

assert loop type

attribute map units

begin mod until

block use

body nand

buffer new variable

bus next

nor wait

case not when

component null while

configuration with

constant of

on xor

disconnect open

downto or

others

else out

elsif

end package

entity port

exit procedure

process

file

for range

function record

register

generate rem

generic report

guarded return
 HDL Constructs • 11–9

VHDL Reserved Words
11–10 • VeriBest FPGA Synthesis VHDL Reference Manual

Index
Index
 expression 8-3, 8-5
register inference

 expressions 8-2

Symbols
5-4

- 5-5, 5-8
" 5-4
* 5-8, 5-10
+ 5-5, 5-8
/ 5-4, 5-8
= 5-4

A
abs (absolute value operator) 5-10
absolute value operator 5-10
abstraction 1-3
access (pointer) types 4-12
actual parameters (to subprograms) 3-18
adding operators 5-5
aggregate target 6-6
aggregates (array literals) 5-21
algorithms

processes 3-6
subprograms 3-17

and (logical operator) 5-3
architecture

concurrent statements 3-5
dataflow 3-2
declarations 3-5
hardware model 1-3
organization 3-5
overriding entity port names 3-15
signals 3-5
statement 3-13
structural 3-2

arithmetic operators 5-5
adding 5-5
multiplying 5-8
negation 5-8

array attributes 4-7
RANGE

example 6-16
using 4-7

array literals
as aggregates 5-21
as bit strings 5-16

array ordering 5-4
array types 4-5

array attributes 4-7
VeriBest FPGA
concatenating 5-5
constrained 4-6
defining

constrained 4-6
unconstrained 4-6

unconstrained 4-6
assignment

aggregate target 6-6
field target 6-5
indexed name target 6-3
signal 6-7
simple name target 6-2
slice target 6-4
variable 6-7

assignment statements 6-2
asynch_set_reset 8-14
asynch_set_reset,, see also
hdlin_ff_always_asynch_set_reset
asynchronous processes 8-4

example 8-31
asynchronous reset 8-11, 8-15
asynchronous sequential element inferencing 8-
1
Attributes 8-14
attributes

array 4-7
as operands 5-22
ENUM_ENCODING 4-3, 10-14

B
behavioral

constructs 1-3
binary arithmetic functions

example 10-8
binary bit string 5-16
bit string literals 5-16
BIT type 4-10
bit vectors

as bit strings 5-16
bit width (of operands) 5-12
BIT_VECTOR type 4-10, 10-2
block statement 7-6
blocks 3-6
Boolean reduction functions 10-17
BOOLEAN type 4-10
buffer (port mode) 3-12
built_in directive

logic functions 10-14
type conversion 10-16
using 10-14

built_in pragma
example of using 10-14
 Synthesis VHDL Reference Manual • Index–1

Index
C
carry-out bit

example of using 10-10
case statement 6-10

illegal usages 6-12
catenation operator 5-5
character literals 5-15
CHARACTER type 4-10
combinational processes 6-33, 7-3
compiler directives,, see also directives)
component declaration 7-14
component implication 6-25, 8-29

example 6-25
latches and registers 6-33
registers 8-1
three-state 8-33

component instantiation
statement 7-13

component instantiation statement 3-27
component instantiations 3-6
components

declarations 3-26
generics 3-26

in design hierarchy 3-25
instantiation 3-27

search order 3-27
port map 3-28

computable operands 5-12
concurrent procedure call 7-7

eqivalent process 7-7
concurrent signal assignment 7-9

conditional signal assignment 7-10
selected signal assignment 7-11

concurrent statements 7-1
supported 11-7

conditional signal assignment 7-10
equivalent process 7-11

conditionally-assigned variable 8-9
constants

declarations 3-22
constrained array 4-6
CONV_INTEGER functions 10-5
CONV_SIGNED functions 10-5, 10-6
CONV_UNSIGNED functions 10-5
conversion functions 10-7

std_logic_arith package 10-5

D
data types

supported 11-2
dataflow

architecture 3-2
VeriBest FPGA Synthesis VHDL Reference Man
constructs 1-4
declarations 11-3
declaring constant

incorrect use of port name 3-15
declaring signal

incorrect use of port name example 3-15
description style

data types 2-2
description styles

asynchronous designs 2-2
design hierarchy 2-1
language constructs 2-3
register selection 2-2

design 3-3
files 3-4

Design Compiler
component instantiation 3-27
designs (VHDL entities) 3-25
restructuring 1-4
synthesis and optimization 1-4

design flow 1-4
design styles

design constraints 2-2
design units 11-2
designs

hierarchy 3-25
directives 9-1

built_in 10-3
using 10-14

component implication 6-25
map_to_entity 6-24, 7-8
resolution_method 3-24
return_port_name 6-25
translate_off 9-2, 10-16
translate_on 9-2

E
edge expression () 8-3
entity

architectures 3-13
example 3-2

as design in Design Compiler 3-25
design hierarchy 3-1
example 3-14
generic specifications 3-12

example 3-12
hardware model 1-3
implementation 3-1
interface 3-1
overriding port names 3-15
port specifications 3-12
specification

example 3-1
ual • Index–2

Index
syntax 3-11
ENUM_ENCODING attribute 4-3, 10-14
enumerated types

ordering 5-4
enumeration literals 4-2, 5-15
enumeration types 4-2

encoding 4-3
values 4-4

ENUM_ENCODING attribute 4-3
enumeration literals 4-2

equality functions
example 10-12

equality operators 5-4
examples

asynchronous process 8-32
case statement

enumerated type 6-10
combinational process 7-3
component implication 6-26
flip-flop inference

asynchronous reset 8-11
synchronous reset 8-15

for..generate 7-16
function call 6-23
if statement 6-9
inference

flip-flop 8-11
latch 8-7

latch inference 8-7
processes 8-32
sequential processes 7-4
simulation driver 9-2
subprograms

component implication 6-26
declarations 6-20
function call 6-23

synchronous process 8-32
three-state component 8-33

registered input 8-35
two-phase clocked design 8-10
wait statement

multiple waits 6-30
exit statement 6-18
exponentiation operator 5-10
expressions 5-1

supported 11-5

F
field target 6-5
file types 4-12
files 3-4
finite-state machine

examples
VeriBest FPGA
synchronous with asynchronous reset 8-
12

flip-flop inference 8-28
asynchronous reset 8-11
example 8-11
synchronous reset 8-15

flip-flops 8-1
floating point types 4-12
for..generate statement

example 7-16
syntax 7-15

for..loop statement 6-14
and exit statement 6-18
and next statement 6-16

formal parameters (to subprograms) 3-18
function call 5-22
functional description 1-5
functions 3-17

body
syntax 3-19

calling 6-23
declarations

example 3-18
syntax 3-17

description 6-20
implementations

mapped to component 6-26
mapped to gates 6-28

return statement 6-24

G
generate statements

for..generate 7-15
if..generate 7-15

generic map (component instantiation) 3-28
generics 3-12

in components 3-26

H
hardware description languages (HDLs)

advantages 1-2
design methodology 1-2

hdlin_ff_always_asynch_set_reset 8-28
HDLs (see hardware description languages) 1-1
hexadecimal bit string 5-16
high impedance state 8-33

I
identifiers 5-16

enumeration literals 5-15
if statement 6-8

creating registers 8-2
if..generate statement
 Synthesis VHDL Reference Manual • Index–3

Index
syntax 7-17
implying registers 8-1
in (port mode) 3-12
indexed name target 6-3
indexed names 5-17

computability 5-17
using 5-17

inout (port mode) 3-12
instantiation 3-25

search order 3-27
INTEGER type 4-10

and subtypes 4-11
integer types

defining 4-5
encoding 4-5

bit width 4-5
range 4-5

K
keywords 11-9

L
latch inference 8-28

automatic 8-8
example 8-7
local variables 8-9
restrictions 8-9

latches 8-1
literals

as operands 5-14
bit strings 5-16
character 5-15
enumeration 5-15
numeric 5-14
string 5-15

logic optimization 1-2
logical operators 5-3
loop statement 6-13

M
map_to_entity directive 6-24, 7-8
mod (multiplying operator) 5-8
multiplication using shifts 10-13
multiply-driven signals 7-5
multiplying operators 5-8

N
named notation 3-29
names 11-4

attributes 5-22
field names 5-20
indexed names 5-17
qualified 5-23
VeriBest FPGA Synthesis VHDL Reference Man
record names 5-20
slice names 5-18

nand (logical operator) 5-3
NATURAL subtype 4-10
next statement 6-16

in named loops 6-17
non-computable operands 5-13
nor (logical operator) 5-3
not (logical operator) 5-3
null range 5-19
null slice 5-19
null statement 6-34
numeric literals 5-14

O
octal bit string 5-16
operands 5-1

aggregates 5-21
attributes 5-22
bit width 5-12
computable 5-12
field 5-20
function call 5-22
identifiers 5-16
indexed names 5-17
literal 5-14

character 5-15
enumeration 5-15
numeric 5-14
string 5-15

non-computable 5-13
qualified expressions 5-23
record 5-20
slice names 5-18
supported 11-5
type conversions 5-24

operators 5-1
absolute value 5-10
adding 5-5
arithmetic

adding 5-5
multiplying 5-8
negation 5-8

array
catenation 5-5
relational 5-4

catenation 5-5
defined 5-2
equality 5-4
exponentiation 5-10
logical 5-3
multiplying 5-8

restrictions on use 5-8
ual • Index–4

Index
ordering 5-4
and array types 5-4
and enumerated types 5-4

overloading 3-21
syntax 3-21

precedence 5-2
predefined 5-2
relational 5-4
sign 5-8
supported 11-5
unary 5-8

or (logical operator) 5-3
ordering functions

example 10-11
ordering operators 5-4
others (in aggregates) 5-22
others (in case statement) 6-10
out (port mode) 3-12
overloading

enumeration literals 4-3, 5-15
operators 3-21
resolving by qualification 5-23
subprograms 3-20

P
packages 3-8

bodies 3-9
syntax 3-10

declarations 3-9
example 3-10
syntax 3-9

description 3-8
names 3-9
organization 3-8
structure 3-9
Synopsys-supplied 10-1
using 3-8

parameters
mode 3-18
profile 3-20

performance constraints 2-2
physical types 4-12
port map (component instantiation) 3-28
port modes 3-12
ports

as signals 3-22
positional notation 3-29
POSITIVE subtype 4-10
pragmas,, see also directives)
predefined attributes

supported 11-4
predefined language environment 11-8
predefined VHDL attributes
VeriBest FPGA
array 4-7
procedure calls 3-6
procedures 3-17

body
syntax 3-19

calling 6-21
declarations

examples 3-18
syntax 3-17

process statement 7-2
processes 3-6

as algorithms 3-6
asynchronous 8-4
combinational 6-33

example 7-3
declarations 3-6
description 3-6
hardware model 1-3
organization 3-6
sensitivity lists 7-2
sequential 6-33

example 7-4
sequential statements in 3-6
synchronous 8-4
wait statement 6-29

Q
qualified expressions 5-23

R
record operands 5-20
record types 4-8
register inference 8-1

efficient usages 8-29
example 8-32
flip-flop 8-11
if statement 8-2
if vs. wait 8-3
latches 8-7
restrictions 8-5
signal edge 8-2
templates 8-4
wait statement 8-2
wait vs. if 8-3

relational operators 5-4
rem (multiplying operator) 5-8
reserved words 11-9
resolution functions 3-22

creating 3-23
resolution_method three_state (directive) 3-24
resolution_method wired_and (directive) 3-24
resolution_method wired_or (directive) 3-24
resolved signals 3-23
 Synthesis VHDL Reference Manual • Index–5

Index
return statement 6-24
return_port_name directive 6-25

S
selected signal assignment 7-11

equivalent process 7-12
sensitivity lists 7-2
sequential processes 6-33, 7-4
sequential statements 6-1

supported 11-6
shift functions

example 10-12
shift operations

example 10-13
signal assignments 3-6
signals

assignments 6-2, 6-7
can be ports 3-22
concurrent signal assignment 7-9
conditional signal assignment 7-10
declarations 3-22
drivers 7-5
edge detection 8-2
hardware model 1-3
in packages 3-9
registering 8-30
resolved 3-23
selected signal assignment 7-11
three-state 7-5

SIGNED data type 10-4
SIGNED type 10-2

defined 10-4
simple name target 6-3
simulation 1-5, 1-6

driver example 9-2
place in the design process 1-5
test vectors 1-5

slice names 5-18
limitations 5-19

slice target 6-4
STANDARD package 4-10
std_logic_1164 Package 10-1
std_logic_1164 package 10-1
std_logic_arith Package 10-1, 10-2
std_logic_arith package 10-1

10-8, 10-11, 10-12
_REDUCE functions 10-17
arithmetic functions 10-7
Boolean reduction functions 10-17
built_in functions 10-3
comparison functions 10-10
CONV_INTEGER functions 10-5
CONV_SIGNED functions 10-5, 10-6
VeriBest FPGA Synthesis VHDL Reference Man
CONV_UNSIGNED functions 10-5
conversion functions 10-7
data types 10-4
modifying the package 10-3
ordering functions 10-10
shift functions 10-12
SYNOPSYS data types 4-12
using the package 10-2

std_logic_misc Package 10-17
std_logic_misc package 10-1, 10-17
string literals 5-15

bit 5-16
STRING type 4-10
structural

architecture 3-2
components in 3-27
constructs 1-4
example 3-29

structural description 1-5
subprograms 3-7

actual parameters 3-18
bodies 3-19

examples 3-20
calling 6-20

examples 3-18
declarations 3-17

examples 3-18
parameters 3-18
syntax 3-19

defined 6-19
defining 6-19
formal parameters 3-18
mapping to components 6-25

example 6-25
overloading 3-20
parameters

declarations 3-18
modes 3-18
profile 3-20

procedure vs. function 6-20
procedures and functions 3-17

subtype
defining 4-12

subtypes
declarations 3-21

SYN_FEED_THRU
example of using 10-16

synch_set_reset 8-15
synch_set_reset,, see also
hdlin_ff_always_sync_set_reset
synchronous processes 8-4

example 8-32
ual • Index–6

Index
synchronous reset 8-15
SYNOPSYS data types

std_logic_arith package 4-12
Synopsys packages 10-1

std_logic_misc package 10-17
synthetic comments,, see also directives)

T
test vectors

simulation 1-5
TEXTIO package 4-9
three-state

registered input 8-35
three-state inference 8-33
three-state signals 7-5
translate_off directive 9-2, 10-16
translate_on directive 9-2
two-phase design 8-10
type conversions 5-24
types

converting 5-24
declarations 3-21

U
unary arithmetic functions

example 10-9
unary operators 5-8
unconstrained array 4-6
UNSIGNED data type 10-4
UNSIGNED type 10-2

defined 10-4
unsupported types 4-12
use statement 3-8

V
variable assignments 6-2
variables

assignments 6-7
conditionally-assigned 8-9
declarations 3-25

verification, of description implementation 1-6
VHDL

abstraction 1-3
access (pointer) types 4-12
aggregates 5-21
architecture 1-3
architectures 3-5, 7-1
array types 4-5
assignment statements 6-2
BIT type 4-11
BIT_VECTOR type 4-12
block statement 7-6
BOOLEAN type 4-11
VeriBest FPGA
case statement 6-10
CHARACTER type 4-11
component implication 6-25
component instantiation 7-13
components 1-3, 3-25

declarations 3-26
instantiation 3-27

concurrent procedure call 7-7
concurrent statements 7-1

supported 11-7
constants 3-22
constructs 3-3
data types

supported 11-2
declarations 11-3
defining designs 3-11
description style 2-1
design 3-3

files 3-4
design hierarchy 2-1, 3-25
design units 11-2
directives 9-1
entity 1-3, 3-1

architecture 3-1
specification 3-1

enumeration types 4-2
exit statement 6-18
expressions 5-1

supported 11-5
file types 4-12
floating point types 4-12
for..loop statement 6-14
functions 3-17
generate statement 7-15
generics 3-12
hardware model 1-2
identifiers 5-16
if statement 6-8
INTEGER type 4-11
integer type 4-5
keywords 11-9
literals 5-14
modeling hardware 1-2
names 11-4
NATURAL subtype 4-11
next statement 6-16
null statement 6-34
operands

supported 11-5
operators 5-1

precedence 5-2
predefined 5-2
 Synthesis VHDL Reference Manual • Index–7

Index
supported 11-5
overloading

operators 3-21
subprograms 3-20

packages 3-8
physical types 4-12
port modes 3-12
POSITIVE subtype 4-11
predefined attributes

supported 11-4
predefined data types 4-9
predefined language environment 11-8
predefined operators 5-2
procedures 3-17
process statement 7-2
processes 1-3, 3-6
qualified expressions 5-23
record types 4-8
register inference 2-2
reserved words 11-9
resolution functions 3-22
return statement 6-24
sensitivity lists 7-2
sequential statements

supported 11-6
signal assignment 6-7
signals 1-3, 3-22
STANDARD package 4-10
STRING type 4-12
subprograms 3-7, 6-19
subtype 4-12
subtypes 3-21, 4-1
synthesis policy

constructs 2-3
description style 2-1

TEXTIO package 4-9
three-state components 8-33
type conversion 5-24
types 3-21, 4-1
unsupported types 4-12
use packages 3-8
variable assignment 6-7
variables 3-25
wait statement 6-29

VHDL Compiler
attributes

supported 11-4
Synopsys 11-4

component implication 6-25
design hierarchy 2-1
directives 9-1

resolution_method 3-24
VeriBest FPGA Synthesis VHDL Reference Man
enumeration encoding 4-3
operators

supported 11-5
resolution_method directive 3-24
sensitivity lists 7-2
source directives 9-1
wait statement

limitations 6-32
usages 6-29

W
wait statement 6-29

creating registers 8-2
example

multiple waits 6-30

X
xor (logical operator) 5-3
ual • Index–8

	Cover
	Warranties and Liabilities

	Table of Contents
	FPGA Express Cover - VHDL Reference Manual
	Copyright Notice

	Chapter 1 - Using FPGA Express with VHDL
	Hardware Description Languages
	Typical Uses for HDLs
	Advantages of HDLs

	About VHDL
	FPGA Express Design Process
	Using FPGA Express to Compile a VHDL Design
	Design Methodology

	Chapter 2 - Description Styles
	Design Hierarchy
	Data Types
	Design Constraints
	Register Selection
	Asynchronous Designs
	Language Constructs

	Chapter 3 - Describing Designs
	VHDL Entities
	VHDL Constructs
	Entities
	Architectures
	Configurations
	Processes
	Subprograms
	Packages
	Using a Package
	Package Structure
	Package Declarations
	Package Bodies

	Defining Designs
	Entity Specifications
	Entity Generic Specifications
	Entity Port Specifications

	Entity Architectures
	Entity Configurations
	Subprograms
	Subprogram Declarations
	Subprogram Bodies
	Subprogram Overloading
	Operator Overloading

	Type Declarations
	Subtype Declarations
	Constant Declarations
	Signal Declarations
	Resolution Functions
	Variable Declarations

	Structural Design
	Using Hardware Components
	Component Declaration
	Sources of Components
	Consistency of Component Ports

	Component Instantiation Statement
	Mapping Generic Values
	Mapping Port Connections

	Technology�Independent Component Instantiation

	Chapter 4 - Data Types
	Enumeration Types
	Enumeration Overloading
	Enumeration Encoding
	Enumeration Encoding Values

	Integer Types
	Array Types
	Constrained Array
	Unconstrained Array
	Array Attributes

	Record Types
	Predefined VHDL Data Types
	Data Type BOOLEAN
	Data Type BIT
	Data Type CHARACTER
	Data Type INTEGER
	Data Type NATURAL
	Data Type POSITIVE
	Data Type STRING
	Data Type BIT_VECTOR

	Unsupported Data Types
	Physical Types
	Floating Point Types
	Access Types
	File Types

	SYNOPSYS Data Types
	Subtypes

	Chapter 5 - Expressions
	Operators
	Logical Operators
	Relational Operators
	Adding Operators
	Unary (Sign) Operators
	Multiplying Operators
	Miscellaneous Arithmetic Operators

	Operands
	Operand Bit Width
	Computable Operands
	Literals
	Numeric Literals
	Character Literals
	Enumeration Literals
	String Literals

	Identifiers
	Indexed Names
	Slice Names
	Limitations on Null Slices
	Limitations on Noncomputable Slices

	Records and Fields
	Aggregates
	Attributes
	Function Calls
	Qualified Expressions
	Type Conversions

	Chapter 6 - Sequential Statements
	Assignment Statements
	Assignment Targets
	Simple Name Targets
	Indexed Name Targets
	Slice Targets
	Field Targets
	Aggregate Targets

	Variable Assignment Statement
	Signal Assignment Statement
	Variable Assignment
	Signal Assignment

	if Statement
	Evaluating condition
	Using the if Statement to Imply Registers and Latc...

	case Statement
	Using Different Expression Types
	Invalid case Statements

	loop Statements
	loop Statement
	while .. loop Statement
	for .. loop Statement

	next Statement
	exit Statement
	Subprograms
	Subprogram Calls
	Procedure Calls
	Function Calls

	return Statement
	Mapping Subprograms to Components (Entities)

	wait Statement
	Inferring Synchronous Logic
	Combinational vs. Sequential Processes

	null Statement

	Chapter 7 - Concurrent Statements
	process Statements
	Combinational Process Example
	Sequential Process Example
	Driving Signals

	block Statement
	Concurrent Procedure Calls
	Concurrent Signal Assignments
	Conditional Signal Assignment
	Selected Signal Assignment

	Component Instantiations
	generate Statements
	for .. generate Statement
	if . . generate Statement

	Chapter 8 - Register and Three State Inference
	Register Inference
	Using Register Inference
	Describing Clocked Signals
	wait vs if Statements
	Recommended Use of Register Inference Capabilities...
	Restrictions on Register Capabilities

	Delays in Registers
	Describing Latches
	Automatic Latch Inferencing
	Restrictions on Latch Inference Capabilities
	Example—Design with Two�Phase Clocks

	Describing Flip�Flops
	Flip�Flop with Asynchronous Reset
	Example—Synchronous Design with Asynchronous Reset...

	Attributes
	async_set_reset
	Latch with Asynchronous Set or Clear Inputs
	sync_set_reset
	Flip�Flop with Synchronous Reset Input
	async_set_reset_local
	sync_set_reset_local
	async_set_reset_local_all
	sync_set_reset_local_all
	one_hot
	one_cold

	FPGA Express Latch and Flip�Flop Inference
	Efficient Use of Registers
	Example—Using Synchronous and Asynchronous Process...

	Three�State Inference
	Assigning the Value Z
	Latched Three�State Variables

	Chapter 9 - FPGA Express Directives
	Notation for FPGA Express Directives
	FPGA Express Directives
	Translation Stop and Start Directives
	Resolution Function Directives
	Component Implication Directives

	Chapter 10 - Synopsys Packages
	std_logic_1164 Package
	std_logic_arith Package
	Using the Package
	Modifying the Package
	Data Types
	UNSIGNED
	SIGNED

	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Shift Functions
	Multiplication Using Shifts

	ENUM_ENCODING Attribute
	pragma built_in
	Two�Argument Logic Functions
	One�Argument Logic Functions
	Type Conversion

	translate_off Directive

	std_logic_misc Package

	Chapter 11 - HDL Constructs
	VHDL Construct Support
	Design Units
	Data Types
	Declarations
	Specifications
	Names
	Operators
	Operands and Expressions
	Sequential Statements
	Concurrent Statements
	Predefined Language Environment

	VHDL Reserved Words

	Index

