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Chapter 1
Using FPGA Express with VHDL
FPGA Express translates and optimizes a VHDL description to an internal gate-level equivalent for-
mat. This format is then compiled for a given FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:

•  Hardware Description Languages

•  About VHDL

•  About FPGA Express

•  Using FPGA Express

•  A Model of the Design Process

The United States Department of Defense, as part of its Very-High-Speed Integrated Circuit (VHSIC) 
program, developed VHSIC HDL (VHDL) in 1982. VHDL describes the behavior, function, inputs, and 
outputs of a digital circuit design. VHDL is similar in style and syntax to modern programming lan-
guages, but includes many hardware-specific constructs. 

FPGA Express reads and parses the supported VHDL syntax. Chapter 11 lists all VHDL constructs 
and includes the level of Synopsys support provided for each construct.

Hardware Description Languages
Hardware description languages (HDLs) are used to describe the architecture and behavior of discrete 
electronic systems. 

HDLs were developed to deal with increasingly complex designs. An analogy is often made to the his-
tory of what can be called software description languages, from machine code (transistors and solder), 
to assembly language (netlists), to high-level languages (HDLs).

Top-down, HDL-based system design is most useful in large projects, where several designers or 
teams of designers are working concurrently. HDLs provide structured development. After major archi-
tectural decisions have been made, and major components and their connections have been identi-
fied, work can proceed independently on subprojects.

Typical Uses for HDLs
HDLs typically support a mixed-level description where structural or netlist constructs can be mixed 
with behavioral or algorithmic descriptions. With this mixed-level capability, you can describe system 
architectures at a high level of abstraction; then incrementally refine a design into a particular compo-
                Using FPGA Express with VHDL • 1–1



About VHDL
nent-level or gate-level implementation. Alternatively, you can read an HDL design description into 
FPGA Express, then direct the compiler to synthesize a gate-level implementation automatically.

Advantages of HDLs
A design methodology that uses HDLs has several fundamental advantages over a traditional 
gate-level design methodology. Among the advantages are the following:

•  You can verify design functionality early in the design process, and immediately simulate a design 
written as an HDL description. Design simulation at this higher level, before implementation at the 
gate-level, allows you to test architectural and design decisions.

•  FPGA Express provides logic synthesis and optimization, so you can automatically convert a VHDL 
description to a gate-level implementation in a given technology. This methodology eliminates the 
former gate-level design bottleneck and reduces circuit design time and errors introduced when 
hand-translating a VHDL specification to gates. With FPGA Express logic optimization, you can 
automatically transform a synthesized design to a smaller and faster circuit. You can apply informa-
tion gained from the synthesized and optimized circuits back to the VHDL description, perhaps to 
fine-tune architectural decisions.

•  HDL descriptions provide technology-independent documentation of a design and its functionality. 
An HDL description is more easily read and understood than a netlist or schematic description. 
Since the initial HDL design description is technology-independent, you can later reuse it to generate 
the design in a different technology, without having to translate from the original technology.

•  VHDL, like most high-level software languages, provides strong type checking. A component that 
expects a four-bit-wide signal type cannot be connected to a three- or five-bit-wide signal; this mis-
match causes an error when the HDL description is compiled. If a variable’s range is defined as 1 to 
15, an error results from assigning it a value of 0. Incorrect use of types has been shown to be a 
major source of errors in descriptions. Type checking catches this kind of error in the HDL descrip-
tion even before a design is generated.

About VHDL
VHDL is one of just a few HDLs in widespread use today. VHDL is recognized as a standard HDL by 
the IEEE (IEEE Standard 1076, ratified in 1987) and by the United States Department of Defense 
(MIL-STD-454L). 

VHDL divides entities (components, circuits, or systems) into an external or visible part (entity name 
and connections) and an internal or hidden part (entity algorithm and implementation). After you define 
the external interface to an entity, other entities can use that entity when they all are being developed. 
This concept of internal and external views is central to a VHDL view of system design. An entity is 
defined, with respect to other entities, by its connections and behavior. You can explore alternate 
implementations (architectures) of an entity without changing the rest of the design.

After you define an entity for one design, you can reuse it in other designs as needed. You can 
develop libraries of entities for use by many designs, or for a family of designs.

The VHDL model of hardware is shown in Figure 1-1.
1–2 • VeriBest FPGA Synthesis VHDL Reference Manual



About VHDL
Figure 1-1: VHDL Hardware Model 

A VHDL entity (design) has one or more input, output, or inout ports that are connected (wired) to 
neighboring systems. An entity is itself composed of interconnected entities, processes, and compo-
nents, all which operate concurrently. Each entity is defined by a particular architecture, which is com-
posed of VHDL constructs such as arithmetic, signal assignment, or component instantiation 
statements. 

In VHDL, independent processes model sequential (clocked) circuits, using flip-flops and latches, and 
combinational (unclocked) circuits, using only logic gates. Processes can define and call (instantiate) 
subprograms (subdesigns). Processes communicate with each other by signals (wires). 

A signal has a source (driver), one or more destinations (receivers), and a user-defined type, such as 
“color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL you can describe discrete electronic systems of 
varying complexity (systems, boards, chips, modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their level of abstraction: behavioral, 
dataflow, and structural. These categories are described as follows:

behavioral

The functional or algorithmic aspects of a design, expressed in a sequential 
VHDL process.

Entity 

Process Process

(Signals)

Sequential
Process

(Architecture)

Component

red, blue

0 to 15 

Combinational

Process
wait ... ;

X and (Y xor Z);

Subprogram

if A 

end if;
 else Y
 then X

Ports
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FPGA Express Design Process
dataflow

The view of data as flowing through a design, from input to output. An 
operation is defined in terms of a collection of data transformations, 
expressed as concurrent statements.

structural

The view closest to hardware; a model where the components of a design 
are interconnected. This view is expressed by component instantiations.

FPGA Express Design Process
FPGA Express performs three functions: 

•  Translates VHDL to an internal format

•  Optimizes the block level representation through various optimization methods

•  Maps the design’s logical structure for a specific FPGA technology library.

FPGA Express synthesizes VHDL descriptions according to the VHDL synthesis policy defined in 
Chapter 2, “Description Styles.” The Synopsys VHDL synthesis policy has three parts: design method-
ology, design style, and language constructs. You use the VHDL synthesis policy to produce high 
quality VHDL-based designs. 

Using FPGA Express to Compile a VHDL Design
When a VHDL design is read into FPGA Express, it is converted to an internal database format so 
FPGA Express can synthesize and optimize the design. When FPGA Express optimizes a design, it 
may restructure part or all the design. You control the degree of restructuring. Options include:

•  Fully preserving a design’s hierarchy

•  Allowing full modules to be moved up or down in the hierarchy

•  Allowing certain modules to be combined with others

•  Compressing the entire design into one module (called flattening the design) if it is beneficial

The following section describes the design process that uses FPGA Express with a VHDL Simulator.

Design Methodology
Figure 1-2 shows a typical design process that uses FPGA Express and a VHDL Simulator. Each step 
of this design model is described in detail.
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Design Methodology
Figure 1-2: Design Flow

The steps in Figure 1-2 are explained below.

1. Write a design description in VHDL. This description can be a combination of structural and func-
tional elements (as shown in Chapter 2, “Description Styles“). This description is used with both 
FPGA Express and the Synopsys VHDL simulator.

2. Provide VHDL-language test drivers for the simulator. For information on writing these drivers, see 
the appropriate simulator manual. The drivers supply test vectors for simulation and gather output 
data.

3. Simulate the design by using a VHDL simulator. Verify that the description is correct.

4. Use FPGA Express to synthesize and optimize the VHDL design description into a gate-level 
netlist. FPGA Express generates optimized netlists to satisfy timing constraints for a targeted FPGA 
architecture.

 VHDL
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Simulator
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Output
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Design Methodology
5. Use your FPGA development system to link the FPGA technology-specific version of the design to 
the VHDL simulator. The development system includes simulation models and interfaces required 
for the design flow.

6. Simulate the technology-specific version of the design with the VHDL simulator. You can use the 
original VHDL simulation drivers from Step 2 because module and port definitions are preserved 
through the translation and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output of the original VHDL 
description simulation (Step 3) to verify that the implementation is correct.
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Chapter 2
Description Styles
The style of your initial VHDL description has a major effect on the characteristics of the resulting 
gate-level design synthesized by FPGA Express. The organization and style of a VHDL description 
determines the basic architecture of your design. Because FPGA Express automates most of the 
logic-level decisions required in your design, you can concentrate on architectural tradeoffs.

You can make some of the high-level architectural decisions that are needed by using FPGA Express. 
Certain VHDL constructs are well suited for synthesis. To make the decisions and use the constructs, 
you need to become familiar with the following concepts:

•  Design Hierarchy

•  Data Types

•  Design Constraints

•  Register Selection

•  Asynchronous Designs

•  Language Constructs

Design Hierarchy
FPGA Express maintains the hierarchical boundaries you define when using the structural view in 
VHDL. These boundaries have two major effects: 

1. Each design entity specified in your VHDL description is synthesized separately and is maintained 
as a distinct design. The constraints for the design are maintained, and each design entity can be 
optimized separately in FPGA Express. 

2. Component instantiations within VHDL descriptions are maintained during input. The instance 
name you give each user-defined entity is carried through to the gate-level implementation. 

Chapter 3 discusses design entities, and Chapter 7 discusses component instantiations.

Note:  FPGA Express does not automatically maintain or create a hierarchy of  other nonstructural 
VHDL constructs such, as blocks, processes, loops, functions, and procedures. These elements 
of a VHDL description are translated in the context of their design.  After reading in a VHDL 
design, you can group together the logic of a process, function, or procedure within the FPGA 
Express Implementation Window.

The choice of hierarchical boundaries has a significant effect on the quality of the synthesized design. 
Using FPGA Express, you can optimize a design while preserving these hierarchical boundaries. How-
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ever, FPGA Express only partially optimizes logic across hierarchical modules.  Full optimization is 
possible across those parts of the design hierarchy that are collapsed in FPGA Express.

Data Types
In VHDL, you must assign a data type to all ports, signals, and variables. The data type of an object 
defines the operations that can be applied to it. For example, the AND operator is defined for objects of 
type BIT, but not for objects of type INTEGER. 

Data types are also important when your design is synthesized. The data type of an object determines 
its size (bit width) and its bit organization. The proper choice of data types greatly improves design 
quality and helps minimize errors.

See Chapter 4 for a discussion of VHDL data types.

Design Constraints
You can describe the performance constraints for a design module within the FPGA Express Imple-
mentation Window.  Refer to the FPGA Express User’s Guide for further information.

Register Selection
The placement of registers and the clocking scheme are important architectural decisions. There are 
two ways to define registers in your VHDL description.  Each method has specific advantages:

•  You can directly instantiate registers into a VHDL description, selecting from any element in your 
FPGA library. Clocking schemes can be arbitrarily complex. You can choose between a flip-flop and 
a latch-based architecture. The major disadvantages of this approach are

•  The VHDL description is now specific to a given technology because you choose structural elements 
from that technology library. However, you can isolate this portion of your design as a separate 
entity, which you then connect to the remainder of the design.

•  The description is more difficult to write. 

•  You can use the VHDL if and wait statements to direct FPGA Express to infer latches and 
flip-flops from the description. The advantages of this approach directly counter the disadvantages of 
the previous approach. When using register inference, the VHDL description is technology-indepen-
dent and is much easier to write. This method allows FPGA Express to select the type of component 
inferred, on the basis of constraints. Therefore, if a specific component is necessary, instantiation 
should be used. Some types of registers and latches cannot be inferred.

See Chapter 8 for a discussion of register and latch inference.

Asynchronous Designs
You can use FPGA Express to construct asynchronous designs with multiple clocks and gated clocks. 
However, although these designs are logically (statically) correct, they might not simulate or operate 
correctly, because of race conditions.  
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Language Constructs
Another component of the VHDL synthesis policy is the set of VHDL constructs that describe your 
design, determine its architecture, and give consistently good results. The remainder of this manual 
discusses these constructs and their uses. 

The concepts mentioned earlier in this chapter are described in the manual as follows:

Design Hierarchy

Chapter 3 describes the use and importance of hierarchy in VHDL designs. 
Chapter 7 explains how to instantiate (apply) existing components.

Data Types

Chapter 4 describes data types and their uses.

Register Selection

You can instantiate registers with the component instantiation statement 
discussed in Chapter 3 and Chapter 7. Chapter 6, and Chapter 8 describe 
register inference with the VHDL if and wait statements.
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Chapter 3
Describing Designs
To describe a design in VHDL, you need to be familiar with the following concepts:

•  VHDL Entities

•  VHDL Constructs

•  Defining Designs

•  Structural Designs

VHDL Entities
Designs that are described with VHDL are composed of entities. An entity represents one level of the 
design hierarchy and can consist of a complete design, an existing hardware component, or a 
VHDL-defined object.

Each design has two parts: the entity specification and the architecture. The specification of an entity is 
its external interface. The architecture of an entity is its internal implementation. A design has only one 
entity specification (interface), but it can have multiple architectures (implementations). When an entity 
is compiled into a hardware design, a configuration specifies the architecture to use. An entity’s speci-
fication and architecture can be contained in separate VHDL source files or in one VHDL source file. 

Example 3-1 shows the entity specification of a simple logic gate (a 2-input NAND gate).

Example 3-1: VHDL Entity Specification

entity NAND2 is 

  port(A, B: in BIT;    -- Two inputs, A and B

       Z: out BIT);     -- One output, Z = (A and B)’

end NAND2;

Note:  In a VHDL description, a comment is prefixed by two hyphens (--). All characters from the 
hyphens to the end of the line are ignored by FPGA Express. The only exceptions to this rule 
are comments that begin with -- pragma or -- synopsys; these comments are FPGA 
Express directives.

After an entity statement declares an entity specification, that entity can be used by other entities in 
a design. The internal architecture of an entity determines its function.

Examples 3-2, 3-3, and 3-4 show three different architectures for the entity NAND2. The three exam-
ples define equivalent implementations of NAND2. After optimization and synthesis, each implementa-
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tion produces the same circuit, probably a 2-input NAND gate in the target technology. The 
architecture description style you use for this entity depends on your own preferences.

Example 3-2 shows how the entity NAND2 can be implemented with two components from a technol-
ogy library. The entity inputs A and B are connected to AND gate U0, producing an intermediate signal 
I. Signal I is then connected to inverter U1, producing the entity output Z.

Example 3-2: Structural Architecture for Entity NAND2

architecture STRUCTURAL of NAND2 is

  signal I:  BIT;

  component AND_2           -- From a technology library

      port(I1, I2: in BIT;

           O1: out BIT);

  end component;

  component INVERT          -- From a technology library

      port(I1: in BIT;

           O1: out BIT);

  end component;

begin

  U0: AND_2  port map (I1 => A, I2 => B, O1 => I);

  U1: INVERT port map (I1 => I, O1 => Z);

end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND2 by its logical function.

Example 3-3: Dataflow Architecture for Entity NAND2 

architecture DATAFLOW of NAND2 is

begin

  Z <= A nand B;

end DATAFLOW;

Example 3-4 shows another implementation of NAND2.
3–2 • VeriBest FPGA Synthesis VHDL Reference Manual



VHDL Constructs
Example 3-4: RTL Architecture for Entity NAND2 

architecture RTL of NAND2 is

begin

  process(A, B)

  begin

    if (A = ’1’) and (B = ’1’) then

      Z <= ’0’;

    else 

      Z <= ’1’;

    end if;

  end process;

end RTL;

VHDL Constructs
The top-level VHDL constructs work together to describe a design. The description consists of

Entities

The interfaces to other designs.

Architectures

The implementations of design entities.  Architectures can specify 
connection through instantiation to other entities.

Configurations

The bindings of entities to architectures. 

Processes

Collections of sequentially executed statements. Processes are declared 
within architectures.

Subprograms

Algorithms that can be used by more than one architecture.

Packages

Collections of declarations used by one or more designs.

Entities
A VHDL design consists of one or more entities. Entities have defined inputs and outputs, and perform 
a defined function. Each design has two parts: an entity specification and an architecture. The entity 
specification defines the design’s inputs and outputs, and the architecture determines its function.
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You can describe a VHDL design in one or more files. Each file contains entities, architectures, or 
packages. Packages define global information that can be used by several entities. You can often 
reuse VHDL design files in later design projects.

Figure 3-1 shows a block diagram of a VHDL design’s hierarchical organization into files.

Figure 3-1: Design Organization

VHDL Design

VHDL Files

Entities

Declare the interfaces to other 
entities and designs.

Define the implementations of 
entities.

Architectures

Packages

Declare constants, data types, components, and subprograms 
used by several designs or entities or both.
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Architectures
An architecture determines the function of an entity. Figure 3-2 shows the organization of an architec-
ture. Not all architectures contain every construct shown.

Figure 3-2: Architecture Organization

An architecture consists of a declaration section where you declare signals, types, constants, compo-
nents, and subprograms, followed by a collection of concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent statements) to each other, and 
to the outside world, through interface ports. You declare each signal with a type that determines the 
kind of data it carries. Types, constants, components, and subprograms declared in an architecture 
are local to that architecture. To use these declarations in more than one entity or architecture, place 
them in a package, as described under "Packages" later in this chapter.

Each concurrent statement in an architecture defines a unit of computation that reads signals, per-
forms a computation that is based on the signal values, and assigns computed values to signals. Con-
current statements compute all values simultaneously.  Although the order of concurrent statements 
has no effect on execution order, the statements often coordinate their processing by communicating 
with each other through signals.

The five kinds of concurrent statements are blocks, signal assignments, procedure calls, component 
instantiations, and processes. They are described as follows:

Architecture

Declarations
Declare signals used to communicate between concurrent statements, 
and between concurrent statements and the interface ports. Declare

Concurrent Statements

Processes

Define a new algorithm.

Blocks

Signal Assignments

Procedure Calls

Component Instantiations
Collect concurrent statements

Compute values and assign them to

together.

signals.

Invoke a predefined algorithm.

Create an instance of
another entity.

types, constants, components, and subprograms used in the architecture.
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blocks

Group together a set of concurrent statements.

signal assignments

Assign computed values to signals or interface ports.

procedure calls

Call algorithms that compute and assign values to signals.

component instantiations

Create an instance of an entity, connecting its interface ports to signals or 
interface ports of the entity being defined. See "Structural Design" later in 
this chapter.

processes

Define sequential algorithms that read the values of signals, and compute 
new values to assign to other signals. Processes are discussed in the next 
section.

Concurrent statements are described in Chapter 7.

Configurations
A configuration specifies one combination of an entity and its associated architecture.

Note:  FPGA Express supports only configurations that associate one top-level entity with an architec-
ture. 

Processes
Processes contain sequential statements that define algorithms. Unlike concurrent statements, 
sequential statements are executed in order.  The order allows you to perform step-by-step computa-
tions. Processes read and write signals and interface port values to communicate with the rest of the 
architecture and with the enclosing system.

Figure 3-3 shows the organization of constructs in a process. Processes need not use all the con-
structs listed.

Processes are unique in that they behave like concurrent statements to the rest of the design, but they 
are internally sequential. In addition, only processes can define variables to hold intermediate values in 
a sequence of computations.

Because the statements in a process are sequentially executed, several constructs are provided to 
control the order of execution, such as if and loop statements.

Chapter 6 describes sequential statements.
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Figure 3-3: Process Organization

Subprograms
Subprograms, like processes, use sequential statements to define algorithms that compute values. 
Unlike processes, however, they cannot directly read or write signals from the rest of the architecture. 
All communication is through the subprogram’s interface; each subprogram call has its own set of 
interface signals.

The two types of subprograms are functions and procedures.  A function returns a single value directly.  
A procedure returns zero or more values through its interface.  Subprograms are useful because you 
can use them to perform repeated calculations, often in different parts of an architecture.

Chapter 6 describes subprograms.

Process

Declarations
Internal variables that hold temporary values in the sequence
of computations, as well as types, constants, components, and 
subprograms used locally.

Sequential Statements

loop Statements
Execute statements repeatedly.

Signal Assignments
Compute values and assign them
to signals.

Procedure Calls
Invoke predefined algorithms.

Variable Assignments
Store intermediate values 

if Statements
Conditionally execute groups of
sequential statements.

case Statements
Select a group of sequential
statements to execute.

null Statements
Perform no action; these are
placeholders.

wait Statements

Wait for a clock signal.

next Statements
Skip remainder of a loop.

exit Statements
Terminate the execution 
of a loop.in variables.
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Packages
You can collect constants, data types, component declarations, and subprograms into a VHDL pack-
age that can then be used by more than one design or entity. Figure 3-4 shows the typical organization 
of a package. 

Figure 3-4: Typical Package Organization 

A package must contain at least one of the constructs listed in Figure 3-4.

•  Constants in packages often declare system-wide parameters, such as data-path widths.

•  VHDL data type declarations are often included in a package to define data types used throughout a 
design. All entities in a design must use common interface types; for example, common address bus 
types.

•  Component declarations specify the interfaces to entities that can be instantiated in the design.

•  Subprograms define algorithms that can be called anywhere in a design.

Packages are often sufficiently general so that you can use them in many different designs.  For exam-
ple, the std_logic_1164 package defines data types std_logic and std_logic_vector. 

Using a Package
The use statement allows an entity to use the declarations in a package. The supported syntax of the 
use statement is

use LIBRARY_NAME.PACKAGE_NAME.ALL;

LIBRARY_NAME is the name of a VHDL library, and PACKAGE_NAME is the name of the included pack-
age. A use statement is usually the first statement in a package or entity specification source file.  
Synopsys does not support different packages with the same name when they exist in different librar-
ies.  No two packages can have the same name.

Package

Constant Declarations

Define constant values used 

Component Declarations

Declare interfaces for design

Subprograms

Declare algorithms used by

Type Declarations

Declare the data types used 
by designs. by designs.

entities. designs.
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Package Structure
Packages have two parts, the declaration and the body:

package declaration 

Holds public information, including constant, type, and
subprogram declarations.

package body 

Holds private information, including local types and subprogram 
implementations (bodies).

Note:  When a package declaration contains subprogram declarations, a corresponding package body 
must define the subprogram bodies.

Package Declarations
Package declarations collect information needed by one or more entities in a design. This information 
includes data type declarations, signal declarations, subprogram declarations, and component decla-
rations.

Note:  Signals declared in packages cannot be shared across entities. If two entities both use a signal 
from a given package, each entity has its own copy of that signal.

Although you can declare all this information explicitly in each design entity or architecture in a system, 
it is often easier to declare system information in a separate package. Each design entity in the system 
can then use the system’s package.

The syntax of a package declaration is

package package_name is

  { package_declarative_item }

end [ package_name ] ;

where package_name is the name of this package.

A package_declarative_item is any of these:

•  use clause (to include other packages)

•  Type declaration

•  Subtype declaration

•  Constant declaration

•  Signal declaration

•  Subprogram declaration

•  Component declaration
                Describing Designs • 3–9



VHDL Constructs
Example 3-5 shows some package declarations. 

Example 3-5: Sample Package Declarations

package EXAMPLE is

  type BYTE is range 0 to 255;

  subtype NIBBLE is BYTE range 0 to 15;

  constant BYTE_FF: BYTE := 255;

  signal ADDEND: NIBBLE;

  component BYTE_ADDER

    port(A, B:      in BYTE;

         C:        out BYTE;

         OVERFLOW: out BOOLEAN);

  end component;

  function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the example declarations above, add a use statement at the beginning of your design descrip-
tion as follows:

use WORK.EXAMPLE.ALL;

entity . . .

architecture . . .

Further examples of packages and their declarations are given in the packages supplied by Synopsys. 
These packages are listed in Chapter 10.

Package Bodies
Package bodies contain the implementations of subprograms listed in the package declaration. How-
ever, this information is never seen by designs or entities that use the package. Package bodies can 
include the implementations (bodies) of subprograms declared in the package declaration and in inter-
nal support subprograms.

The syntax of a package body is
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package body package_name is

  { package_body_declarative_item }

end [ package_name ] ;

where package_name is the name of the associated package.

A package_body_declarative_item  is any of these:

•  use clause

•  Subprogram declaration

•  Subprogram body

•  Type declaration

•  Subtype declaration

•  Constant declaration

For an example of a package declaration and body, see the std_logic_arith package supplied 
with FPGA Express. This package is listed in Chapter 10.

Defining Designs
The high-level constructs discussed earlier in this chapter involve 

•  Entity specifications (interfaces)

•  Entity architectures (implementations)

•  Subprograms

Entity Specifications
An entity specification defines the characteristics of an entity that must be known before that entity can 
be connected to other entities and components.

For example, before you can connect a counter to other entities, you must specify the number and 
types of its inputs and outputs. The entity specification defines the ports (inputs and outputs) of an 
entity. 

The syntax of an entity specification is

entity entity_name is

  [ generic( generic_declarations) ; ]

  [ port( port_declarations) ; ]

end [ entity_name ] ;

entity_name is the name of the entity, generic_declarations determine local constants used 
for sizing or timing the entity, and port_declarations determine the number and type of inputs and 
outputs.  Other declarations are not supported in the entity specification.
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Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the bit widths of components (such 
as adders) or provide internal timing values.

A generic can have a default value. A generic is assigned a nondefault value only when the entity is 
instantiated (see “Component Instantiation Statement” on page 3-27‘‘) or configured (see "“Entity Con-
figurations” on page 3-16). Inside an entity, a generic is a constant value. 

The syntax of generic_declarations is

generic(

[ constant_name : type [ := value ] 

 { ; constant_name : type [ := value ] } 

);

constant_name is the name of a generic constant, type is a previously defined data type, and the 
optional value is the default value of constant_name.

Note:  FPGA Express supports only INTEGER type generics.

Entity Port Specifications
The syntax of port_declarations is

port(

[ port_name :  mode port_type

 { ; port_name :  mode port_type}]

);

port_name is the name of a port; mode is either in, out, inout, or buffer; and port_type is a 
previously defined data type.

The four port modes are

in Can only be read.

out Can only be assigned a value.

inout Can be read and assigned a value. The value read is that of the port’s 
incoming value, not the assigned value (if any).

buffer Similar to out, but can be read. The value read is the assigned value. It 
can have only one driver. For more information on drivers, see "Driving 
Signals" in Chapter 7..

Example 3-6 shows an entity specification for a 2-input N-bit comparator, with a default bit width of 8.
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Example 3-6: Interface for an N-Bit Counter

-- Define an entity (design) called COMP

-- that has 2 N-bit inputs and one output.

entity COMP is

  generic(N:  INTEGER := 8);      -- default is 8 bits

  port(X, Y:  in  BIT_VECTOR(0 to N-1);

       EQUAL: out BOOLEAN);

end COMP;

Entity Architectures
Each entity architecture defines one implementation of the entity’s function. An architecture can range 
in abstraction from an algorithm (a set of sequential statements within a process) to a structural netlist 
(a set of component instantiations).

The syntax of an architecture is

architecture architecture_name of entity_name is

  { block_declarative_item }

begin

  { concurrent_statement }

end [ architecture_name ] ;

architecture_name is the name of the architecture, and entity_name is the name of the entity 
being implemented.

A block_declarative_item is any of these:

•  use clause

•  Subprogram declaration

•  Subprogram body

•  Type declaration

•  Subtype declaration

•  Constant declaration

•  Signal declaration

•  Component declaration

Concurrent statements are described in Chapter 7.

Example 3-7 shows a complete circuit description for a three-bit counter, entity specification 
(COUNTER3), and an architecture (MY_ARCH). This example also includes a schematic of the resulting 
synthesized circuit. 
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Example 3-7: An Implementation of a Three-Bit Counter

entity COUNTER3 is

port ( CLK :  in bit;

       RESET: in bit;

       COUNT: out integer range 0 to 7);

end COUNTER3;

architecture MY_ARCH of COUNTER3 is

signal COUNT_tmp : integer range 0 to 7;

begin

  process

  begin

     wait until (CLK’event and CLK = ’1’);

                     -- wait for the clock

     if RESET = ’1’ or COUNT_tmp = 7 then

                     -- Ck. for RESET or max. count

          COUNT_tmp <= 0;

     else COUNT_tmp <= COUNT_tmp + 1;

                     -- Keep counting

     end if;

  end process;

  COUNT <= COUNT_tmp;

end MY_ARCH;
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Figure 3-5: Three-Bit Counter Schematic

Note:  In an architecture, you must not declare constants or signals with the same name as any of the 
entity’s ports. If you declare a constant or signal with a port’s name, the new declaration hides 
that port name. If the new declaration is included in the architecture declaration (as shown in 
Example 3-8) and not in an inner block, FPGA Express reports an error.

Example 3-8: Incorrect Use of a Port Name when Declaring Signals or Constants

entity X is 

  port(SIG, CONST: in  BIT;

       OUT1, OUT2: out BIT);

end X;

architecture EXAMPLE of X is

  signal   SIG  : BIT;

  constant CONST: BIT := ’1’;

begin

...

 

end EXAMPLE;
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The error messages generated for Example 3-8 are:

  signal   SIG  : BIT;

           ^

Error:  (VHDL-1872) line 13

    Illegal redeclaration of SIG.

  constant CONST: BIT := ’1’;

           ^

Error:  (VHDL-1872) line 14

    Illegal redeclaration of CONST.

Entity Configurations
A configuration defines one combination of an entity and architecture for a design.

Note:  FPGA Express supports only configurations that associate one top-level entity with an architec-
ture. 

The supported syntax for a configuration is

configuration configuration_name of entity_name is

  for architecture_name

  end for;

end [ configuration_name ] ;

configuration_name is the name of this configuration, entity_name is the name of a top-level 
entity, and architecture_name is the name of the architecture to use for entity_name.

Example 3-9 shows a configuration for the three-bit counter in Example 3-7. This configuration associ-
ates the counter’s entity specification (COUNTER3) with an architecture (MY_ARCH). 

Example 3-9: Configuration of Counter in Example 3-7

configuration MY_CONFIG of COUNTER3 is

  for MY_ARCH

  end for;

end MY_CONFIG;

Note:  If you do not specify a configuration for an entity with multiple architectures, IEEE VHDL speci-
fies that the last architecture read is used.  This is determined from the .mra (most recently 
analyzed) file.
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Subprograms
Subprograms describe algorithms that are meant to be used more than once in a design. Unlike com-
ponent instantiation statements, when a subprogram is used by an entity or another subprogram, a 
new level of design hierarchy is not automatically created. However, you can manually define a sub-
program as a new level of design hierarchy in the FPGA Express Implementation Window.

Two types of subprograms, procedures and functions, can contain zero or more parameters:

procedures

Procedures have no return value, but can return information to their callers 
by changing the values of their parameters.

functions

A function has a single value that it returns to the caller, but it cannot 
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

declaration

Declares the interface to a subprogram: its name, its parameters, and its 
return value (if any).

body

Defines an algorithm that gives the subprogram’s expected results.

When you declare a subprogram in a package, the subprogram declaration must be in the package 
declaration, and the subprogram body must be in the package body. A subprogram defined inside an 
architecture has a body, but does not have a corresponding subprogram declaration.

Subprogram Declarations
A subprogram declaration lists the names and types of its parameters and, for functions, the type of its 
return value.

The syntax of a procedure declaration is

procedure proc_name [ ( parameter_declarations ) ] ;

proc_name is the name of the procedure.

The syntax of a function declaration is

function func_name [ ( parameter_declarations ) ]

    return type_name ;

func_name is the name of the function, and type_name is the type of the function’s returned value. 
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The syntax of parameter_declarations is the same as the syntax of port_declarations:

[ parameter_name    :  mode  parameter_type

 { ; parameter_name :  mode  parameter_type}]

parameter_name is the name of a parameter; mode is either in, out, inout, or buffer; and 
parameter_type is a previously defined data type. 

Procedure parameters can use any mode. Function parameters must use only mode in.  Signal 
parameters of type range cannot be passed to a subprogram.  

Example 3-10 shows sample subprogram declarations for a function and a procedure.

Example 3-10: Two Subprogram Declarations

type BYTE   is array (7 downto 0) of BIT;

type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;

  -- Returns TRUE if NUM is even. 

procedure BYTE_TO_NIBBLES(B:             in BYTE;

                          UPPER, LOWER: out NIBBLE);

  -- Splits a BYTE into UPPER and LOWER halves.

Note:  When you call a subprogram, actual parameters are substituted for the declared formal param-
eters. Actual parameters are either constant values or signal, variable, constant, or port names. 
An actual parameter must support the formal parameter’s type and mode. For example, an input 
port cannot be used as an out actual parameter, and a constant can be used only as an in 
actual parameter.

Example 3-11 shows some calls to the subprogram declarations from Example 3-10.

Example 3-11: Two Subprogram Calls

signal INT : INTEGER;

variable EVEN : BOOLEAN;

. . .

INT <= 7;

EVEN := IS_EVEN(INT);

. . .

variable TOP, BOT: NIBBLE;

. . .

BYTE_TO_NIBBLES("00101101", TOP, BOT);
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Subprogram Bodies
A subprogram body defines an implementation of a subprogram’s algorithm.

The syntax of a procedure body is

procedure procedure_name [ (parameter_declarations) ] is

  { subprogram_declarative_item }

begin

  { sequential_statement }

end [ procedure_name ] ;

The syntax of a function body is

function function_name [  (parameter_declarations) ]

    return type_name is

  { subprogram_declarative_item }

begin

  { sequential_statement }

end [ function_name ] ;

A subprogram_declarative_item is any of these:

•  use clause

•  Type declaration

•  Subtype declaration

•  Constant declaration

•  Variable declaration

•  Attribute declaration

•  Attribute specification

•  Subprogram declaration

•  Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram declarations in Example 3-10.
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Example 3-12: Two Subprogram Bodies

function IS_EVEN(NUM: in INTEGER) 

    return BOOLEAN is

begin

  return ((NUM rem 2) = 0);

end IS_EVEN;

procedure BYTE_TO_NIBBLES(B: in BYTE;

                          UPPER, LOWER: out NIBBLE) is

begin

  UPPER := NIBBLE(B(7 downto 4));

  LOWER := NIBBLE(B(3 downto 0));

end BYTE_TO_NIBBLES;

Subprogram Overloading
You can overload subprograms; more than one subprogram can have the same name. Each subpro-
gram that uses a given name must have a different parameter profile.

A parameter profile specifies a subprogram’s number and type of parameters. This information deter-
mines which subprogram is called when more than one subprogram has the same name. Overloaded 
functions are also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but different parameter profiles.

Example 3-13: Subprogram Overloading

type SMALL is range 0 to 100;

type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;

function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;

signal B: BOOLEAN;

. . .

B <= IS_ODD(A_NUMBER); -- Will call the first

                       -- function above
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Operator Overloading
Predefined operators such as +, and, and mod can also be overloaded. By using overloading, you can 
adapt predefined operators to work with your own data types.

For example, you can declare new logic types, rather than use the predefined types BIT and INTE-
GER. However, you cannot use predefined operators with these new types unless you declare over-
loaded operators for the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a new logic type.

Example 3-14: Operator Overloading

type NEW_BIT is (’0’, ’1’, ’X’);

  -- New logic type

function "and"(I1, I2: in NEW_BIT) return NEW_BIT;

function "or" (I1, I2: in NEW_BIT) return NEW_BIT;

  -- Declare overloaded operators for new logic type

. . .

signal A, B, C: NEW_BIT;

. . .

C <= (A and B) or C;

VHDL requires overloaded operator declarations to enclose the operator name or symbol in double 
quotation marks, because they are infix operators (they are used between operands). If you declared 
the overloaded operators without quotation marks, a VHDL tool considers them functions rather than 
operators.

Type Declarations 
Type declarations define the name and characteristics of a type. Types and type declarations are fully 
described in Chapter 4. A type is a named set of values, such as the set of integers, or the set (red, 
green, blue). An object of a given type, such as a signal, can have any value of that type.

Example 3-14 shows a type declaration for type NEW_BIT, and some functions and variables of that 
type.

Type declarations are allowed in architectures, packages, entities, blocks, processes, and subpro-
grams.

Subtype Declarations 
Use subtype declarations to define the name and characteristics of a constrained subset of another 
type or subtype. A subtype is fully compatible with its parent type, but only over the subtype’s range. 
Subtype declarations are described in Chapter 4.

The following subtype declaration (NEW_LOGIC) is a subrange of the type declaration in Example 3-14.
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subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’;

Subtype declarations are allowed wherever type declarations are allowed: in architectures, packages, 
entities, blocks, processes, and subprograms.

Constant Declarations 
Constant declarations create named values of a given type. The value of a constant can be read but 
not changed. 

Constant declarations are allowed in architectures, packages, entities, blocks, processes, and subpro-
grams.

Example 3-15 shows some constant declarations.

Example 3-15: Constant Declarations 

constant WIDTH: INTEGER := 8;

constant X    : NEW_BIT := ’X’;

You can use constants in expressions, as described in Chapter 5, and as source values in assignment 
statements, as described in Chapter 6.

Signal Declarations 
Signal declarations create new named signals (wires) of a given type. Signals can be given default (ini-
tial) values.  However, these initial values are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have associated resolution functions, 
as described in the next section. 

Example 3-16 shows two signal declarations.

Example 3-16: Signal Declarations 

signal A, B: BIT;

signal INIT: INTEGER := -1;

Note:  Ports are also signals, with the restriction that out ports cannot be read, and in ports cannot 
be assigned a value. You create signals either by port declarations or by signal declarations. 
You create ports only by port declarations.

You can declare signals in architectures, entities, and blocks, and use them in processes and subpro-
grams. Processes and subprograms cannot declare signals for internal use.

You can use signals in expressions, as described in Chapter 5. Signals are assigned values by signal 
assignment statements, as described in Chapter 6.

Resolution Functions 
Resolution functions are used with signals that can be connected (wired together). For example, if two 
drivers are directly connected to a signal, the resolution function determines whether the signal value 
is the AND, OR, or three-state function of the driving values. 

Use resolution functions to assign the driving value when there are multiple drivers. For simulation, 
you can write an arbitrary function to resolve bus conflicts. 
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Note:  A resolution function might change the value of a resolved signal, even if all drivers have the 
same value.

The resolution function for a signal is part of that signal’s subtype declaration. You create a resolved 
signal in four steps: 

-- Step 1

type SIGNAL_TYPE is ...                             

-- signal’s base type is SIGNAL_TYPE

-- Step 2

subtype res_type is res_function SIGNAL_TYPE;

-- name of the subtype is res_type

-- name of function is res_function

-- signal type is res_type (a subtype of  SIGNAL_TYPE)

...

-- Step 3

function res_function (DATA: ARRAY_TYPE)  
  return SIGNAL_TYPE is

-- declaration of the resolution function

-- ARRAY_TYPE must be an unconstrained array of SIGNAL_TYPE

...

-- Step 4

signal resolved_signal_name: res_type;

-- resolved_signal_name is a resolved signal

...

1. The signal’s base type is declared.

2. The resolved signal’s subtype is declared as a subtype of the base type and includes the name of 
the resolution function.

3. The resolution function itself is declared (and later defined).

4. Resolved signals are declared as resolved subtypes.

FPGA Express does not support arbitrary resolution functions. Only wired AND, wired OR, and 
three-state functions are allowed. FPGA Express requires that you mark all resolution functions with a 
special directive indicating the kind of resolution performed. 

Note:  FPGA Express considers the directive only when creating hardware. The body of the resolution 
function is parsed but ignored. Using unsupported VHDL constructs (see Appendix C) gener-
ates errors.   

Do not connect signals that use different resolution functions.   FPGA Express supports only 
one resolution function per network.
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The three resolution function directives are 

-- synopsys resolution_method wired_and

-- synopsys resolution_method wired_or

-- synopsys resolution_method three_state

Note:  Pre-synthesis and post-synthesis simulation results might not match if the body of the resolu-
tion function used by the simulator does not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to use compiler directives for 
resolution functions. The signal’s base type is the predefined type BIT.

Example 3-17: Resolved Signal and Its Resolution Function

package RES_PACK is

  function RES_FUNC(DATA: in BIT_VECTOR) return BIT;

  subtype RESOLVED_BIT is RES_FUNC BIT;

end;

package body RES_PACK is

  function RES_FUNC(DATA: in BIT_VECTOR) return BIT is

    -- pragma resolution_method wired_and

  begin

  -- The code in this function is ignored by FPGA Express

  -- but parsed for correct VHDL syntax

    for I in DATA’range loop

      if DATA(I) = ’0’ then

         return ’0’;

      end if;

    end loop;

    return ’1’;

  end;

end;

use work.RES_PACK.all;

entity WAND_VHDL is

  port(X, Y: in BIT; Z: out RESOLVED_BIT);

end WAND_VHDL;
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architecture WAND_VHDL of WAND_VHDL is

begin

  Z <= X;

  Z <= Y;

end WAND_VHDL;

Variable Declarations 
Variable declarations define a named value of a given type. 

You can use variables in expressions, as described in Chapter 5. Variables are assigned values by 
variable assignment statements, as described in Chapter 6.

Example 3-18 shows some variable declarations.

Example 3-18: Variable Declarations 

variable A, B: BIT;

variable INIT: NEW_BIT;

Note:  Variables are declared and used only in processes and subprograms, because processes and 
subprograms cannot declare signals for internal use.

Structural Design
FPGA Express works with one or more designs. Each entity (and architecture) in a VHDL description 
is translated to a single design in FPGA Express. Designs can also originate from formats other than 
VHDL, such as equations, Programmable Logic Arrays (PLAs), state machines, other HDLs, or 
netlists.

A design can contain instances of lower-level designs, connected by nets (signals) to the lower-level 
design’s ports. These lower-level designs can consist of other entities from a VHDL design, designs 
represented in some other Synopsys format, or cells from a technology library. By instantiating designs 
within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and component instantiation state-
ments. To include a design, you must specify its interface with a component declaration. You can then 
create an instance of that design by using the component instantiation statement.

If your design consists only of VHDL entities, every component declaration statement corresponds to 
an entity in the design. If your design uses designs or technology library cells not described in VHDL, 

X

Y
Z

AN2
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create component declarations without corresponding entities. You can then use FPGA Express to 
associate the VHDL component with the non-VHDL design or cell. 

Note:  To simulate your VHDL design, you must provide entity and architecture descriptions for all 
component declarations.

Using Hardware Components
VHDL includes constructs to use existing hardware components. These structural constructs can be 
used to define a netlist of components.

The following sections describe how to use components and how FPGA Express configures these 
components.

Component Declaration
You must declare a component in an architecture or package before you can use (instantiate) it. A 
component declaration statement is similar to the entity specification statement described earlier, in 
that it defines the component’s interface.

The syntax for a component declaration is

component identifier

  [ generic( generic_declarations ) ]

  [ port( port_declarations ) ]

end component ;

where identifier is the name of this type of component, and the syntax of 
generic_declarations and port_declarations is the same as defined previously for entity 
specifications.

Example 3-19 shows a simple component declaration statement.

Example 3-19: Component Declaration of a Two-Input AND Gate

component AND2

  port(I1, I2: in BIT;

       O1:     out BIT);

end component;

Example 3-20 shows a component declaration statement that uses a generic parameter.
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Example 3-20: Component Declaration of an N-Bit Adder

component ADD

  generic(N: POSITIVE);

  port(X, Y:   in  BIT_VECTOR(N-1 downto 0);

       Z:      out BIT_VECTOR(N-1 downto 0);

       CARRY:  out BIT)

end component;

Although the component declaration statement is similar to the entity specification, it serves a different 
purpose. The component declaration is required to make the design entity AND2 or ADD usable, or vis-
ible, within an architecture. After a component is declared, it can be used in a design.

Sources of Components
A declared component can come from the same VHDL source file, from a different VHDL source file, 
from another format such as Electronic Data Interchange Format (EDIF) or state table, or from a tech-
nology library. If the component is not in one of the current VHDL source files, it must already be com-
piled by FPGA Express.

When a design that uses components is compiled by FPGA Express, previously compiled components 
are searched for by name in the following order:

1. In the current design.

2. In the input source file or files identified in the FPGA Express Implementation Window.

3. In the libraries of technology-specific FPGA components.

Consistency of Component Ports 
FPGA Express checks for consistency among its VHDL entities. For other entities, the port names are 
taken from the original design description.

•  For components in a technology library, the port names are the input and output pin names.

•  For EDIF designs, the port names are the EDIF port names. 

The bit widths of each port must also match. FPGA Express verifies matching for VHDL components, 
because the port types must be identical. For components from other sources, FPGA Express checks 
when linking the component to the VHDL description.

Component Instantiation Statement
The component instantiation statement instantiates and connects components to form a netlist (struc-
tural) description of a design. A component instantiation statement can create a new level of design 
hierarchy.
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The syntax of the component instantiation statement is

instance_name : component_name 

[ generic map (

   generic_name => expression 

   { , generic_name => expression } 

) ]

port map (

   [ port_name => ] expression 

   { , [ port_name => ] expression } 

);

instance_name is the name of this instance of component type component_name.   

The optional generic map assigns nondefault values to generics. Each generic_name is the name 
of a generic, exactly as declared in the corresponding component declaration statement. Each 
expression evaluates to an appropriate value.

The port map assigns the component’s ports to connections. Each port_name is the name of a port, 
exactly as declared in the corresponding component declaration statement. Each expression evalu-
ates to a signal value.

FPGA Express uses the following two rules to decide which entity and architecture are to be associ-
ated with a component instantiation:

1. Each component declaration must have an entity with the same name: a VHDL entity, a design 
from another source (format), or a library component. This entity is used for each component 
instantiation associated with the component declaration.

2. If a VHDL entity has more than one architecture, the last architecture input is used for each compo-
nent instantiation associated with that entity.  The .mra file determines the last architecture ana-
lyzed.

Mapping Generic Values
When you instantiate a component with generics, you can map generics to values. A generic without a 
default value must be instantiated with a generic map value.

For example, a four-bit instantiation of the component ADD from Example 3-20 might use the following 
generic map.

U1:  ADD generic map (N => 4) 
         port map (X, Y, Z, CARRY...);

The port map assigns component ports to actual signals; it is described in the next section.
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Mapping Port Connections 
You can specify port connections in component instantiation statements with either named or posi-
tional notation. With named notation, the port_name => construct identifies the specific ports of the 
component. With positional notation, the expressions for the component ports are simply listed in the 
declared port order.

Example 3-21 shows named and positional notation for the U5 component instantiation statement in 
Example 3-22.

Example 3-21: Equivalent Named and Positional Association

U5: or2 port map (O => n6, I1 => n3, I2 => n1);

  -- Named association

U5: or2 port map (n3, n1, n6);

  -- Positional association

Note:  When you use positional association, the instantiated port expressions (signals) must be in the 
same order as the declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTER3 design entity from Example 3-
7.

Example 3-22: Structural Description of a Three-Bit Counter

architecture STRUCTURE of COUNTER3 is

  component DFF

    port(CLK, DATA: in BIT;

         Q: out BIT);

  end component;

  component AND2

    port(I1, I2: in BIT;

         O: out BIT);

  end component;

  component OR2

    port(I1, I2: in BIT;

         O: out BIT);

  end component;

  component NAND2 

    port(I1, I2: in BIT;

         O: out BIT);

  end component;

  component XNOR2

    port(I1, I2: in BIT;

         O: out BIT);
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  end component;

  component INV

    port(I: in BIT;

         O: out BIT);

  end component;

  signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin

  u1: DFF port map(CLK, N1, N2);

  u2: DFF port map(CLK, N5, N3);

  u3: DFF port map(CLK, N9, N4);

  u4: INV port map(N2, N1);

  u5: OR2 port map(N3, N1, N6);

  u6: NAND2 port map(N1, N3, N7);

  u7: NAND2 port map(N6, N7, N5);

  u8: XNOR2 port map(N8, N4, N9);

  u9: NAND2 port map(N2, N3, N8);

  COUNT(0) <= N2;

  COUNT(1) <= N3;

  COUNT(2) <= N4;

end STRUCTURE;

Technology-Independent Component Instantiation
When you use a structural design style, you might want to instantiate logical components. Synopsys 
provides generic technology library GTECH for this purpose. This generic technology library contains 
technology-independent logical components such as: 

•  AND, OR, and NOR gates (2, 3, 4, 5, and 8)

•  one-bit adders and half adders

•  2-of-3 majority 

•  multiplexors

•  flip-flops and latches

•  multiple-level logic gates, such as AND-NOT, AND-OR, AND-OR-INVERT

You can use these simple components to create technology-independent designs. Example 3-23 
shows how an N-bit ripple-carry adder can be created from N one-bit adders.
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Example 3-23: Design That Uses Technology-Independent Components

library GTECH;

use gtech.gtech_components.all;

entity RIPPLE_CARRY is

  generic(N: NATURAL);

  port(A, B:       in BIT_VECTOR(N-1 downto 0);

       CARRY_IN:   in BIT;

       SUM:       out BIT_VECTOR(N-1 downto 0);

       CARRY_OUT: out BIT;);

end RIPPLE_CARRY;

architecture TECH_INDEP of RIPPLE_CARRY is

  signal CARRY: BIT_VECTOR(N downto 0);

begin

  CARRY(0) <= CARRY_IN;

  GEN: for I in 0 to N-1 generate

    U1: GTECH_ADD_ABC port map(

             A    => A(I), 

             B    => B(I), 
             C    => CARRY(I), 

             S    => SUM(I),
             COUT => CARRY(I+1));

  end generate GEN;

  CARRY_OUT <= CARRY(N);

end TECH_INDEP;
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Data Types
VHDL is a strongly typed language. Every constant, signal, variable, function, and parameter is 
declared with a type, such as BOOLEAN or INTEGER, and can hold or return only a value of that type.

VHDL predefines abstract data types, such as BOOLEAN, which are part of most programming lan-
guages, and hardware-related types, such as BIT, found in most hardware languages. VHDL pre-
defined types are declared in the STANDARD package, which is supplied with all VHDL 
implementations (see Example 4-12). Data types addresses information about

•  Enumeration Types

•  Integer Types

•  Array Types

•  Record Types 

•  Predefined VHDL Data Types

•  Unsupported Data Types

•  Synopsys Data Types

•  Subtypes

The advantage of strong typing is that VHDL tools can catch many common design errors, such as 
assigning an eight-bit value to a four-bit-wide signal, or incrementing an array index out of its range.

The following code shows the definition of a new type, BYTE, as an array of eight bits, and a variable 
declaration, ADDEND, that uses this type.

type BYTE is array(7 downto 0) of BIT;

variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data types. Some VHDL types are not 
supported for synthesis, such as REAL and FILE. 

The examples in this chapter show type definitions and associated object declarations. Although each 
constant, signal, variable, function, and parameter is declared with a type, only variable and signal 
declarations are shown here in the examples.  Constant, function, and parameter declarations are 
shown in Chapter 3.

VHDL also provides subtypes, which are defined as subsets of other types. Anywhere a type definition 
can appear, a subtype definition can also appear. The difference between a type and a subtype is that 
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a subtype is a subset of a previously defined parent (or base) type or subtype. Overlapping subtypes 
of a given base type can be compared against and assigned to each other. All integer types, for exam-
ple, are technically subtypes of the built-in integer base type (see "Integer Types," later in this chapter). 
Subtypes are described in the last section of this chapter.

Enumeration Types
An enumeration type is defined by listing (enumerating) all possible values of that type.

The syntax of an enumeration type definition is

type type_name is ( enumeration_literal 

                    {, enumeration_literal} );

type_name is an identifier, and each enumeration_literal is either an identifier (enum_6) or a 
character literal (’A’ ). 

An identifier is a sequence of letters, underscores, and numbers. An identifier must start with a letter 
and cannot be a VHDL reserved word, such as TYPE.  All VHDL reserved words are listed in 
Chapter 11.

A character literal is any value of type CHARACTER, in single quotes.

Example 4-1 shows two enumeration type definitions and corresponding variable and signal declara-
tions.

Example 4-1: Enumeration Type Definitions

type COLOR is (BLUE, GREEN, YELLOW, RED);

type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);

variable HUE: COLOR;

signal SIG: MY_LOGIC;

. . .

HUE := BLUE;

SIG <= ’Z’;
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Enumeration Overloading
You can overload an enumeration literal by including it in the definition of two or more enumeration 
types. When you use such an overloaded enumeration literal, FPGA Express can usually determine 
the literal’s type. However, under certain circumstances determination may be impossible. In these 
cases, you must qualify the literal by explicitly stating its type (see ‘‘Qualified Expressions" in 
Chapter 5). Example 4-2 shows how you can qualify an overloaded enumeration literal.

Example 4-2: Enumeration Literal Overloading

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

type PRIMARY_COLOR is (RED, YELLOW, BLUE);

...

A <= COLOR’(RED);

Enumeration Encoding
Enumeration types are ordered by enumeration value. By default, the first enumeration literal is 
assigned the value 0, the next enumeration literal is assigned the value 1, and so forth.

FPGA Express automatically encodes enumeration values into bit vectors that are based on each 
value’s position. The length of the encoding bit vector is the minimum number of bits required to 
encode the number of enumerated values. For example, an enumeration type with five values has a 
three-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with five values.

Example 4-3: Automatic Enumeration Encoding 

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED    ⇒ "000"

GREEN  ⇒ "001"

YELLOW ⇒ "010"

BLUE   ⇒ "011"

VIOLET ⇒ "100"

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify your own enumeration encodings 
with the ENUM_ENCODING attribute. This interpretation is specific to FPGA Express.

A VHDL attribute is defined by its name and type, and is then declared with a value for the attributed 
type, as shown in Example 4-4 below. 

Note:  Several VHDL synthesis-related attributes are declared in the ATTRIBUTES package supplied 
with FPGA Express. This package is listed in Chapter 10.  The section “Synthesis Attributes and 
Constraints” on page 1 describes how to use these VHDL attributes.
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The ENUM_ENCODING attribute must be a STRING containing a series of vectors, one for each enu-
meration literal in the associated type. The encoding vector is specified by ’0’ s, ’1’ s, ’D’ s, ’U’ s, 
and ’Z’ s separated by blank spaces. The meaning of these encoding vectors is described in the next 
section. The first vector in the attribute string specifies the encoding for the first enumeration literal, the 
second vector specifies the encoding for the second enumeration literal, and so on. The 
ENUM_ENCODING attribute must immediately follow the type declaration. 

Example 4-4 illustrates how the default encodings from Example 4-3 can be changed with the 
ENUM_ENCODING attribute.

Example 4-4: Using the ENUM_ENCODING Attribute

attribute ENUM_ENCODING: STRING;

  -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

attribute ENUM_ENCODING of 

  COLOR: type is "010 000 011 100 001";

  -- Attribute declaration

The enumeration values are encoded as follows:

RED    = "010"

GREEN  = "000"

YELLOW = "011"

BLUE   = "100"

VIOLET = "001"

The result is GREEN<VIOLET<RED<YELLOW<BLUE 

Note:  The interpretation of the ENUM_ENCODING attribute is specific to FPGA Express.  Other VHDL 
tools, such as simulators, use the standard encoding (ordering).

Enumeration Encoding Values
The possible encoding values for the ENUM_ENCODING attribute are:

’0’ Bit value 0

’1’ Bit value 1

’D’  Don’t-care (can be either 0 or 1).

’U’  Unknown.  If U appears in the encoding vector for an enumeration, you cannot use that 
enumeration literal except as an operand to the = and /=  operators. You can read an 
enumeration literal encoded with a U from a variable or signal, but you cannot assign it. 

For synthesis, the = operator returns FALSE and the /=  operator returns TRUE when 
either of the operands is an enumeration literal whose encoding contains U. 

’Z’ High impedance.  See ‘‘Three-State Inference" in Chapter 8 for more information.
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Integer Types
The maximum range of a VHDL integer type is −(¡¬¿−¿) to ¡¬¿−¿ (-2_147_483_647 .. 
2_147_483_647). Integer types are defined as subranges of this anonymous built-in type.  Multidigit 
numbers in VHDL can include underscores (_) to make them easier to read.

FPGA Express encodes an integer value as a bit vector whose length is the minimum necessary to 
hold the defined range and encodes integer ranges that include negative numbers as 2’s-complement 
bit vectors.

The syntax of an integer type definition is

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range is a subrange of the anony-
mous integer type.

Example 4-5 shows some integer type definitions.

Example 4-5: Integer Type Definitions

type PERCENT is range -100 to 100;

  -- Represented as an 8-bit vector

  --   (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;

  -- Represented as a 32-bit vector

  --   This is the definition of the INTEGER type

Note:  You cannot directly access the bits of an INTEGER or explicitly state the bit width of the type.  
For these reasons, Synopsys provides overloaded functions for arithmetic.  These functions are 
defined in the std_logic package, listed in Chapter 10.

Array Types
An array is an object that is a collection of elements of the same type. VHDL supports N-dimensional 
arrays, but FPGA Express supports only one-dimensional arrays. Array elements can be of any type. 
An array has an index whose value selects each element. The index range determines how many ele-
ments are in the array and their ordering (low to high, or high downto low). An index can be of any 
integer type.

You can declare multidimensional arrays by building one-dimensional arrays where the element type 
is another one-dimensional array, as shown in Example 4-6.
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Example 4-6: Declaration of Array of Arrays

type BYTE   is array (7 downto 0) of BIT;

type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The difference between these two 
arrays comes from the index range in the array type definition.

Constrained Array
A constrained array’s index range is explicitly defined; for example, an integer range (1 to 4). When 
you declare a variable or signal of this type, it has the same index range.

The syntax of a constrained array type definition is

type array_type_name is 

    array ( integer_range ) of type_name ;

array_type_name is the name of the new constrained array type, integer_range is a subrange of 
another integer type, and type_name is the type of each array element.

Example 4-7 shows a constrained array definition.

Example 4-7: Constrained Array Type Definition

type BYTE is array (7 downto 0) of BIT;

  -- A constrained array whose index range is

  -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Array
You define an unconstrained array’s index range as a type, for example, INTEGER. This definition 
implies that the index range can consist of any contiguous subset of that type’s values. When you 
declare an array variable or signal of this type, you also define its actual index range. Different declara-
tions can have different index ranges.

The syntax of an unconstrained array type definition is

type array_type_name is 

    array (range_type_name range <>) 

        of element_type_name ;

array_type_name is the name of the new unconstrained array type, 
range_type_name is the name of an integer type or subtype, and 
element_type_name is the type of each array element.

Example 4-8 shows an unconstrained array type definition and a declaration that uses it.
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Example 4-8: Unconstrained Array Type Definition

type BIT_VECTOR is array(INTEGER range <>) of BIT;

  -- An unconstrained array definition

. . .

variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool remembers the index range of each 
declaration. You can use array attributes to determine the range (bounds) of a signal or variable of an 
unconstrained array type. With this information, you can write routines that use  variables or signals of 
an unconstrained array type, independently of any one array variable’s or signal’s bounds.  The next 
section describes array attributes and how they are used.

Array Attributes
FPGA Express supports the following predefined VHDL attributes for use with arrays:

•  left

•  right

•  high

•  low

•  length

•  range

•  reverse_range

These attributes return a value corresponding to part of an array’s range.  Table 4-1 shows the values 
of the array attributes for the variable MY_VECTOR in Example 4-8.

Table 4-1: Array Index Attributes

Example 4-9 shows the use of array attributes in a function that ORs together all elements of a given 
BIT_VECTOR (declared in Example 4-8) and returns that value. 

MY_VECTOR’left 5

MY_VECTOR’right -5

MY_VECTOR’high 5

MY_VECTOR’low 5

MY_VECTOR’length 11

MY_VECTOR’range (5 down to -5)

MY_VECTOR’
reverse_range

(-5 to 5)
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Example 4-9: Use of Array Attributes

function OR_ALL (X: in BIT_VECTOR) return BIT is

  variable OR_BIT: BIT;

  begin

    OR_BIT := ’0’; 

    for I in X’range loop

      OR_BIT := OR_BIT or X(I);

    end loop;

    return OR_BIT;

  end;

Note that this function works for a BIT_VECTOR of any size.

Record Types
A record is a set of named fields of various types, unlike an array, which is composed of identical 
anonymous entries.  A record’s field can be of any previously defined type, including another record 
type.

Note:  Constants in VHDL of type record are not supported for synthesis (the initialization of records 
is not supported).

Example 4-11 shows a record type declaration (BYTE_AND_IX), three signals of that type, and some 
assignments.

Example 4-11: Record Type Declaration and Use

constant LEN:  INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

type BYTE_AND_IX is 

  record

    BYTE: BYTE_VEC;

    IX:   INTEGER range 0 to LEN;

  end record;

 

signal X, Y, Z: BYTE_AND_IX;

signal DATA: BYTE_VEC;

signal NUM:  INTEGER;

. . .
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X.BYTE <= "11110000";

X.IX   <= 2;

DATA <= Y.BYTE;

NUM  <= Y.IX;

Z <= X;

As shown in Example 4-11, you can read values from or assign values to records in two ways:

•  By individual field name

X.BYTE <= DATA;

X.IX   <= LEN;

•  From another record object of the same type

Z <= X;

Note:  A record type object’s individual fields are accessed by the object name, a period, and a field 
name:  X.BYTE or X.IX.  To access an element of the BYTE field’s array, use the array notation  
X.BYTE(2).  

Predefined VHDL Data Types
IEEE VHDL describes two site-specific packages, each containing a standard set of types and opera-
tions:  the STANDARD package and the TEXTIO package.

The STANDARD package of data types is included in all VHDL source files by an implicit use clause. 
The TEXTIO package defines types and operations for communication with a standard programming 
environment (terminal and file I/O). This package is not needed for synthesis, and therefore FPGA 
Express does not support it.

The FPGA Express implementation of the STANDARD package is listed in Example 4-12.  This STAN-
DARD package is a subset of the IEEE VHDL STANDARD package. Differences are described in 
‘‘Unsupported Data Types"  later in this chapter.
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Example 4-12: FPGA Express STANDARD Package

package STANDARD is

  type BOOLEAN is (FALSE, TRUE);

  type BIT is (’0’, ’1’);

  type CHARACTER is (

    NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

    BS,  HT,  LF,  VT,  FF,  CR,  SO,  SI, 

    DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

    CAN, EM,  SUB, ESC, FSP, GSP, RSP, USP,

    ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,

    ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,

    ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

    ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

    ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,

    ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,

    ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,

    ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

    ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, 

    ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,

    ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, 

    ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

  type INTEGER is range -2147483647 to 2147483647;

  subtype NATURAL is INTEGER range 0 to 2147483647;

  subtype POSITIVE is INTEGER range 1 to 2147483647;

  type STRING is array (POSITIVE range <>) 

       of CHARACTER;

  type BIT_VECTOR is array (NATURAL range <>) 

       of BIT;

end STANDARD;
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Data Type BOOLEAN 
The BOOLEAN data type is actually an enumerated type with two values, FALSE and TRUE, where 
FALSE < TRUE. Logical functions such as equality (=) and comparison (<) functions return a BOOL-
EAN value.

Convert a BIT value to a BOOLEAN value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type BIT 
The BIT data type represents a binary value as one of two characters, ’0’  or ’1’ . Logical operations 
such as and  can take and return BIT  values.

Convert a BOOLEAN value to a BIT  value as follows:

if (BOOLEAN_VAR) then

  BIT_VAR := ’1’;

else 

  BIT_VAR := ’0’;

end if;

Data Type CHARACTER 
The CHARACTER data type enumerates the ASCII character set. Nonprinting characters are repre-
sented by a three-letter name, such as NUL for the null character. Printable characters are represented 
by themselves, in single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;

. . .

CHARACTER_VAR := ’A’;

Data Type INTEGER
The INTEGER data type represents positive and negative whole numbers and zero.

Data Type NATURAL
The NATURAL data type is a subtype of INTEGER that is used to represent natural (nonnegative) num-
bers.

Data Type POSITIVE 
The POSITIVE data type is a subtype of INTEGER that is used to represent positive (nonzero and 
nonnegative) numbers.
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Data Type STRING 
The STRING data type is an unconstrained array of CHARACTER data types. A STRING value is 
enclosed in double quotation marks, as follows:

variable STRING_VAR: STRING(1 to 7);

. . .

STRING_VAR := "Rosebud";

Data Type BIT_VECTOR
The BIT_VECTOR data type represents an array of BIT values.

Unsupported Data Types
Some data types are either not useful for synthesis or are not supported. Unsupported types are 
parsed but ignored by FPGA Express. These types are listed and described below.

Chapter 11 describes the level of FPGA Express support for each VHDL construct.

Physical Types
FPGA Express does not support physical types, such as units of measure (for example, nS). Because 
physical types are relevant to the simulation process, FPGA Express allows but ignores physical type 
declarations.

Floating Point Types
FPGA Express does not support floating point types, such as REAL. Floating point literals, such as 
1.34, are allowed in the definitions of FPGA Express-recognized attributes.

Access Types
FPGA Express does not support access (pointer) types because no equivalent hardware construct 
exists.

File Types
FPGA Express does not support file (disk file) types. A hardware file is a RAM or ROM.

SYNOPSYS Data Types
The std_logic_arith package provides arithmetic operations and numeric comparisons on array 
data types. The package also defines two major data types:  UNSIGNED and SIGNED. These data 
types, unlike the predefined INTEGER type, provide access to the individual bits (wires) of a numeric 
value. For more information, see Chapter 10.

Subtypes
A subtype is defined as a subset of a previously defined type or subtype.  A subtype definition can 
appear wherever a type definition is allowed.
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Subtypes are a powerful way to use VHDL type checking to ensure valid assignments and meaningful 
data handling. Subtypes inherit all operators and subprograms defined for their parent (base) types.

Subtypes are also used for resolved signals to associate a resolution function with the signal type.  
(See "Signal Declarations" in Chapter 3 for more information.)

For example, in Example 4-12 NATURAL and POSITIVE are subtypes of INTEGER and they can be 
used with any INTEGER function. These subtypes can be added, multiplied, compared, and assigned 
to each other, as long as the values are within the appropriate subtype’s range. All INTEGER types and 
subtypes are actually subtypes of an anonymous predefined numeric type.

Example 4-13 shows some valid and invalid assignments between NATURAL and POSITIVE values.

Example 4-13: Valid and Invalid Assignments between INTEGER Subtypes

variable NAT:  NATURAL;

variable POS:  POSITIVE;

. . .

POS := 5;

NAT := POS + 2;

. . .

NAT := 0;

POS := NAT;      -- Invalid; out of range

For example, the type BIT_VECTOR is defined as
type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype MY_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

Example 4-14 shows that all functions and attributes that operate on BIT_VECTOR also operate on 
MY_VECTOR.

Example 4-14: Attributes and Functions Operating on a Subtype

type BIT_VECTOR is array(NATURAL range <>) of BIT;

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

. . .

signal   VEC1, VEC2:  MY_VECTOR;

signal   S_BIT:  BIT;

variable UPPER_BOUND: INTEGER;

. . .

if (VEC1 = VEC2)

. . .

VEC1(4) <= S_BIT;

VEC2 <= "0000111100001111";

. . .

RIGHT_INDEX := VEC1’high;
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Chapter 5
Expressions
Expressions perform arithmetic or logical computations by applying an operator to one or more oper-
ands. Operators specify the computation to be performed.  Operands are the data for the computation.

Expressions are discussed as

•  Operators

•  Operands

In the following VHDL fragment, A and B are operands, + is an operator, and A + B is an expression.

C := A + B;  -- Computes the sum of two values

You can use expressions in many places in a design description. Expressions can be:

•  Assign to variables or signals or used as the initial values of constants.

•  Used as operands to other operators.

•  Used for the return value of functions.

•  Used for the IN parameters in a subprogram call.

•  Assigned to the OUT parameters in a procedure body.

•  Used to control the actions of statements like if, loop, and case.

To understand expressions for VHDL, consider the individual components of operators and operands.

Operators

•  Logical operators

•  Relational operators

•  Adding operators

•  Unary (sign) operators

•  Multiplying operators

•  Miscellaneous arithmetic operators

Operands

•  Computable operands
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•  Literals

•  Identifiers

•  Indexed names

•  Slice names

•  Aggregates

•  Attributes

•  Function calls

•  Qualified expressions

•  Type conversions

Operators
A VHDL operator is characterized by

•  Name

•  Computation (function)

•  Number of operands

•  Type of operands (such as Boolean or Character)

•  Type of result value

You can define new operators, like functions, for any type of operand and result value. The predefined 
VHDL operators are listed in Table 5-1.

Table 5-1: Table 5-1Predefined VHDL Operators   

Each row in the table lists operators with the same precedence. Each row’s operators have greater 
precedence than those in the row above. An operator’s precedence determines whether it is applied 
before or after adjoining operators.

Example 5-1 shows several expressions and their interpretations. 

Type Operators Precedence

Logical and or nand nor xor Lowest

Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / mod rem

Miscellaneous ** abs not Highest
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Example 5-1: Operator Precedence

A + B * C               =  A + (B * C)

not BOOL and (NUM = 4)  =  (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types of operands). For example, the 
and operator can be overloaded to work with a new logic type. For more information, see ‘‘Operator 
Overloading" in Chapter 3.

Logical Operators 
Operands of a logical operator must be of the same type. The logical operators and, or, nand, 
nor, xor, and not accept operands of type BIT, type BOOLEAN, and one-dimensional arrays of 
BIT or BOOLEAN. Array operands must be the same size. A logical operator applied to two array oper-
ands is applied to pairs of the two arrays’ elements.

Example 5-2 shows some logical signal declarations and logical operations on them.

Example 5-2: Logical Operators

signal A, B, C:       BIT_VECTOR(3 downto 0);

signal D, E, F, G:    BIT_VECTOR(1 downto 0);

signal H, I, J, K:    BIT;

signal L, M, N, O, P: BOOLEAN;

A <= B and C;

D <= E or F or G;

H <= (I nand J) nand K;

L <= (M xor N) and (O xor P); 

Normally, to use more than two operands in an expression, you must use parentheses to group the 
operands. Alternately you can combine a sequence of and, or, or xor operators without parentheses, 
such as

A and B and C and D

However, sequences with different operators, such as 

A or B xor C 

do require parentheses.

Example 5-3 uses the declarations from Example 5-2 to show some common errors.

Example 5-3: Errors in Using Logical Operators

H <= I and J or K;            -- Parenthesis required;

L <= M nand N nand O nand P;  -- Parenthesis required;

A <= B and E;       -- Operands must be the same size;

H <= I or L;        -- Operands must be the same type;
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Figure 5-1: Common Errors Using Logical Operators

Relational Operators
Relational operators, such as = or >, compare two operands of the same base type and return a 
BOOLEAN value.

IEEE VHDL defines the equality (=) and inequality (/=) operators for all types. Two operands are 
equal if they represent the same value. For array and record types, IEEE VHDL compares correspond-
ing elements of the operands.

IEEE VHDL defines the ordering operators (<, <=, "" (relational operator)">>, and ="" (relational opera-
tor)">>=) for all enumerated types, integer types, and one-dimensional arrays of enumeration or inte-
ger types.

The internal order of a type’s values determines the result of the ordering operators. Integer values are 
ordered from negative infinity to positive infinity. Enumerated values are in the same order as they 
were declared, unless you have changed the encoding.

Note:  If you set the encoding of your enumerated types (see ‘‘Enumeration Encoding" in Chapter 4), 
the ordering operators compare your encoded value ordering, not the declaration ordering. 
Because this interpretation is specific to FPGA Express, a VHDL simulator continues to use the 
declaration’s order of enumerated types.

Arrays are ordered like words in a dictionary. The relative order of two array values is determined by 
comparing each pair of elements in turn, beginning from the left bound of each array’s index range. If a 
pair of array elements is not equal, the order of the different elements determines the order of the 
arrays. For example, bit vector 101011 is less than 1011 because the fourth bit of each vector is dif-
ferent, and 0 is less than 1. 
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If the two arrays have different lengths and the shorter array matches the first part of the longer array, 
the shorter one is ordered before the longer. Thus, the bit vector 101 is less than 101000. Arrays are 
compared from left to right, regardless of their index ranges (to or downto).

Example 5-4 shows several expressions that evaluate to TRUE.

Example 5-4: TRUE Relational Expressions

 ’1’  =  ’1’

"101" = "101"

 "1"  > "011"   -- Array comparison

"101" < "110"

To interpret bit vectors such as 011 as signed or unsigned binary numbers, use the relational opera-
tors defined in the FPGA Express std_logic_arith package (listed in Appendix B). The third line in 
Example 5-4 evaluates to FALSE if the operands are of type UNSIGNED.

UNSIGNED’"1"  < UNSIGNED’"011"   -- Numeric comparison

Example 5-5 shows some relational expressions and the resulting synthesized circuits.

Example 5-5: Relational Operators

signal A, B: BIT_VECTOR(3 downto 0);

signal C, D: BIT_VECTOR(1 downto 0);

signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);

H <= (C < D);

I <= (C >= D);

J <= (E > F); 

Adding Operators
Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and - are predefined by FPGA Express for all integer operands. These 
addition and subtraction operators perform conventional arithmetic, as shown in Example 5-6. For 
adders and subtracters more than four bits wide, a synthetic library component is used (see Chapter 
9).

The concatenation (&) operator is predefined for all one-dimensional array operands. The concatena-
tion operator builds arrays by combining the operands. Each operand of & can be an array or an ele-
ment of an array. Use & to add a single element to the beginning or end of an array, to combine two 
arrays, or to build an array from elements, as shown in Example 5-6.
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Example 5-6: Adding Operators

signal A, D:    BIT_VECTOR(3 downto 0);

signal B, C, G: BIT_VECTOR(1 downto 0);

signal E:       BIT_VECTOR(2 downto 0);

signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C;  -- Array & array

D <= not E & not F;  -- Array & element

G <= not H & not I;  -- Element & element 

J <= K + L;          -- Simple addition 

Figure 5-2: Adding Operators
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Unary (Sign) Operators
A unary operator has only one operand. FPGA Express predefines  unary operators + and - for all 
integer types. The + operator has no effect.  The - operator negates its operand. For example,

5 = +5

5 = -(-5)

Example 5-7 shows how unary negation is synthesized.

Example 5-7: Unary (Signed) Operators

signal A, B: INTEGER range -8 to 7;

A <= -B;

Figure 5-3: Unary (Signed) Operators

Multiplying Operators
FPGA Express  predefines the multiplying operators (*, /, mod, and rem) for all integer types. 

FPGA Express places some restrictions on the supported values for the right operands of the multiply-
ing operators, as follows:

•  * Integer multiplication: no restrictions.

A multiplication operator is implemented as a synthetic library cell.

•  / Integer division: The right operand must be a computable power of 2 (see "Computable Operands," 
later in this chapter). Neither operand can be negative.

This operator is implemented as a bit shift.

mod  Modulus: Same as /.

rem  Remainder: Same as /. 
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Example 5-8 shows some uses of the multiplying operators whose right operands are all powers of 2. 
The resulting synthesized circuit is also shown.

Example 5-8: Multiplying Operators with Powers of 2

signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

  A <= B * 4;

  C <= D / 4;

  E <= F mod 4;

  G <= H rem 4;

Example 5-9 shows two multiplication operations, one with a four-bit operand times a two-bit constant 
(B * 3), and one with two five-bit operands (X * Y). Because the synthetic library is enabled by 
default, these multiplications are implemented as synthetic library cells.
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Example 5-9: Multiply Operator (* ) Using Synthetic Cells

signal A, B: INTEGER range 0 to 15; 

signal Y, Z: INTEGER range 0 to 31;

signal X:    INTEGER range 0 to 1023;

. . .

  A <= B * 3;

  X <= Y * Z; 

Miscellaneous Arithmetic Operators
FPGA Express predefines the absolute value (abs) and exponentiation (**) operators for all integer 
types. One FPGA Express restriction placed on **, as follows:

** Exponentiation: Left operand must have a computable value of 2 (see ‘‘Computable Operands," 
later in this chapter).

Example 5-10 shows how these operators are used and synthesized.
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Example 5-10: Miscellaneous Arithmetic Operators

signal A, B: INTEGER range -8 to 7;

signal C:    INTEGER range  0 to 15;

signal D:    INTEGER range  0 to 3;

A <= abs(B);

C <= 2 ** D; 

Operands
Operands determine the data used by the operator to compute its value. An operand is said to return 
its value to the operator.

There are many categories of operands. The simplest operand is a literal, such as the number 7, or an 
identifier, such as a variable or signal name. An operand itself can be an expression. You create 
expression operands by surrounding an expression with parentheses.

The operand categories are

Expressions:(A nand B)

Literals:’0’, "101", 435, 16#FF3E#

Identifiers: my_var, my_sig

Indexed names: my_array(7)

Slice names: my_array(7 to 11)
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Fields: my_record.a_field

Aggregates:my_array_type’(others => 1)

Attributes: my_array’range

Function calls: LOOKUP_VAL(my_var_1, my_var_2)

Qualified expressions:BIT_VECTOR’(’1’ & ’0’)

Type conversions: THREE_STATE(’0’)

The next two sections discuss operand bit widths and explain computable operands. Subsequent sec-
tions describe the operand types listed above.

Operand Bit Width
FPGA Express uses the bit width of the largest operand to determine the bit width needed to imple-
ment an operator in hardware. For example, an INTEGER operand is 32 bits wide by default. An addi-
tion of two INTEGER operands causes FPGA Express to build a 32-bit adder. 

To use hardware resources efficiently, always indicate the bit width of numeric operands. For example, 
use a subrange of INTEGER when declaring types, variables, or signals.

type     ENOUGH:  INTEGER range 0 to 255; 

variable WIDE:    INTEGER range -1024 to 1023; 

signal   NARROW:  INTEGER range 0 to 7; 

Note:  During optimization, FPGA Express removes hardware for unused bits. 

Computable Operands
Some operators, such as the division operator, restrict their operands to be computable. A computable 
operand is one whose value can be determined by FPGA Express. Computability is important because 
noncomputable expressions can require logic gates to determine their value. 

Following are examples of computable operands:

•  Literal values

•  for ... loop parameters, when the loop’s range is computable

•  Variables assigned a computable expression

•  Aggregates that contain only computable expressions

•  Function calls with a computable return value

•  Expressions with computable operand

•  Qualified expressions, where the expression is computable

•  Type conversions, when the expression is computable

•  Value of the and or nand operators when one of the operands is a computable 0

•  Value of the or or nor operators when one of the operands is a computable 1
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Additionally, a variable is given a computable value if it is an OUT or INOUT parameter of a procedure 
that assigns it a computable value. 

Following are examples of noncomputable operands:

•  Signals

•  Ports

•  Variables that are assigned different computable values that depend on a noncomputable condition

•  Variables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by several computable and noncom-
putable expressions.

Example 5-11: Computable and Noncomputable Expressions

signal S: BIT;

. . .

function MUX(A, B, C: BIT) return BIT is

begin

  if (C = ’1’) then 

    return(A);

  else 

    return(B);

  end if;

end;

procedure COMP(A: BIT; B: out BIT) is

begin

  B := not A;

end;

process(S)

  variable V0, V1, V2: BIT;

  variable V_INT:      INTEGER;

  subtype MY_ARRAY is BIT_VECTOR(0 to 3);

  variable V_ARRAY:    MY_ARRAY;

begin

  V0 := ’1’;             -- Computable (value is ’1’)

  V1 := V0;              -- Computable (value is ’1’)

  V2 := not V1;          -- Computable (value is ’0’)

  for I in 0 to 3 loop
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    V_INT := I;          -- Computable (value depends

  end loop;              --   on iteration)

  V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);

                         -- Computable ("1000")

  V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)

  COMP(V1, V2);

  V1 := V2;              -- Computable (value is ’0’)

  V0 := S and ’0’;       -- Computable (value is ’0’)

  V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)

  V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

  if (S = ’1’) then

    V2 := ’0’;           -- Computable (value is ’0’)

  else

    V2 := ’1’;           -- Computable (value is ’1’)

  end if;

  V0 := V2;            -- Noncomputable; V2 depends

                       --   on S

  V1 := S;             -- Noncomputable; S is signal 

  V2 := V1;            -- Noncomputable; V1 is no

                       --   longer computable

end process;

Literals
A literal (constant) operand can be a numeric literal, a character literal, an enumeration literal, or a 
string literal. The following sections describe these four kinds of literals.

Numeric Literals
Numeric literals are constant integer values. The two kinds of numeric literals are decimal and based. 
A decimal literal is written in base 10. A based literal can be written in a base from 2 to 16 and is com-
posed of the base number, an octothorpe (#), the value in the given base, and another octothorpe (#); 
for example, 2#101# is decimal 5.

The digits in either kind of numeric literal can be separated by an underscore ( _ ) character. 
Example 5-12 shows several different numeric literals, all representing the same value.
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Example 5-12: Numeric Literals

170

1_7_0

10#170#

2#1010_1010#

16#AA#

Character Literals
Character literals are single characters enclosed in single quotation marks, for example, A. Character 
literals can be used as values for operators and to define enumerated types, such as CHARACTER and 
BIT. See Chapter 4 for more information about the legal character types.

Enumeration Literals
Enumeration literals are values of enumerated types. The two kinds of enumeration literals are charac-
ter literals and identifiers. Character literals were described previously. Enumeration identifiers are 
those literals listed in an enumeration type definition. For example:

type SOME_ENUM is ( ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);

If two enumerated types use the same literals, those literals are said to be overloaded. You must qual-
ify overloaded enumeration literals (see "Qualified Expressions," later in this chapter) when you use 
them in an expression unless their type can be determined from context. See Chapter 4 for more infor-
mation.

Example 5-13 defines two enumerated types and shows some enumeration literal values.

Example 5-13: Enumeration Literals

type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);

type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA           -- Enumeration identifier of type ENUM_1

’B’           -- Character literal of type ENUM_1

CCC           -- Enumeration identifier of type ENUM_2

’D’           -- Character literal of type ENUM_2

ENUM_1’(ZZZ)  -- Qualified because overloaded

String Literals
String literals are one-dimensional arrays of characters, enclosed in double quotes (" "). The two kinds 
of string literals are character strings and bit strings. Character strings are sequences of characters in 
double quotes; for example, "ABCD". Bit strings are similar to character strings, but represent binary, 
octal, or hexadecimal values; for example, B"1101", O"15", and X"D" all represent decimal value 
13. 

A string value’s type is a one-dimensional array of an enumerated type. Each of the characters in the 
string represents one element of the array. 
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Example 5-14 shows some character-string literals.

Example 5-14: Character-String Literals

"10101"

"ABCDEF"

Note:  Null string literals ("") are not supported.

Bit strings, like based numeric literals, are composed of a base specifier character, a double quotation 
mark, a sequence of numbers in the given base, and another double quotation mark. For example, 
B"0101" represents the bit vector 0101. A bit-string literal consists of the base specifier B, O, or X, fol-
lowed by a string literal. The bit-string literal is interpreted as a bit vector, a one-dimensional array of 
the predefined type BIT. The base specifier determines the interpretation of the bit string as follows:

B (binary)
The value is in binary digits (bits, 0 or 1). Each bit in the string represents one BIT in the generated 
bit vector (array).

O (octal)
The value is in octal digits (0 to 7). Each octal digit in the string represents three BITs in the gener-
ated bit vector (array).

X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each hexadecimal digit in the string represents 
four BITs in the generated bit vector (array).

You can separate the digits in a bit-string literal value with underscores (_) for readability. Example 5-
15 shows several bit-string literals that represent the same value.

Example 5-15: Bit-String Literals

X"AAA"

B"1010_1010_1010"

O"5252"

B"101_010_101_010"

Identifiers
Identifiers are probably the most common operand. An identifier is the name of a constant, variable, 
signal, entity, port, subprogram, or parameter and returns the object’s value to an operand. 

Example 5-16 shows several kinds of identifiers and their usage. All identifiers are shown in boldface.

Example 5-16: Identifiers

entity EXAMPLE is

  port (INT_PORT:   in INTEGER;

        BIT_PORT:  out BIT);

end;

. . .

signal   BIT_SIG: BIT;

signal   INT_SIG: INTEGER;
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. . .

INT_SIG  <= INT_PORT;   -- Signal assignment from port

BIT_PORT <= BIT_SIG;    -- Signal assignment to port

function FUNC(INT_PARAM:  INTEGER)

    return INTEGER;

end function;

. . .

constant CONST:   INTEGER := 2;

variable VAR:     INTEGER;

. . .

VAR := FUNC(INT_PARAM => CONST);  -- Function call

Indexed Names
An indexed name identifies one element of an array variable or signal. Slice names identify a 
sequence of elements in an array variable or signal; aggregates create array literals by giving a value 
to each element of an instance of an array type. Slice names and aggregates are described in the next 
two sections.

The syntax of an indexed name is

identifier ( expression )

identifier must name a signal or variable of an array type. The expression must return a value 
within the array’s index range. The value returned to an operator is the specified array element.

If expression is computable (see ‘‘Computable Operands," earlier in this chapter), the operand is 
synthesized directly. If the expression is not computable, hardware that extracts the specified element 
from the arrayis synthesized. 

Example 5-17 shows two indexed names—one computable and one not computable.
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Example 5-17: Indexed Name Operands

signal A, B: BIT_VECTOR(0 to 3);

signal I:    INTEGER range 0 to 3;

signal Y, Z: BIT;

Y <= A(I);  -- Noncomputable index expression

Z <= B(3);  -- Computable index expression 

You can also use indexed names as assignment targets; see "Indexed Name Targets" in Chapter 6.

Slice Names
Slice names return a sequence of elements in an array. The syntax is

identifier ( expression direction expression )

identifier must name a signal or variable of an array type. Each expression must return a value 
within the array’s index range, and must be computable. See ‘‘Computable Operands," earlier in this 
chapter.

The direction must be either to or downto. The direction of a slice must be the same as the direc-
tion of identifier array type. If the left and right expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specified array elements.

Example 5-18 uses slices to assign an eight-bit input to an eight-bit output, exchanging the lower and 
upper four bits. 
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Example 5-18: Slice Name Operands

signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);

Z(4 to 7) <= A(0 to 3);

In Example 5-18, slices are also used as assignment targets. This usage is described in Chapter 6, 
under ‘‘Slice Targets."

Limitations on Null Slices 
FPGA Express does not support null slices. A null slice is indicated by a null range, such as 
(4 to 3), or a range with the wrong direction, such as UP_VAR(3 downto 2) when the declared 
range of UP_VAR is ascending (Example 5-19). 

Example 5-19 shows three null slices and one noncomputable slice.

Example 5-19: Null and Noncomputable Slices

subtype DOWN is BIT_VECTOR(4 downto 0); 

subtype UP   is BIT_VECTOR(0 to 7);

. . .

variable UP_VAR:   UP;

variable DOWN_VAR: DOWN;

. . .

UP_VAR(4 to 3)       -- Null slice (null range)

UP_VAR(4 downto 0)   -- Null slice (wrong direction)

DOWN_VAR(0 to 1)     -- Null slice (wrong direction)

. . .

variable I: INTEGER range 0 to 7;

. . .

UP_VAR(I to I+1)     -- Noncomputable slice
                Expressions • 5–19



Operands
Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range contains a noncomputable 
expression.

Records and Fields
Records are composed of named fields of any type. For more information, see ‘‘Record Types" in 
Chapter 4. 

In an expression, you can refer to a record as a whole, or you can refer to a single field. The syntax of 
field names is

record_name.field_name

record_name is the name of the record variable or signal, and field_name is the name of a field in 
that record type. A field_name is separated from the record name by a period (.).   Note that a 
record_name is different for each variable or signal of that record type.  A field_name is the field 
name defined for that record type.

Example 5-20 shows a record type definition, and record and field access.

Example 5-20: Record and Field Access

type BYTE_AND_IX is 

  record

    BYTE: BIT_VECTOR(7 downto 0);

    IX:   INTEGER range 0 to 7;

  end record;

 

signal X: BYTE_AND_IX;

. . .

X           -- record

X.BYTE      -- field: 8-bit array

X.IX        -- field: integer

A field can be of any type—including an array, record, or aggregate type.  Refer to an element of a field 
with that type’s notation, for example:

X.BYTE(2)           -- one element from array field BYTE

X.BYTE(3 downto 0)  -- 4-element slice of array field BYTE
5–20 • VeriBest FPGA Synthesis VHDL Reference Manual



Operands
Aggregates
Aggregates can be considered array literals, because they specify an array type and the value of each 
array element. The syntax is

type_name’( [choice =>] expression 

           {,  [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the Library Reference Manual (LRM).  
type_name must be a constrained array type. The optional choice specifies an element index, a 
sequence of indexes, or others. Each expression provides a value for the chosen elements, and 
must evaluate to a value of the element’s type.

Example 5-21 shows an array type definition and an aggregate representing a literal of that array type. 
The two sets of assignments have the same result.

Example 5-21: Simple Aggregate

subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X:      MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B)  -- Aggregate
                                             -- assignment
...
X(1) <= ’1’;                                 -- Element
X(2) <= A nand B;                            -- assignment
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index with either positional or named notation. With positional notation, 
each element is given the value of its expression in order, as shown in Example 5-21. 

By using named notation, the choice => construct specifies one or more elements of the array. The 
choice can contain an expression (such as (I mod 2) =>) to indicate a single element index, or a 
range (such as 3 to 5 => or 7 downto 0 =>) to indicate a sequence of element indexes.

An aggregate can use both positional and named notation, but positional expressions must appear 
before named (choice) expressions.

It is not necessary to specify all element indexes in an aggregate. All unassigned values are given a 
value by including others => expression as the last element of the list.

Example 5-22 shows several aggregates representing the same value.

Example 5-22: Equivalent Aggregates

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);

MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);

MY_VECTOR’(’1’, ’1’, others => ’0’);

MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);

MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);
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The others expression must be the only expression in the aggregate. Example 5-23 shows two 
equivalent aggregates.

Example 5-23: Equivalent Aggregates Using the others Expression

MY_VECTOR’(others => ’1’);

MY_VECTOR’(’1’, ’1’, ’1’, ’1’);

To use an aggregate as the target of an assignment statement, see ‘‘Aggregate Targets" in Chapter 6.

Attributes
VHDL defines attributes for various types. A VHDL attribute takes a variable or signal of a given type 
and returns a value. The syntax of an attribute is

object’ attribute

FPGA Express supports the following predefined VHDL attributes for use with arrays, as described 
under ‘‘Array Types" in Chapter 4:

•  left

•  right

•  high

•  low

•  length

•  range

•  reverse_range

FPGA Express also supports the following predefined VHDL attributes for use with wait and if state-
ments, as described in Chapter 8, "Register and Three-State Inference":

•  event 

•  stable

In addition to supporting predefined VHDL attributes listed above, FPGA Express has a defined set of 
synthesis-related attributes. These FPGA Express-specific attributes can be placed in your VHDL 
design description to direct optimization. See ‘‘Synthesis Attributes and Constraints" in Chapter 9 for 
more information.

Function Calls
A function call executes a named function with the given parameter values. The value returned to an 
operator is the function’s return value. The syntax of a function call is

function_name ( [parameter_name =>] expression 

                {, [parameter_name =>] expression } )

function_name is the name of a defined function. The optional parameter_name is an expression 
of formal parameters, as defined by the function. Each expression provides a value for its parame-
ter, and must evaluate to a type appropriate for that parameter.
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You can specify parameters in positional or named notation, like aggregate values.

In positional notation, the parameter_name => construct is omitted. The first expression provides a 
value for the function’s first parameter, the second expression provides a value for the second param-
eter, and so on. 

In named notation, parameter_name => is specified before an expression; the named parameter 
gets the value of that expression.

You can mix positional and named expressions in the same function call, as long as all positional 
expressions appear before a named parameter expressions. 

Function calls are implemented by logic unless you use the map_to_entity compiler directive. For 
more information, see "Mapping Subprograms to Components" in Chapter 6, and "Component Implica-
tion Directives" in Chapter 9.

Example 5-24 shows a function declaration and several equivalent function calls.

Example 5-24: Function Calls

function FUNC(A, B, C: INTEGER) return BIT;

. . .

FUNC(1, 2, 3)

FUNC(B => 2, A => 1, C => 7 mod 4)

FUNC(1, 2, C => -3+6)

Qualified Expressions
Qualified expressions state the type of an operand to resolve ambiguities in an operand’s type. You 
cannot use qualified expressions for type conversion (see "Type Conversions").

The syntax of a qualified expression is

type_name’( expression)

type_name is the name of a defined type. expression must evaluate to a value of an appropriate 
type. 

Note:  A single quote, or tick, must appear between type_name and (expression). If the single 
quote is omitted, the construction is interpreted as a type conversion (see "Type Conversions"). 

Example 5-25 shows a qualified expression that resolves an overloaded function by qualifying the type 
of a decimal literal parameter.
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Example 5-25: A Qualified Decimal Literal

type R_1 is range 0 to 10;  -- Integer 0 to 10

type R_2 is range 0 to 20;  -- Integer 0 to 20

function FUNC(A: R_1) return BIT;

function FUNC(A: R_2) return BIT;

FUNC(5)         -- Ambiguous; could be of type R_1, 

                --   R_2, or INTEGER

FUNC(R_1’(5))   -- Unambiguous

Example 5-26 shows how qualified expressions resolve ambiguities in aggregates and enumeration lit-
erals.

Example 5-26: Qualified Aggregates and Enumeration Literals

type ARR_1 is array(0 to 10) of BIT;

type ARR_2 is array(0 to 20) of BIT;

. . .

(others => ’0’)        -- Ambiguous; could be of

                       -- type ARR_1 or ARR_2

ARR_1’(others => ’0’)  -- Qualified; unambiguous

------------------------------------------------------

type ENUM_1 is (A, B);

type ENUM_2 is (B, C);

. . .

B                      -- Ambiguous; could be of 

                       -- type ENUM_1 or ENUM_2

ENUM_1’(B)             -- Qualified; unambiguous

Type Conversions
Type conversions change an expression’s type. Type conversions are different from qualified expres-
sions because they change the type of their expression; whereas qualified expressions simply resolve 
the type of an expression.

The syntax of a type conversion is

type_name(expression)
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type_name is the name of a defined type. The expression must evaluate to a value of a type that 
can be converted into type type_name.

•  Type conversions can convert between integer types or between similar array types. 

•  Two array types are similar if they have the same length and if they have convertible or identical ele-
ment types. 

•  Enumerated types cannot be converted. 

Example 5-27 shows some type definitions and associated signal declarations, followed by legal and 
illegal type conversions.

Example 5-27: Legal and Illegal Type Conversions

type INT_1 is range 0 to 10;

type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;

type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);

type BIT_ARRAY_10 is array(11 to 20) of BIT;

type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT:      INT_1;

signal S_ARRAY:    ARRAY_1;

signal S_BIT_VEC:  MY_BIT_VECTOR;

signal S_BIT:      BIT;

       -- Legal type conversions

INT_2(S_INT)   

  -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)

  -- Similar array type conversion

       -- Illegal type conversions

BOOLEAN(S_BIT);  
  -- Can’t convert between enumerated types

INT_1(S_BIT);

  -- Can’t convert enumerated types to other types
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BIT_ARRAY_20(S_BIT_VEC); 

  -- Array lengths not equal

ARRAY_1(S_BIT_VEC);  

  -- Element types cannot be converted 
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Sequential Statements
Sequential statements like A := 3 are interpreted one after another, in the order in which they are 
written. VHDL sequential statements can appear only in a process or subprogram. A VHDL process is 
a group of sequential statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:

•  Assignment Statements

•  Variable Assignment Statement

•  Signal Assignment Statement

•  if Statement

•  case Statement

•  loop Statements

•  next Statement

•  exit Statement

•  Subprograms

•  return Statement

•  wait Statement

•  null Statement

Processes are composed of sequential statements, but processes are themselves concurrent state-
ments (see Chapter 7). All processes in a design execute concurrently. However, at any given time 
only one sequential statement is interpreted within each process. 

A process communicates with the rest of a design by reading or writing values to and from signals or 
ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be called sequentially (as described 
in this chapter) or concurrently (as described in Chapter 7).

Sequential statements are

assignment statements
that assign values to variables and signals.
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flow control statements
that conditionally execute statements (if and case), repeat statements (for...loop), and skip 
statements (next and exit).

subprograms 
that define sequential algorithms for repeated use in a design (procedure and function). 

wait statement 
to pause until an event occurs (wait).

null statement 
to note that no action is necessary (null). 

Assignment Statements
An assignment statement assigns a value to a variable or signal. The syntax is

target := expression;  -- Variable assignment

target <= expression;  -- Signal assignment

target is a variable or signal (or part of a variable or signal, such as a subarray) that receives the 
value of the expression. The expression must evaluate to the same type as the target. See 
Chapter 5 for more information on expressions. 

The difference in syntax between variable assignments and signal assignments is that variables use 
:= and signals use <=. The basic semantic difference is that variables are local to a process or sub-
program, and their assignments take effect immediately. 

Signals need not be local to a process or subprogram, and their assignments take effect at the end of 
a process. Signals are the only means of communication between processes. For more information on 
semantic differences, see ‘‘Signal Assignment,- later in this chapter.

Assignment Targets
Assignment statements have five kinds of targets:

•  Simple names, such as my_var

•  Indexed names, such as my_array_var(3)

•  Slices, such as my_array_var(3 to 6)

•  Field names, such as my_record.a_field

•  Aggregates, such as (my_var1, my_var2)

A assignment target can be either a variable or a signal; the following descriptions refer to both.

Simple Name Targets
The syntax for an assignment to a simple name target is

identifier := expression;  -- Variable assignment

identifier <= expression;  -- Signal assignment
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identifier is the name of a signal or variable. The assigned expression must have the same type 
as the signal or variable. For array types, all elements of the array are assigned values. 

Example 6-1 shows some assignments to simple name targets.

Example 6-1: Simple Name Targets

variable A, B: BIT;

signal   C:    BIT_VECTOR(1 to 4);

-- Target    Expression

     A    := ’1’;    -- Variable A is assigned ’1’

     B    := ’0’;    -- Variable B is assigned ’0’

     C    <= -1100"; -- Signal array C is assigned

                     --   -1100"

Indexed Name Targets
The syntax for an assignment to an indexed name target is

identifier(index_expression) := expression;

  -- Variable assignment

identifier(index_expression) <= expression;

  -- Signal assignment

identifier is the name of an array type signal or variable. index_expression must evaluate to 
an index value for the identifier array’s index type and bounds but does not have to be comput-
able (see ‘‘Computable Operands- in Chapter 5), but more hardware is synthesized if it is not. 

The assigned expression must contain the array’s element type.

In Example 6-2, the elements for array variable A are assigned values as indexed names.

Example 6-2: Indexed Name Targets

variable A: BIT_VECTOR(1 to 4);

-- Target    Expression;

   A(1)   := ’1’;    -- Assigns ’1’ to the first

                     --   element of array A.

   A(2)   := ’1’;    -- Assigns ’1’ to the second

                     --   element of array A.

   A(3)   := ’0’;    -- Assigns ’0’ to the third

                     --   element of array A.

   A(4)   := ’0’;    -- Assigns ’0’ to the fourth

                     --   element of array A.
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Example 6-3 shows two indexed name targets. One of the targets is computable and the other is not. 
Note the differences in the hardware generated for each assignment.

Example 6-3: Computable and Noncomputable Indexed Name Targets

signal A, B: BIT_VECTOR(0 to 3);

signal I: INTEGER range 0 to 3;

signal Y, Z: BIT;

A    <= -0000";

B    <= -0000";

A(I) <= Y;  -- Noncomputable index expression

B(3) <= Z;  -- Computable index expression

 

Slice Targets
The syntax for a slice target is

identifier(index_expr_1 direction index_expr_2)

identifier is the name of an array type signal or variable. Each index_expr expression must 
evaluate to an index value for the identifier array’s index type and bounds. Both index_expr 
expressions must be computable (see -Computable Operands- in Chapter 5), and must lie within the 
bounds of the array. direction must match the identifier array type’s direction—either to or 
downto.
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The assigned expression must contain the array’s element type.

In Example 6-4, array variables A and B are assigned the same value.

Example 6-4: Slice Targets

variable A, B: BIT_VECTOR(1 to 4);

-- Target       Expression;

   A(1 to 2) := -11";  -- Assigns -11" to the first

                       -- two elements of array A

   A(3 to 4) := -00";  -- Assigns -00" to the last

                       -- two elements of array A

   B(1 to 4) := -1100";-- Assigns -1100" to array B

Field Targets
The syntax for a field target is

identifier.field_name

identifier is the name of a record type signal or variable, and field_name is the name of a field 
in that record type, preceded by a period (.). The assigned expression must contain the identified 
field’s type. A field can be of any type, including an array, record, or aggregate type. 

Example 6-5 assigns values to the fields of record variables A and B.

Example 6-5: Field Targets

type REC is 
    record
        NUM_FIELD:   INTEGER range -16 to 15;
        ARRAY_FIELD: BIT_VECTOR(3 to 0);
    end record;

variable A, B: REC;

-- Target        Expression;
   A.NUM_FIELD   := -12;     -- Assigns -12 to record A’s
                             -- field NUM_FIELD 
  
   A.ARRAY_FIELD := -0011";  -- Assigns -0011" to record
                             -- A’s field ARRAY_FIELD
   A.ARRAY_FIELD(3) := ’1’;  -- Assigns ’1’ to the most-
                             -- significant bit of record
                             -- A’s field ARRAY_FIELD

   B             := A;       -- Assigns values of record
                             -- A to corresponding fields
                             -- of B

For more information about field targets see -Record Types- in Chapter 4. 
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Aggregate Targets
The syntax for an assignment to an aggregate target is

([choice =>] identifier 

 {,[choice =>] identifier}) := array_expression;

  -- Variable assignment

([choice =>] identifier 

 {,[choice =>] identifier}) <= array_expression;

  -- Signal assignment

An aggregate assignment assigns array_expression’s element values to one or more variable or 
signal identifiers.

Each choice (optional) is an index expression selecting an element or a slice of the assigned 
array_expression. Each identifier must have the element type of array_expression. An 
identifier can be an array type.

Example 6-6 shows some aggregate targets.

Example 6-6: Aggregate Targets

signal A, B, C, D: BIT;

signal S: BIT_VECTOR(1 to 4);

. . .

variable E, F:  BIT;

variable G: BIT_VECTOR(1 to 2);

variable H: BIT_VECTOR(1 to 4);

-- Positional notation 

S            <= (’0’, ’1’, ’0’, ’0’);

(A, B, C, D) <= S;      -- Assigns ’0’ to A

                        -- Assigns ’1’ to B

                        -- Assigns ’0’ to C

                        -- Assigns ’0’ to D

-- Named notation

(3 => E,    4 => F, 

 2 => G(1), 1 => G(2)) := H;

                        -- Assigns H(1) to G(2)

                        -- Assigns H(2) to G(1)

                        -- Assigns H(3) to E

                        -- Assigns H(4) to F
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You can assign array element values to the identifiers by position or by name. In positional notation, 
the choice => construct is not used. Identifiers are assigned array element values in order, from the 
left array bound to the right array bound. 

In named notation, the choice => construct identifies specific elements of the assigned array. A 
choice index expression indicates a single element, such as 3. The type of identifier must match 
the assigned expression’s element type.

Positional and named notation can be mixed, but positional associations must appear before named 
associations.

Variable Assignment Statement
A variable assignment changes the value of a variable. The syntax is

target := expression;

expression determines the assigned value; its type must be compatible with target. See 
Chapter 5 for further information about expressions. target names the variables that receive the 
value of expression. See -Assignment Targets- in the previous section for a description of variable 
assignment targets.

When a variable is assigned a value, the assignment takes place immediately. A variable keeps its 
assigned value until it is assigned a new value.

Signal Assignment Statement
A signal assignment changes the value being driven on a signal by the current process. The syntax is

target <= expression;

expression determines the assigned value; its type must be compatible with target. See 
Chapter 5 for further information about expressions. target names the signals that receive the value 
of expression. See -Assignment Targets- in this chapter for a description of signal assignment tar-
gets.

Signals and variables behave differently when they are assigned values. The differences lie in the way 
the two kinds of assignments take effect, and how that affects the values read from either variables or 
signals.

Variable Assignment
When a variable is assigned a value, the assignment takes place immediately. A variable keeps its 
assigned value until it is assigned a new value.

Signal Assignment
When a signal is assigned a value, the assignment does not necessarily take effect because the value 
of a signal is determined by the processes (or other concurrent statements) that drive it.
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•  If several values are assigned to a given signal in one process, only the last assignment is effective. 
Even if a signal in a process is assigned, read, and reassigned, the value read (either inside or out-
side the process) is the last assignment value. 

•  If several processes (or other concurrent statements) assign values to one signal, the drivers are 
wired together. The resulting circuit depends on the expressions and the target technology.  It may 
be invalid, wired AND, wired OR, or a three-state bus. Refer to ‘‘Driving Signals- in Chapter 7 for 
more information.

Example 6-7 shows the different effects of variable and signal assignments.

Example 6-7: Signal and Variable Assignments

signal S1, S2: BIT; 
signal S_OUT:    BIT_VECTOR(1 to 8); 
. . . 
process( S1, S2 ) 
  variable V1, V2: BIT;
begin
  V1 := ’1’;   -- This sets the value of V1
  V2 := ’1’;   -- This sets the value of V2
  S1 <= ’1’;   -- This assignment is the driver for S1
  S2 <= ’1’;   -- This has no effect because of the
               --   assignment later in this process

  S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
  S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
  S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below
  

  V1 := ’0’;   -- This sets the new value of V1
  V2 := ’0’;   -- This sets the new value of V2
  S2 <= ’0’;   -- This assignment overrides the 
               --   previous one since it is the last 
               --   assignment to this signal in this
               --   process

  S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
  S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
  S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;

if Statement
The if statement executes a sequence of statements. The sequence depends on the value of one or 
more conditions. The syntax is

if condition then

     { sequential_statement }

{ elsif condition then

     { sequential_statement } }

[ else

     { sequential_statement } ]
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end if;

Each condition must be a Boolean expression. Each branch of an if statement can have one or 
more sequential_statements.

Evaluating condition
An if statement evaluates each condition in order. The first (and only the first) TRUE condition 
causes the execution of its branch’s statements. The remainder of the if statement is skipped. 

If none of the conditions are TRUE, and the else clause is present, those statements are executed. 

If none of the conditions are TRUE, and no else is present, none of the statements is executed. 

Example 6-8 shows an if statement and a corresponding circuit.

Example 6-8: if Statement

signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then

  Z <= A;

elsif (P2 = ’0’) then

  Z <= B;

else

  Z <= C;

end if; 

Using the if Statement to Imply Registers and Latches
Some forms of the if statement can be used like the wait statement, to test for signal edges and 
therefore imply synchronous logic. This usage causes FPGA Express to infer registers or latches, as 
described in Chapter 8, ‘‘Register and Three-State Inference.-
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case Statement
The case statement executes one of several sequences of statements, depending on the value of a 
single expression. The syntax is

case expression is

     when choices =>

          { sequential_statement }

   { when choices =>

          { sequential_statement } }

end case;

expression must evaluate to an INTEGER or an enumerated type, or an array of enumerated types, 
such as BIT_VECTOR. Each of the choices must be of the form

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range (such as 1 to 3). The 
type of choice_expression determines the type of each choice.   Each value in the range of the 
choice_expression type must be covered by one choice.  

The final choice can be others, which matches all remaining (unchosen) values in the range of the 
expression type. The others choice, if present, matches expression only if no other choices 
match.

The case statement evaluates expression and compares that value to each choice value. The 
statements following each when clause is evaluated only if the choice value matches the expres-
sion value. 

The following restrictions are placed on choices:

•  No two choices can overlap.

•  If no others choice is present, all possible values of expression must be covered by the set of 
choices.

Using Different Expression Types
Example 6-9 shows a case statement that selects one of four signal assignment statements by using 
an enumerated expression type.

Example 6-9: case Statement That Uses an Enumerated Type

type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);

signal VALUE: ENUM;

signal A, B, C, D, Z:  BIT;

case VALUE is

  when PICK_A =>
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    Z <= A;

  when PICK_B =>

    Z <= B;

  when PICK_C =>

    Z <= C;

  when PICK_D =>

    Z <= D;

end case; 

Example 6-10 shows a case statement again used to select one of four signal assignment statements, 
this time by using an integer expression type with multiple choices.

Example 6-10: case Statement with Integers

signal VALUE is INTEGER range 0 to 15;

signal Z1, Z2, Z3, Z4:  BIT;

Z1 <= ’0’;

Z2 <= ’0’;

Z3 <= ’0’;

Z4 <= ’0’;

case VALUE is

  when 0 =>             -- Matches 0

    Z1 <= ’1’;

  when 1 | 3 =>         -- Matches 1 or 3

    Z2 <= ’1’;

  when 4 to 7 | 2 =>    -- Matches 2, 4, 5, 6, or 7

    Z3 <= ’1’;

  when others =>        -- Matches remaining values,

                        --   8 through 15

    Z4 <= ’1’;

end case;
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Invalid case Statements
Example 6-11 shows four invalid case statements.

Example 6-11: Invalid case Statements

signal VALUE:  INTEGER range 0 to 15;

signal OUT_1:  BIT;

case VALUE is          -- Must have at least one when 

end case;              --   clause

case VALUE is          -- Values 2 to 15 are not

  when 0 =>            --   covered by choices

    OUT_1 <= ’1’;

  when 1 =>

    OUT_1 <= ’0’;

end case;

case VALUE is           -- Choices 5 to 10 overlap

  when 0 to 10 =>

    OUT_1 <= ’1’;

  when 5 to 15 =>    

    OUT_1 <= ’0’;

end case;
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loop Statements
A loop statement repeatedly executes a sequence of statements. The syntax is

[label :] [iteration_scheme] loop

    { sequential_statement }

    { next [ label ] [ when condition ] ; }

    { exit [ label ] [ when condition ] ; }

end loop [label];

The optional label names the loop and is useful for building nested loops. Each type of 
iteration_scheme is described in this section.

The next and exit statements are sequential statements used only within loops. The next state-
ment skips the remainder of the current loop and continues with the next loop iteration. The exit 
statement skips the remainder of the current loop and continues with the next statement after the 
exited loop.

VHDL provides three types of loop statements, each with a different iteration scheme:

loop
The basic loop statement has no iteration scheme. Enclosed statements are executed repeatedly for-
ever until an exit or next statement is encountered.

while .. loop
The while .. loop statement has a Boolean iteration scheme.  If the iteration condition evaluates to 
TRUE, enclosed statements are executed once. The iteration condition is then reevaluated. While the 
iteration condition remains true, the loop is repeatedly executed. When the iteration condition evalu-
ates to FALSE, the loop is skipped, and execution continues with the next statement after the loop.

for .. loop
The for .. loop statement has an integer iteration scheme, where the number of repetitions is 
determined by an integer range. The loop is executed once for each value in the range. After the last 
value in the iteration range is reached, the loop is skipped, and execution continues with the next 
statement after the loop.

Caution Noncomputable loops (loop and while..loop statements) must have at least one wait 
statement in each enclosed logic branch. Otherwise, a combinational feedback loop is 
created. See ‘‘wait Statement,- later in this chapter, for more information.

Conversely, computable loops (for..loop statements) must not contain wait statements. 
Otherwise, a race condition might result.
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The loop statement, with no iteration scheme, repeats enclosed statements indefinitely. The syntax is

[label :] loop

    { sequential_statement }

end loop [label];

The optional label names this loop.

sequential_statement can be any statement described in this chapter. Two sequential statements 
are used only with loops: the next statement, which skips the remainder of the current loop iteration, 
and the exit statement, which terminates the loop. These statements are described in the next two 
sections.

Note:  A loop statement must have at least one wait statement in each enclosed logic branch. See 
‘‘wait Statement,- later in this chapter, for an example.

while .. loop Statement
The while .. loop statement repeats enclosed statements as long as its iteration condition evalu-
ates to TRUE. The syntax is

[label :] while condition loop

    { sequential_statement }

end loop [label];

The optional label names this loop. condition is any Boolean expression, such as ((A = ’1’) 
or (X < Y)) .

sequential_statement can be any statement described in this chapter. Two sequential state-
ments are used only with loops: the next  statement, which skips the remainder of the current loop iter-
ation, and the exit  statement, which terminates the loop. These statements are described in the next 
two sections.

Note:  A while..loop  statement must have at least one wait  statement in each enclosed logic 
branch. See -wait Statement,- later in this chapter, for an example.

for .. loop Statement
The for .. loop  statement repeats enclosed statements once for each value in an integer range. 
The syntax is

[label :] for identifier in range loop

    { sequential_statement }

end loop [label];

The optional label names this loop.

The use of identifier is specific to the for .. loop  statement:
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•  identifier is not declared elsewhere. It is automatically declared by the loop itself and is local to 
the loop. A loop identifier overrides any other identifier with the same name but only within the loop. 

•  The value of identifier can be read only inside its loop (identifier does not exist outside the 
loop). You cannot assign a value to a loop identifier.

FPGA Express currently requires that range must be a computable integer range(see ‘‘Computable 
Operands- in Chapter 5), in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer. 

sequential_statement can be any statement described in this chapter. Two sequential state-
ments are used only with loops: the next statement, which skips the remainder of the current loop iter-
ation, and the exit statement, which terminates the loop. These statements are described in the next 
two sections.

Note:  A for..loop statement must not contain any wait statements.

A for .. loop statement executes as follows:

1. A new, local, integer variable is declared with the name identifier. 

2. identifier is assigned the first value of range, and the sequence of statements is executed 
once.

3. identifier is assigned the next value in range, and the sequence of statements is executed 
once more.

4. Step 3 is repeated until identifier is assigned to the last value in range. The sequence of state-
ments is then executed for the last time, and execution continues with the statement following end 
loop. The loop is then inaccessible.

Example 6-12 shows two equivalent code fragments.

Example 6-12: for..loop Statement with Equivalent Fragment

variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement

for I in 1 to 3 loop

  A(I) <= B(I);

end loop;

-- Second fragment is three equivalent statements

A(1) <= B(1);

A(2) <= B(2);

A(3) <= B(3);
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You can use a loop statement to operate on all elements of an array without explicitly depending on 
the size of the array. Example 6-13 shows how the VHDL array attribute ’range  can be used—in this 
case to invert each element of bit vector A.

Example 6-13: for..loop Statement Operating on an Entire Array

variable A, B: BIT_VECTOR(1 to 10);

. . .

for I in A’range loop

  A(I) := not B(I);

end loop;
 

Unconstrained arrays and array attributes are described under ‘‘Array Types- in Chapter 4.

next Statement
The next statement terminates the current iteration of a loop, then continues with the first statement in 
the loop. The syntax is

next [ label ] [ when condition ] ;

A next statement with no label terminates the current iteration of the innermost enclosing loop. 
When you specify a loop label, the current iteration of that named loop is terminated.

The optional when clause executes its next statement when its condition (a Boolean expression) 
evaluates to TRUE.
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Example 6-14 uses the next statement to copy bits conditionally from bit vector B to bit vector A only 
when the next condition evaluates to TRUE.

Example 6-14: next Statement

signal A, B, COPY_ENABLE: BIT_VECTOR (1 to 8);

. . .

A <= -00000000";

. . .

-- B is assigned a value, such as -01011011"

-- COPY_ENABLE is assigned a value, such as -11010011"

. . .

for I in 1 to 8 loop

  next when COPY_ENABLE(I) = ’0’;

  A(I) <= B(I);

end loop; 
 

Example 6-15 shows the use of nested next statements in named loops. This example processes:

•  The first element of vector X against the first element of vector Y, 

•  The second element of vector X against each of the first two elements of vector Y, 

•  The third element of vector X against each of the first three elements of vector Y,

The processing continues in this fashion until it is completed.
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Example 6-15: Named next Statement

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop

. . .

  B_LOOP: for J in Y’range loop

    . . .

    next A_LOOP when I < J;

    . . .

  end loop B_LOOP;

. . .

end loop A_LOOP;

exit Statement
The exit statement terminates a loop. Execution continues with the statement following end loop. 
The syntax is

exit [ label ] [ when condition ] ;

An exit statement with no label terminates the innermost enclosing loop. When you identify a loop 
label, that named loop is terminated, as shown earlier in Example 6-15.

The optional when clause executes its exit statement when its condition (a Boolean expression) 
evaluates TRUE.

The exit and next statements are equivalent constructs. Both statements use identical syntax, and 
both skip the remainder of the enclosing (or named) loop. The only difference between the two state-
ments is that exit terminates its loop, and next continues with the next loop iteration (if any).

Example 6-16 compares two bit vectors. An exit statement exits the comparison loop when a differ-
ence is found.

Example 6-16: Comparator Using the exit Statement

signal A, B:          BIT_VECTOR(1 downto 0);

signal A_LESS_THAN_B: Boolean;

. . .

A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop

  if (A(I) = ’1’ and B(I) = ’0’) then

    A_LESS_THAN_B <= FALSE;

    exit;

  elsif (A(I) = ’0’ and B(I) = ’1’) then
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    A_LESS_THAN_B <= TRUE;

    exit;

  else

    null;      -- Continue comparing

  end if;

end loop;
 

Subprograms
Subprograms are independent, named algorithms. A subprogram is either a procedure (zero or 
more in, inout, or out parameters) or a function (zero or more in parameters and one return 
value). Subprograms are called by name from anywhere within a VHDL architecture or a package 
body. Subprograms can be called sequentially (as described later in this chapter) or concurrently (as 
described in Chapter 7). 

In hardware terms, a subprogram call is similar to module instantiation, except that a subprogram call 
becomes part of the current circuit, whereas module instantiation adds a level of hierarchy to the 
design. A synthesized subprogram is always a combinational circuit (use a process to create a 
sequential circuit).

Subprograms, like packages, have subprogram declarations and subprogram bodies. A subprogram 
declaration specifies its name, parameters, and return value (for functions). A subprogram body then 
implements the operation you want. 

Often, a package contains only type and subprogram declarations for use by other packages. The 
bodies of the declared subprograms are then implemented in the bodies of the declaring packages. 

The advantage of the separation between declarations and bodies is that subprogram interfaces can 
be declared in public packages during system development. One group of developers can use the 
public subprograms as another group develops the corresponding bodies. You can modify package 
bodies, including subprogram bodies, without affecting existing users of that package’s declarations. 
You can also define subprograms locally inside an entity, block, or process.

FPGA Express implements procedure and function calls with combinational logic, unless you use the 
map_to_entity compiler directive (see ‘‘Mapping Subprograms to Components),-  later in this chap-
ter).  FPGA Express does not allow inference of sequential devices, such as latches or flip-flops, in 
subprograms.
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Example 6-17 shows a package containing some procedure and function declarations and bodies.  
The example itself is not synthesizable; it just creates a template.  Designs that instantiate procedure 
P, however, compile normally.

Example 6-17: Subprogram Declarations and Bodies

package EXAMPLE is

  procedure P (A: in INTEGER; B: inout INTEGER);

    -- Declaration of procedure P

  function INVERT (A: BIT) return BIT;

    -- Declaration of function INVERT

end EXAMPLE;

package body EXAMPLE is

  procedure P (A: in INTEGER; B: inout INTEGER) is

    -- Body of procedure P

  begin

    B := A + B;

  end; 

  function INVERT (A: BIT) return BIT is

    -- Body of function INVERT

  begin

    return (not A);

  end;

end EXAMPLE;

For more information about subprograms, see ‘‘Subprograms- in Chapter 3.

Subprogram Calls
Subprograms can have zero or more parameters. A subprogram declaration defines each parameter’s 
name, mode, and type. These are a subprogram’s formal parameters. When the subprogram is called, 
each formal parameter is given a value, termed the actual parameter. Each actual parameter’s value 
(of an appropriate type) can come from an expression, a variable, or a signal.

The mode of a parameter specifies whether the actual parameter can be read from (mode in), written 
to (mode out), or both read from and written to (mode inout). Actual parameters that use modes out 
and inout must be variables or signals, including indexed names (A(1)) and slices (A(1 to 3)), but 
cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:
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procedure
Can have multiple parameters that use modes in, inout, and out. Does not itself return a value.

Procedures are used when you want to update some parameters (modes out and inout), or when 
you do not need a return value. An example might be a procedure with one inout bit vector parame-
ter that inverted each bit in place.

function
Can have multiple parameters, but only parameters that use mode in. Returns its own function value. 
Part of a function definition specifies its return value type (also called the function type).

Functions are used when you do not need to update the parameters and you want a single return 
value. For example, the arithmetic function ABS returns the absolute value of its parameter.

Procedure Calls
A procedure call executes the named procedure with the given parameters. The syntax is

procedure_name [ ( [ name => ] expression

                 { , [ name => ] expression } ) ] ;

Each expression is called an actual parameter; expression is often just an identifier. If a name is 
present (positional notation), it is a formal parameter name associated with the actual parameter’s 
expression. 

Formal parameters are matched to actual parameters by positional or named notation. Named and 
positional notation can be mixed, but positional parameters must appear before named parameters.

Conceptually, a procedure call is performed in three steps. First, the values of the in and inout 
actual parameters are assigned to their associated formal parameters. Second, the procedure is exe-
cuted. Third, the values of the inout and out formal parameters are assigned to the actual parame-
ters.

In the synthesized hardware, the procedure’s actual inputs and outputs are wired to the procedure’s 
internal logic.

Example 6-18 shows a local procedure named SWAP that compares two elements of an array and 
exchanges these elements if they are out of order. SWAP is repeatedly called to sort an array of three 
numbers.
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Example 6-18: Procedure Call to Sort an Array

package DATA_TYPES is 

  type DATA_ELEMENT is range 0 to 3;

  type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;

end DATA_TYPES;

use WORK.DATA_TYPES.ALL;

entity SORT is

  port(IN_ARRAY:   in DATA_ARRAY;

       OUT_ARRAY: out DATA_ARRAY);

end SORT;

architecture EXAMPLE of SORT is

begin

  process(IN_ARRAY)

    procedure SWAP(DATA:   inout DATA_ARRAY;

                   LOW, HIGH: in INTEGER) is

      variable TEMP: DATA_ELEMENT;

    begin

      if(DATA(LOW) > DATA(HIGH)) then  -- Check data

        TEMP := DATA(LOW);       

        DATA(LOW) := DATA(HIGH);       -- Swap data

        DATA(HIGH) := TEMP;

      end if;

    end SWAP;

    variable MY_ARRAY: DATA_ARRAY;

  begin

    MY_ARRAY := IN_ARRAY;   -- Read input to variable

    -- Pair-wise sort

    SWAP(MY_ARRAY, 1, 2);   -- Swap first and second

    SWAP(MY_ARRAY, 2, 3);   -- Swap second and third

    SWAP(MY_ARRAY, 1, 2);   -- Swap first and second again

    OUT_ARRAY <= MY_ARRAY;  -- Write result to output

  end process;

end EXAMPLE;
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Function Calls
A function call is similar to a procedure call, except that a function call is a type of expression because 
it returns a value.

Example 6-19 shows a simple function definition and two calls to that function.

Example 6-19: Function Call

function INVERT (A : BIT) return BIT is

  begin

    return (not A);

  end;

...

process

  variable V1, V2, V3: BIT;

begin

  V1 := ’1’;

  V2 := INVERT(V1) xor 1;   

  V3 := INVERT(’0’);  

end process;

For more information, see ‘‘Function Calls,- under ‘‘Operands- in Chapter 5.
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return Statement
The return statement terminates a subprogram. This statement is required in function definitions and 
is optional in procedure definitions. The syntax is

return expression ;      -- Functions

return ;                 -- Procedures

The required expression provides the function’s return value. Every function must have at least one 
return statement. The expression’s type must match the declared function type. A function can have 
more than one return statement. Only one return statement is reached by a given function call.

A procedure can have one or more return statements, but no expression is allowed. A return 
statement, if present, is the last statement executed in a procedure. 

In Example 6-20, the function OPERATE returns either the AND or the OR of its parameters A and B. 
The return depends on the value of its parameter OPERATION.

Example 6-20: Use of Multiple return Statements

function OPERATE(A, B, OPERATION: BIT) return BIT is

begin

  if (OPERATION = ’1’) then

    return (A and B);

  else

    return (A or B);

  end if;

end OPERATE; 

Mapping Subprograms to Components (Entities) 
In VHDL, entities cannot be invoked from within behavioral code. Procedures and functions cannot 
exist as entities (components), but must be represented by gates. You can overcome this limitation 
with the compiler directive map_to_entity, which causes FPGA Express to implement a function or 
procedure as a component instantiation. Procedures and functions that use map_to_entity are 
represented as components in designs in which they are called.

You can also use the FPGA Express Implementation Window to create a new level of hierarchy from a 
VHDL subprogram, as described in the FPGA Express User’s Guide. 
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When you add a map_to_entity directive to a subprogram definition, FPGA Express assumes the 
existence of an entity with the identified name and the same interface. FPGA Express does not check 
this assumption until it links the parent design. The matching entity must have the same input and out-
put port names. If the subprogram is a function, you must also provide a return_port_name direc-
tive, where the matching entity has an output port of the same name. 

These two directives are called component implication directives:

-- pragma map_to_entity    entity_name

-- pragma return_port_name port_name 

Insert these directives after the function or procedure definition. For example:

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

      TWO_BIT is

  -- pragma map_to_entity MUX_ENTITY

  -- pragma return_port_name Z

...

When FPGA Express encounters the map_to_entity directive, it parses but ignores the contents of 
the subprogram definition. Use -- pragma translate_off and -- pragma translate_on to 
hide simulation-specific constructs in a map_to_entity subprogram. 

Note:  The matching entity (entity_name) does not need to be written in VHDL. It can be in any for-
mat that FPGA Express supports. 

Caution The behavioral description of the subprogram is not checked against the functionality of the 
entity overloading it. Presynthesis and post-synthesis simulation results might not match if 
differences in functionality exist between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication directives.
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Example 6-21: Using Component Implication Directives on a Function 

package MY_PACK is

  subtype TWO_BIT is BIT_VECTOR(1 to 2);

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

      TWO_BIT;

end;

package body MY_PACK is

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

      TWO_BIT is

  -- pragma map_to_entity MUX_ENTITY

  -- pragma return_port_name Z

  -- contents of this function are ignored but should

  -- match the functionality of the module MUX_ENTITY

  -- so pre- and post simulation will match

  begin

    if(C = ’1’) then

      return(A);

    else 

      return(B);

    end if;

  end;

end;

use WORK.MY_PACK.ALL;

entity TEST is

  port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_BIT);

end;

architecture ARCH of TEST is

begin

  process

  begin

    TEST_OUT <= MUX_FUNC(not A, A, C); 

                               -- Component implication call

  end process;

end;

use WORK.MY_PACK.ALL;
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-- the following entity ’overloads’ the function

-- MUX_FUNC above

entity MUX_ENTITY is

  port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);

end;

architecture ARCH of MUX_ENTITY is

begin

  process

  begin

      case C is

          when ’1’ => Z <= A;

          when ’0’ => Z <= B;

      end case;

  end process;

end; 

Example 6-22 shows the same design as Example 6-21, but without the creation of an entity for the 
function. The compiler directives have been removed.
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Example 6-22: Using Gates to Implement a Function 

package MY_PACK is

  subtype TWO_BIT is BIT_VECTOR(1 to 2);

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 

      return TWO_BIT;

end;

package body MY_PACK is

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT is

  begin

    if(C = ’1’) then

      return(A);

    else 

      return(B);

    end if;

  end;

end;

use WORK.MY_PACK.ALL;

entity TEST is

  port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);

end;

architecture ARCH of TEST is

begin

  process

  begin

    Z <= MUX_FUNC(not A, A, C); 

  end process;

end;
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wait Statement
A wait statement suspends a process until a positive-going edge or negative-going edge is detected 
on a signal. The syntax is

wait until signal = value ;

wait until signal’event and  signal = value ;

wait until not signal’stable 
           and  signal = value ;

signal is the name of a single-bit signal—a signal of an enumerated type encoded with one bit (see 
‘‘Enumeration Encoding- in Chapter 4). value must be one of the literals of the enumerated type. If 
the signal type is BIT, the awaited value is either ’1’  for a positive-going edge or ’0’  for a nega-
tive-going edge.

Note:  The three forms of the wait  statement, a subset of IEEE VHDL, are specific to the current 
implementation of FPGA Express.

Inferring Synchronous Logic
A wait  statement implies synchronous logic, where signal is usually a clock signal. The next sec-
tion describes how FPGA Express infers and implements this logic.

Example 6-23 shows three equivalent wait  statements (all positive-edge triggered).

Example 6-23: Equivalent wait Statements

wait until CLK = ’1’;

wait until CLK’event and CLK = ’1’;

wait until not CLK’stable and CLK = ’1’;

When a circuit is synthesized, the hardware in the three forms of wait statements does not differ. 

Example 6-24 shows a wait statement used to suspend a process until the next positive edge (a 
0-to-1 transition) on signal CLK.

Example 6-24: wait for a Positive Edge

signal CLK: BIT;

...

process

begin

  wait until CLK’event and CLK = ’1’; 

    -- Wait for positive transition (edge)

  ...

end process;
                Sequential Statements • 6–29



wait Statement
Note:  IEEE VHDL specifies that a process containing a wait statement must not have a sensitivity 
list. See ‘‘Process Statements- in Chapter 7 for more information.

Example 6-25 shows how a wait statement is used to describe a circuit where a value is incremented 
on each positive clock edge.

Example 6-25: Loop Using a wait Statement

process

begin

y <= 0;

wait until (clk’event and clk = ’1’);

while (y < MAX) loop

wait until (clk’event and clk = ’1’);

x <= y ;

y <= y + 1;

end loop;

end process;

Example 6-26 shows how multiple wait statements describe a multicycle circuit. The circuit provides 
an average value of its input A over four clock cycles.

Example 6-26: Using Multiple wait Statements 

process

begin

  wait until CLK’event and CLK = ’1’; 

  AVE <= A;

  wait until CLK’event and CLK = ’1’; 

  AVE <= AVE + A;

  wait until CLK’event and CLK = ’1’; 

  AVE <= AVE + A;

  wait until CLK’event and CLK = ’1’; 

  AVE <= (AVE + A)/4;

end process;

Example 6-27 shows two equivalent descriptions. The first description uses implicit state logic, and the 
second uses explicit state logic.  
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Example 6-27: wait Statements and State Logic

-- Implicit State Logic

process 

begin

  wait until CLOCK’event and CLOCK = ’1’;

  if (CONDITION) then 

    X <= A;

  else 

    wait until CLOCK’event and CLOCK = ’1’;

  end if;

end process;

-- Explicit State Logic

...

type STATE_TYPE is (SO, S1);

variable STATE : STATE_TYPE;

...

process 

begin

  wait until CLOCK’event and CLOCK = ’1’;

  case STATE is

    when S0 =>

      if (CONDITION) then

         X <= A;

         STATE := S0;  -- Set STATE here to avoid an

                       -- extra feedback loop in the 

                       -- synthesized logic.

      else 

         STATE := S1;

      end if;

    when S1 =>

      STATE := S0;

  end case;

end process;

Note:  wait statements can be used anywhere in a process except in for..loop statements or sub-
programs. However, if any path through the logic contains one or more wait statements, all 
paths must contain at least one wait statement.

Example 6-28 shows how a circuit with synchronous reset can be described with wait statements in 
an infinite loop. The reset signal must be checked immediately after each wait statement. The assign-
ment statements in Example 6-28 (X <= A; and Y <= B;) simply represent the sequential state-
ments used to implement your circuit.
                Sequential Statements • 6–31



wait Statement
Example 6-28: Synchronous Reset Using wait Statements

process 

begin

  RESET_LOOP: loop

    wait until CLOCK’event and CLOCK = ’1’;

    next RESET_LOOP when (RESET = ’1’);

    X <= A; 

    wait until CLOCK’event and CLOCK = ’1’;

    next RESET_LOOP when (RESET = ’1’);

    Y <= B;

  end loop RESET_LOOP;

end process;

Example 6-29 shows two invalid uses of wait statements. These limitations are specific to FPGA 
Express.

Example 6-29: Invalid Uses of the wait Statement 

...

type COLOR is (RED, GREEN, BLUE);

attribute ENUM_ENCODING : STRING;

attribute ENUM_ENCODING of COLOR : type is -100 010 001";

signal CLK : COLOR;

...

process

  begin

    wait until CLK’event and CLK = RED; 

       -- Illegal: clock type is not encoded with one bit 

    ...

  end;

...

process

  begin 

    if (X = Y) then

       wait until CLK’event and CLK = ’1’; 

       ...

    end if;

       -- Illegal: not all paths contain wait statements

    ...

  end;
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Combinational vs. Sequential Processes
If a process has no wait statements, the process is synthesized with combinational logic. Computa-
tions performed by the process react immediately to changes in input signals. 

If a process uses one or more wait statements, it is synthesized with sequential logic. The process 
computations are performed only once for each specified clock edge (positive or negative edge). The 
results of these computations are saved until the next edge by storing them in flip-flops. 

The following values are stored in flip-flops:

•  Signals driven by the process; see ‘‘Signal Assignment Statement- at the beginning of this chapter.

•  State vector values, where the state vector can be implicit or explicit (as in Example 6-27).

•  Variables that may be read before they are set.

Note:  Like the wait statement, some uses of the if statement can also imply synchronous logic, 
causing FPGA Express to infer registers or latches. These methods are described in Chapter 8, 
under ‘‘Register and Three-State Inference.-

Example 6-30 uses a wait statement to store values across clock cycles. The example code com-
pares the parity of a data value with a stored value. The stored value (called CORRECT_PARITY) is set 
from the NEW_CORRECT_PARITY signal if the SET_PARITY signal is TRUE.

Example 6-30: Parity Tester Using the wait Statement

signal CLOCK: BIT;

signal SET_PARITY, PARITY_OK: Boolean;

signal NEW_CORRECT_PARITY: BIT;

signal DATA: BIT_VECTOR(0 to 3);

...

process

  variable CORRECT_PARITY, TEMP: BIT;

begin

  wait until CLOCK’event and CLOCK = ’1’;

  -- Set new correct parity value if requested

  if (SET_PARITY) then

    CORRECT_PARITY := NEW_CORRECT_PARITY;

  end if;

  -- Compute parity of DATA

  TEMP := ’0’;

  for I in DATA’range loop

    TEMP := TEMP xor DATA(I);

  end loop;

  -- Compare computed parity with the correct value

  PARITY_OK <= (TEMP = CORRECT_PARITY);

end process;
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Note that two flip-flops are in the synthesized schematic for Example 6-30. The first (input) flip-flop 
holds the value of CORRECT_PARITY. A flip-flop is needed here because CORRECT_PARITY is read 
(when it is compared to TEMP) before it is set (if SET_PARITY is FALSE). The second (output) flip-flop 
stores the value of PARITY_OK between clock cycles. The variable TEMP is not given a flip-flop 
because it is always set before it is read.

null Statement
The null statement explicitly states that no action is required. The null statement is often used in 
case statements because all choices must be covered, even if some of the choices are ignored. The 
syntax is

null;

Example 6-31 shows a typical usage of the null statement.

Example 6-31: null Statement

signal CONTROL: INTEGER range 0 to 7;

signal A, Z: BIT; 

...

Z <= A;

case CONTROL is      

  when 0 | 7 =>      -- If 0 or 7, then invert A

    Z <= not A;

  when others =>

    null;            -- If not 0 or 7, then do nothing

end case;
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Chapter 7
Concurrent Statements
A VHDL architecture contains a set of concurrent statements. Each concurrent statement defines one 
of the interconnected blocks or processes that describe the overall behavior or structure of a design. 
Concurrent statements in a design execute continuously, unlike sequential statements (see 
Chapter 6), which execute one after another.

The two main concurrent statements are 

process statement
A process statement defines a process. Processes are composed of sequential statements (see 
Chapter 6), but processes are themselves concurrent statements. All processes in a design execute 
concurrently. However, at any given time only one sequential statement is interpreted within each pro-
cess. A process communicates with the rest of a design by reading or writing values to and from sig-
nals or ports declared outside the process.

block statement
A block statement defines a block. Blocks are named collections of concurrent statements, optionally 
using locally defined types, signals, subprograms, and components.

VHDL provides two concurrent versions of sequential statements: concurrent procedure calls and con-
current signal assignments. 

The component instantiation statement references a previously defined hardware component. 

Finally, the generate statement creates multiple copies of any concurrent statement. 

The concurrent statements consist of

•  process Statements

•  block Statement

•  Concurrent Procedure Calls

•  Concurrent Signal Assignments

•  Component Instantiations

•  generate Statements
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process Statements
A process statement contains an ordered set of sequential statements. The syntax is

[ label: ] process [ ( sensitivity_list ) ]

     { process_declarative_item }

begin

     { sequential_statement }

end process [ label ] ;

An optional label names the process. The sensitivity_list is a list of all signals (including 
ports) read by the process, in the following format:

signal_name {, signal_name} 

The hardware synthesized by FPGA Express is sensitive to all signals read by the process. To guaran-
tee that a VHDL simulator sees the same results as the synthesized hardware, a process sensitivity list 
must contain all signals whose changes require resimulation of that process. FPGA Express checks 
sensitivity lists for completeness and issues warning messages for any signals that are read inside a 
process but are not in the sensitivity list. An error is issued if a clock signal is read as data in a process.

Note:  IEEE VHDL does not allow a sensitivity list if the process includes a wait statement. 

A process_declarative_item declares subprograms, types, constants, and variables local to the 
process. These items can be any of the following items:

•  use clause

•  Subprogram declaration

•  Subprogram body

•  Type declaration

•  Subtype declaration

•  Constant declaration

•  Variable declaration

Each sequential_statement is described in Chapter 6.

Conceptually, the behavior of a process is defined by the sequence of its statements. After the last 
statement in a process is executed, execution continues with the first statement. The only exception is 
during simulation: if a process has a sensitivity list, the process is suspended (after its last statement) 
until a change occurs in one of the signals in the sensitivity list. 

If a process has one or more wait statements (and therefore no sensitivity list), the process is sus-
pended at the first wait statement whose wait condition is FALSE.

The hardware synthesized for a process is either combinational (not clocked) or sequential (clocked). 
If a process includes a wait or if signal’event  statement, its hardware contains sequential com-
ponents. The wait  and if  statements are described in Chapter 6.
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Note:  The process statements provide a natural means for describing conceptually sequential algo-
rithms. If the values computed in a process are inherently parallel, consider using concurrent 
signal assignment statements (see ‘‘Concurrent Signal Assignments," later in this chapter).

Combinational Process Example
Example 7-1 shows a process that implements a simple modulo-10 counter. The example process is 
sensitive to (reads) two signals: CLEAR and IN_COUNT. It drives one signal, OUT_COUNT. If CLEAR is 
’1’  or IN_COUNT is 9, then OUT_COUNT is set to zero. Otherwise, OUT_COUNT is set to one more than 
IN_COUNT.

Example 7-1: Modulo-10 Counter Process

entity COUNTER is 

   port (CLEAR:      in BIT;

         IN_COUNT:   in INTEGER range 0 to 9;

         OUT_COUNT: out INTEGER range 0 to 9);

end COUNTER;

architecture EXAMPLE of COUNTER is

begin

  process(IN_COUNT, CLEAR)

  begin

     if (CLEAR = ’1’ or IN_COUNT = 9) then

        OUT_COUNT <= 0;

     else

        OUT_COUNT <= IN_COUNT + 1;

     end if;

  end process;

end EXAMPLE;
                Concurrent Statements • 7–3



process Statements
Sequential Process Example
Because the process in Example 7-1 contains no wait statements, it is synthesized with combina-
tional logic. An alternate implementation of the counter is to retain the count value internally in the pro-
cess with a wait statement. 

Example 7-2 shows an implementation of a counter as a sequential (clocked) process. On each 0-to-1 
CLOCK transition, if CLEAR is ’1’  or COUNT is 9, COUNT is set to zero; otherwise, COUNT is incre-
mented by 1.

Example 7-2: Modulo-10 Counter Process with wait Statement

entity COUNTER is 

   port (CLEAR: in BIT;

         CLOCK: in BIT;

         COUNT: buffer INTEGER range 0 to 9);

end COUNTER;

architecture EXAMPLE of COUNTER is

begin

  process

  begin

     wait until CLOCK’event and CLOCK = ’1’;

     if (CLEAR = ’1’ or COUNT >= 9) then

        COUNT <= 0;
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     else

        COUNT <= COUNT + 1;

     end if;

  end process;

end EXAMPLE; 

In Example 7-2, the value of the variable COUNT is stored in four flip-flops. These flip-flops are gener-
ated because COUNT can be read before it is set, so its value must be maintained from the previous 
clock cycle. See ‘‘wait Statement" in Chapter 6 for more information.

Driving Signals
If a process assigns a value to a signal, the process is a driver of that signal. If more than one process 
or other concurrent statement drives a signal, that signal has multiple drivers. 

Example 7-3 shows two three-state buffers driving the same signal (SIG). Chapter 8 shows how to 
describe a three-state device in technology-independent VHDL, in the section on ‘‘Three-State Infer-
ence."

Example 7-3: Multiple Drivers of a Signal

A_OUT <= A when ENABLE_A else ’Z’;

B_OUT <= B when ENABLE_B else ’Z’;

process(A_OUT)

begin

   SIG <= A_OUT;

end process;

process(B_OUT)
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begin

   SIG <= B_OUT;

end process; 

Bus resolution functions assign the value for a multiply-driven signal. See ‘‘Resolution Functions," 
under ‘‘Subprograms" in Chapter 3, for more information.

block Statement
A block statement names a set of concurrent statements. Use blocks to organize concurrent state-
ments hierarchically. 

The syntax is

label: block

  { block_declarative_item }

begin

  { concurrent_statement }

end block [ label ];

The required label names the block. 

A block_declarative_item declares objects local to the block and can be any of the following 
items:

•  use clause

•  Subprogram declaration

•  Subprogram body

•  Type declaration

•  Subtype declaration

•  Constant declaration

•  Signal declaration

•  Component declaration

The order of each concurrent_statement in a block is not significant, because each statement is 
always active. 

Note:  FPGA Express does not support guarded blocks. 
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Objects declared in a block are visible to that block and to all blocks nested within. When a child block 
(inside a parent block) declares an object with the same name as an object in the parent block, the 
child’s declaration overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Example 7-4: Nested Blocks

B1: block

   signal S: BIT; -- Declaration of "S" in block B1

begin

   S <= A and B;  -- "S" from B1

   B2: block

      signal S: BIT; -- Declaration of "S" in block B2

   begin

      S <= C and D;  -- "S" from B2

      B3: block

      begin

         Z <= S;     -- "S" from B2

      end block B3;

   end block B2;

  Y <= S;         -- "S" from B1

end block B1; 

Concurrent Procedure Calls
A concurrent procedure call is a procedure call used as a concurrent statement; it is used in an archi-
tecture or a block, rather than in a process. A concurrent procedure call is equivalent to a process con-
taining a single sequential procedure call. The syntax is the same as that of a sequential procedure 
call:

procedure_name [  ( [ name => ] expression

                    { , [ name => ] expression } ) ] ;
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The equivalent process is sensitive to all in and inout parameters of the procedure. Example 7-5 
shows a procedure declaration, then a concurrent procedure call and its equivalent process.

Example 7-5: Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A, B: in BIT; 
              signal SUM: out BIT);

...

ADD(A, B, SUM);    -- Concurrent procedure call

...

process(A, B)      -- The equivalent process

begin

   ADD(A, B, SUM); -- Sequential procedure call

end process;

FPGA Express implements procedure and function calls with logic, unless you use the 
map_to_entity compiler directive (see ‘‘Mapping Subprograms to Components (Entities)," in Chap-
ter 6).

A common use for concurrent procedure calls is to obtain many copies of a procedure.   For example, 
assume that a class of BIT_VECTOR signals must contain only one bit with value 1 and the rest of the 
bits value 0. Suppose you have several signals of varying widths that you want monitored at the same 
time. One approach is to write a procedure to detect the error in a BIT_VECTOR signal, then make a 
concurrent call to that procedure for each signal. 

Example 7-6 shows a procedure CHECK that determines whether a given bit vector contains exactly 
one element with value ’1’ ; if this is not the case, CHECK sets its out  parameter ERROR to TRUE.
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Example 7-6: Procedure Definition for Example 7-7

procedure CHECK(signal A:      in BIT_VECTOR; 
                signal ERROR: out Boolean) is

  variable FOUND_ONE: Boolean := FALSE;
                            -- Set TRUE when a ’1’ 
                            -- is seen
begin
   for I in A’range loop    -- Loop across all bits
                            --   in the vector
      if A(I) = ’1’ then    -- Found a ’1’
         if FOUND_ONE then  -- Have we already found one?
            ERROR <= TRUE;  -- Found two ’1’s
            return;         -- Terminate procedure
         end if;

         FOUND_ONE := TRUE; -- Note that we have
      end if;               --   seen a ’1’
   end loop;

   ERROR <= not FOUND_ONE;  -- Error will be TRUE
                            --   if no ’1’ found
end;

Example 7-7 shows the CHECK procedure called concurrently for four different-sized bit vector signals.

Example 7-7: Concurrent Procedure Calls

BLK: block

  signal S1: BIT_VECTOR(0 to 0);

  signal S2: BIT_VECTOR(0 to 1);

  signal S3: BIT_VECTOR(0 to 2);

  signal S4: BIT_VECTOR(0 to 3);

  signal E1, E2, E3, E4: Boolean;

begin

  CHECK(S1, E1);  -- Concurrent procedure call

  CHECK(S2, E2);

  CHECK(S3, E3);

  CHECK(S4, E4);

end block BLK; 

Concurrent Signal Assignments
A concurrent signal assignment is equivalent to a process containing that sequential assignment. 
Thus, each concurrent signal assignment defines a new driver for the assigned signal. The simplest 
form of the concurrent signal assignment is

target <= expression;
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target is a signal that receives the value of expression.

Example 7-8 shows the value of the expression A and B concurrently assigned to signal Z.

Example 7-8: Concurrent Signal Assignment

BLK: block

  signal A, B, Z: BIT;

begin

  Z <= A and B;

end block BLK;

The other two forms of concurrent signal assignment are conditional signal assignment and selected 
signal assignment.

Conditional Signal Assignment
Another form of concurrent signal assignment is the conditional signal assignment. The syntax is

target <= { expression when condition else }

          expression;

target is a signal that receives the value of an expression. The expression used is the first one 
whose Boolean condition is TRUE.

When a conditional signal assignment statement is executed, each condition is tested in order as 
written. The first condition that evaluates TRUE has its expression assigned to target. If no 
condition is TRUE, the final expression is assigned to the target. If two or more conditions 
are TRUE, only the first one is effective, just like the first TRUE branch of an if statement.
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Example 7-9 shows a conditional signal assignment, where the target is the signal Z. The signal Z is 
assigned from one of the signals A, B, or C. The signal depends on the value of the expressions 
ASSIGN_A and ASSIGN_B. Note that the assignment of A takes precedence over that of B, and the 
assignment of B takes precedence over that of C, because the first TRUE condition controls the assign-
ment.

Example 7-9: Conditional Signal Assignment

  Z <= A when ASSIGN_A = ’1’ else

       B when ASSIGN_B = ’1’ else

       C; 

Example 7-10 shows a process equivalent to the conditional signal assignment in Example 7-9.

Example 7-10: Process Equivalent to Conditional Signal Assignment

process(A, ASSIGN_A, B, ASSIGN_B, C)

begin

   if ASSIGN_A = ’1’ then

      Z <= A;

   elsif ASSIGN_B = ’1’ then

      Z <= B;

   else

      Z <= C;

   end if;

end process;

Selected Signal Assignment
The final kind of concurrent signal assignment is the selected signal assignment. The syntax is

with choice_expression select

   target <= { expression when choices, }

             expression when choices;
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target is a signal that receives the value of an expression. The expression selected is the first 
one whose choices include the value of choice_expression. The syntax of choices is the same 
as that of the case statement:

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range (such as 1 to 3). The 
type of choice_expression determines the type of each choice.   Each value in the range of the 
choice_expression type must be covered by one choice. 

The final choice can be others, which matches all remaining (unchosen) values in the range of the 
choice_expression type. The others choice, if present, matches choice_expression only if 
none of the other choices match.

The with..select statement evaluates choice_expression and compares that value to each 
choice value. The when clause with the matching choice value has its expression assigned to 
target. 

The following restrictions are placed on choices:

•  No two choices can overlap.

•  If no others choice is present, all possible values of choice_expression must be covered by the 
set of choices.

Example 7-11 shows target Z assigned from A, B, C, or D. The assignment depends on the current 
value of CONTROL.

Example 7-11: Selected Signal Assignment

signal A, B, C, D, Z: BIT;

signal CONTROL:  bit_vector(1 down to 0);

. . .

with CONTROL select

   Z <= A when "00",

        B when "01",

        C when "10",

        D when "11";

Example 7-12 shows the process equivalent to the selected signal assignment statement in Example 
7-11.
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Example 7-12: Process Equivalent to Selected Signal Assignment

process(CONTROL, A, B, C, D)

begin

   case CONTROL is

      when 0 =>

         Z <= A;

      when 1 =>

         Z <= B;

      when 2 =>

         Z <= C;

      when 3 =>

         Z <= D;

    end case;

end process;

Component Instantiations
A component instantiation references a previously defined hardware component, in the current design, 
at the current level of hierarchy. You can use component instantiations to define a design hierarchy. 
You can also use parts not defined in VHDL, such as components from an FPGA technology library, 
parts defined in the Verilog hardware description language, or the generic technology library. Compo-
nent instantiation statements can be used to build netlists in VHDL. 

A component instantiation statement indicates

•  A name for this instance of the component.

•  The name of a component to include in the current entity.

•  The connection method for a component’s ports.

The syntax is

instance_name : component_name port map (

                [ port_name => ] expression

                {, [ port_name => ] expression } );

instance_name names this instance of the component type component_name.

The port map connects each port of this instance of component_name to a signal-valued expres-
sion in the current entity. The value of expression can be a signal name, an indexed name, a slice 
name, or an aggregate. If expression is the VHDL reserved word open, the corresponding port is 
left unconnected.

You can map ports to signals by named or positional notation. You can include both named and posi-
tional connections in the port map, but you must place all positional connections before any named 
connections. 
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Note:  For named association, the component port names must exactly match the declared compo-
nent’s port names. For positional association, the actual port expressions must be in the same 
order as the declared component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate) followed by three equivalent 
component instantiation statements.

Example 7-13: Component Declaration and Instantiations

component ND2

   port(A, B: in BIT; C: out BIT);

end component;

. . .

signal X, Y, Z:  BIT;

. . .

U1: ND2 port map(X, Y, Z);               -- positional

U2: ND2 port map(A => X, C => Z, B => Y);-- named

U3: ND2 port map(X, Y, C => Z);          -- mixed

Example 7-14 shows the component instantiation statement defining a simple netlist. The three 
instances, U1, U2, and U3, are instantiations of the 2-input NAND gate component declared in 
Example 7-13.

Example 7-14: A Simple Netlist

signal TEMP_1, TEMP2: BIT;

. . .

  U1: ND2 port map(A, B, TEMP_1);

  U2: ND2 port map(C, D, TEMP_2);

  U3: ND2 port map(TEMP_1, TEMP_2, Z);
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generate Statements
A generate statement creates zero or more copies of an enclosed set of concurrent statements. The 
two kinds of generate statements are

for... generate 
the number of copies is determined by a discrete range

if... generate 

zero or one copy is made, conditionally

for .. generate Statement
The syntax is

label: for identifier in range generate

     { concurrent_statement }

end generate [ label ] ;

The required label names this statement (useful for nested generate statements).

The use of the identifier in this construct is similar to that of the for..loop statement:

•  identifier is not declared elsewhere. It is automatically declared by the generate statement 
itself and is entirely local to the loop. A loop identifier overrides any other identifier with the same 
name but only within the loop. 

•  The value identifier can be read only inside its loop, but you cannot assign a value to a loop 
identifier. In addition, the value of identifier cannot be assigned to any parameter whose mode 
is out or inout.

FPGA Express requires that range must be a computable integer range, in either of these forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer. 

Each concurrent_statement can be any of the statements described in this chapter, including 
other generate statements. 

A for..generate statement executes as follows:

1. A new local integer variable is declared with the name identifier. 

2. identifier is assigned the first value of range, and each concurrent statement is executed 
once.

3. identifier is assigned the next value in range, and each concurrent statement is executed 
once more.

4. Step 3 is repeated until identifier is assigned the last value in range. Each concurrent state-
ment is then executed for the last time, and execution continues with the statement following 
end generate. The loop identifier is deleted.
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Example 7-15 shows a code fragment that combines and interleaves two four-bit arrays A and B into 
an eight-bit array C.

Example 7-15: for..generate Statement

signal A, B : bit_vector(3 downto 0);

signal C    : bit_vector(7 downto 0);

signal X    : bit;

. . .

GEN_LABEL: for I in 3 downto 0 generate

  C(2*I + 1) <= A(I) nor X;

  C(2*I)     <= B(I) nor X;

end generate GEN_LABEL; 

The most common usage of the generate statement is to create multiple copies of components, pro-
cesses, or blocks. Example 7-16 demonstrates this usage with components. Example 7-17 shows how 
to generate multiple copies of processes.Example 7-16 shows VHDL array attribute ’range  used with 
the for..generate  statement to instantiate a set of COMP components that connect corresponding 
elements of bit vectors A and B.
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Example 7-16: for..generate Statement Operating on an Entire Array

component COMP

  port (X :  in bit;

        Y : out bit);

end component;

. . .

signal A, B: BIT_VECTOR(0 to 7);

. . .

GEN: for I in A’range generate

  U: COMP port map (X => A(I), 

                    Y => B(I));

end generate GEN; 

Unconstrained arrays and array attributes are described under ‘‘Array Types" in Chapter 4. Array 
attributes are shown in Example 4-9.

 if . . generate Statement
The syntax is

label: if expression generate

     { concurrent_statement }

end generate [ label ] ;

label identifies (names) this statement. expression is any expression that evaluates to a Boolean 
value. A concurrent_statement is any of the statements described in this chapter, including other 
generate statements. 

Note:  Unlike the if statement described in Chapter 6, the if..generate statement has no else or 
elsif branches.
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You can use the if..generate statement to generate a regular structure that has different circuitry at 
its ends. Use a for..generate statement to iterate over the desired width of a design, and a set of 
if..generate statements to define the beginning, middle, and ending sets of connections. 

Example 7-17 shows a technology-independent description of the following N-bit serial-to-parallel con-
verter. Data is clocked into an N-bit buffer from right to left. On each clock cycle, each bit in an N-bit 
buffer is shifted up one bit, and the incoming DATA bit is moved into the low-order bit. 

Example 7-17 Typical Use of if..generate Statements

entity CONVERTER is

  generic(N: INTEGER := 8);

  port(CLK, DATA:   in BIT;

       CONVERT: buffer BIT_VECTOR(N-1 downto 0));

end CONVERTER;

architecture BEHAVIOR of CONVERTER is

  signal S : BIT_VECTOR(CONVERT’range);

begin

  

  G: for I in CONVERT’range generate

    G1: -- Shift (N-1) data bit into high-order bit 

      if (I = CONVERT’left) generate

        process begin

          wait until (CLK’event and CLK = ’1’);

          CONVERT(I) <= S(I-1);

        end process;  

    end generate G1;

    G2: -- Shift middle bits up

      if (I > CONVERT’right and 

          I < CONVERT’left) generate

        S(I) <= S(I-1) and CONVERT(I);

        process begin

          wait until (CLK’event and CLK = ’1’);

          CONVERT(I) <= S(I-1);

        end process;

    end generate G2;

    G3:  -- Move DATA into low-order bit

      if (I = CONVERT’right) generate

        process begin

          wait until (CLK’event and CLK = ’1’);
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          CONVERT(I) <= DATA;

        end process;

        S(I) <= CONVERT(I);

    end generate G3;

  end generate G;

end BEHAVIOR;

Example 7-17: (Continued)   Typical Use of if..generate Statements 
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Chapter 8
Register and Three-State Inference
You can generally use several different, but logically equivalent, VHDL descriptions to describe a cir-
cuit. 

To write VHDL descriptions to produce efficient synthesized circuits, consider the following topics:

•  Register Inference

•  Three-State Inference

You can use VHDL to make your design more efficient in terms of the synthesized circuit’s area and 
speed, as follows:

•  A design that needs some, but not all, of its variables or signals stored during operation can be writ-
ten to minimize the number of latches or flip-flops required.

•  A design that is described more easily with several levels of hierarchy can be synthesized more effi-
ciently if part of the design hierarchy is collapsed during synthesis.

Register Inference
FPGA Express provides register inferencing using the wait and if statements.

A register is a simple, one-bit memory device, either a flip-flop or a latch.  A flip-flop is an edge-trig-
gered memory device.  A latch is a level-sensitive memory device.

Use the wait statement to imply flip-flops in a synthesized circuit. FPGA Express creates flip-flops for 
all signals, and some variables assigned values in a process with a wait statement. 

The if statement can be used to imply registers (flip-flops or latches) for signals and variables in the 
branches of the if statement.  

To use register inferences, describe latches and flip-flops, and learn efficient use of registers, familiar-
ize yourself with

•  Using register inference 

•  Describing latches

•  Describing flip-flops

•  Efficient use of registers
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Using Register Inference
Using register inference involves describing clock signals and using wait and if statements for regis-
ter inferencing. Recommended models for different types of inferred registers and current Synopsys 
restrictions must also be considered.

Describing Clocked Signals
FPGA Express can infer asynchronous memory elements from VHDL descriptions written in a natural 
style.

Use the wait and if statements to test for the rising or falling edge of a signal. The most common 
usages are

process

begin

  wait until (edge); 

  ...

end process;

...

process (sensitivity_list)

begin

  if (edge) 

    ...

  end if;

end process;

Another form is

process (sensitivity_list)

begin

  if (...) then

    ...

  elsif (...)

    ...

  elsif (edge) then

    ...

  end if;

end process;

edge refers to an expression that tests for the positive or negative edge of a signal. The syntax of an 
edge expression is
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SIGNAL’event      and SIGNAL = ’1’  -- rising edge

NOT SIGNAL’stable and SIGNAL = ’1’  -- rising edge

SIGNAL’event      and SIGNAL = ’0’  -- falling edge

NOT SIGNAL’stable and SIGNAL = ’0’  -- falling edge

In a wait statement, edge can also be

signal = ’1’  -- rising edge

signal = ’0’  -- falling edge

An edge expression must be the only condition of an if or an elsif statement.  You can have only 
one edge expression in an if statement, and the if statement must not have an else clause. An 
edge expression cannot be part of another logical expression nor used as an argument.

if ( edge and RST = ’1’) 

  -- Illegal usage; edge must be only condition

Any_function( edge);

  -- Illegal usage; edge cannot be an argument

if X > 5 then

  sequential_statement;

elsif edge then

  sequential_statement;

else

  sequential_statement;

end if;

  -- Illegal usage; do  not  use  edge as an intermediate expression.

These lines illustrate three incorrect uses of the edge expression. In the first group, the edge expres-
sion is part of a larger Boolean expression. In the second group, the edge expression is used as an 
argument. In the third group, the edge expression is used as an intermediate condition.

wait vs if Statements
Sometimes you can use the wait and if statements interchangeably.  The if statement is usually 
preferred, because it provides greater control over the inferred register’s capabilities, as described in 
the next section.

IEEE VHDL requires that a process with a wait statement must not have a sensitivity list.  
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An if edge statement can appear anywhere in a process.  The sensitivity list of the process must con-
tain all signals read in the process, including the edge signal. In general, the following guidelines 
apply:

•  Synchronous processes (processes that compute values only on clock edges) must be sensitive to 
the clock signal.

•  Asynchronous processes (processes that compute values on clock edges and when asynchronous 
conditions are TRUE) must be sensitive to the clock signal (if any), and to inputs that affect asynchro-
nous behavior.

Recommended Use of Register Inference Capabilities
The register inference capability can support styles of description other than those described here. 
However, for best results:

•  Restrict each process to a single type of memory-element inferencing:  latch, latch with asynchro-
nous set or reset, flip-flop, flip-flop with asynchronous reset, or flip-flop with synchronous reset.

•  Use the following templates.

LATCH:  process(sensitivity_list)

          begin

            if LATCH_ENABLE then
                   ...

            end if;

          end process;

LATCH_ASYNC_SET:  

                   ...

attribute async_set_reset of SET : signal is "true";

                   ...

        process(sensitivity_list)

          begin

            if SET then

               Q <= ’1’;

            elsif LATCH_ENABLE then
                   ...

            end if;

          end process;

FF:     process(CLK)

          begin

            if edge then
                ...

            end if;

          end process;
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FF_ASYNC_RESET:  

        process(RESET, CLK)

          begin

            if RESET then

               Q <= ’0’;

            elsif edge then

               Q <= ...;

            end if;

          end process;

FF_SYNC_RESET:  

        process(RESET, CLK)

          begin

            if edge then
              if RESET then

                Q <= ’0’;

              else

                Q <= ...;

              end if;

            end if;

          end process;

Examples of these templates are provided in ‘‘Describing Latches" and ‘‘Describing Flip-Flops," later in 
this chapter.

Restrictions on Register Capabilities
Do not use more than one if edge expression in a process.

     process(CLK_A, CLK_B)

     begin

       if(CLK_A’event and CLK_A = ’1’) then

         A <= B;

       end if;

     

       if(CLK_B’event and CLK_B = ’1’) then  -- Illegal

         C <= B;

       end if;

     end process;
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Do not assign a value to a variable or signal on a FALSE branch of an if edge statement. This 
assignment is equivalent to checking for the absence of a clock edge, which has no hardware counter-
part.

     process(CLK)

     begin

       if(CLK’event and CLK = ’1’) then

         SIG <= B;

       else

         SIG <= C;      -- Illegal 

       end if;

     end process;

If a variable is assigned a value inside an edge construct, do not read that variable later in the same 
process.

process(CLK)

  variable EDGE_VAR, ANY_VAR:  BIT;

begin

  if (CLK’event and CLK = ’1’) then

    EDGE_SIGNAL <= X;

     EDGE_VAR    := Y;

     ANY_VAR     := EDGE_VAR; -- Legal

  end if;

  ANY_VAR := EDGE_VAR;        -- Illegal

end process;

Do not use an edge expression as an operand.

if not(CLK’event and CLK = ’1’) then  -- Illegal

Delays in Registers
If you use delay specifications with values that may be registered, the simulation to behave differently 
from the logic synthesized by FPGA Express.  For example, the description in Example 8-1 contains 
delay information that causes FPGA Express to synthesize a circuit that behaves unexpectedly.
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Example 8-1: Delays in Registers

component flip_flop ( 

    D, clock: in BIT;

    Q:        out BIT;);

end component;

process ( A, C, D, clock );

  signal B: BIT;

begin

B <= A after 100ns;

F1: flip_flop port map ( A, C, clock ),

F2: flip_flop port map ( B, D, clock );

end process;

In Example 8-1, B changes 100 nanoseconds after A changes.  If the clock period is fewer than 100 
nanoseconds, output D is one or more clock cycles behind output C when the circuit is simulated.  
However, because FPGA Express ignores the delay information, A and B change values at the 
same time, and so do C and D.  This behavior is not the same as in the simulated circuit.

When you use delay information in your designs, make sure the delays do not affect registered values.  
In general, you can safely include delay information in your description if it does not change the value 
that gets clocked into a flip-flop.

Describing Latches
FPGA Express infers latches from incompletely specified conditional expressions.  In  Example 8-2, 
the if statement infers a latch because there is no else clause:

Example 8-2: Latch Inference

process(GATE, DATA)

begin

  if (GATE = ’1’) then

    Q <= DATA;

  end if;

end process;

Figure 8-1: Latch Inference 

The inferred latch uses CLK as its clock and DATA as its data input, as shown in Example 8-2.
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Automatic Latch Inferencing
A signal or variable that is not driven under all conditions becomes a latched value. As shown in Exam-
ple 8-3, TEMP becomes a latched value because it is assigned only when PHI is 1.

Example 8-3: Automatically Inferred Latch

if(PHI = ’1’) then

  TEMP <= A;

end if;

Figure 8-2: Automatically Inferred Latch 

To avoid inferred latches, assign a value to the signal under all conditions, as shown in Example 8-4.

Example 8-4: Fully Specified Signal:  No Latch Inference 

if (PHI = ’1’) then

  TEMP <= A;

else

  TEMP <= ’0’;

end if;
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Restrictions on Latch Inference Capabilities
You cannot read a conditionally assigned variable after the if statement in which it is assigned. A con-
ditionally assigned variable is assigned a new value under some, but not all, conditions.

Therefore, a variable must always have a value before it is read.

signal X, Y: BIT;

. . .

process

  variable VALUE: BIT;

begin

  if (condition) then

    VALUE := X;

  end if;

  Y <= VALUE;  -- Illegal

end;  

In simulation, latch inference occurs because signals and variables can hold state over time. A signal 
or variable holds its value until that value is reassigned.  FPGA Express inserts a latch to duplicate this 
holding of state in hardware.

Variables declared locally within a subprogram do not hold their value over time. Every time a subpro-
gram is used, its variables are reinitialized.  Therefore, FPGA Express does not infer latches for vari-
ables declared in subprograms. In Example 8-5, no latches are inferred.

Example 8-5: Function without Inferred Latch

function MY_FUNC(DATA, GATE : BIT) return BIT is

     variable STATE: BIT;

begin

     if GATE then

          STATE := DATA;

     end if;

     return STATE;

end;

. . .

Q <= MY_FUNC(DATA, GATE);

Figure 8-3: Function without Inferred Latch 
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Example—Design with Two-Phase Clocks
By using the latch inference capability, you can describe network structures, such as two-phase sys-
tems in a technology-independent manner. Example 8-6 shows a simple two-phase system with 
clocks PHI_1 and PHI_2.

Example 8-6: Two-Phase Clocks

entity LATCH_VHDL is

  port(PHI_1, PHI_2, A : in BIT; 

       t: out BIT);

end LATCH_VHDL;

architecture EXAMPLE of LATCH_VHDL is

  signal TEMP, LOOP_BACK: BIT;

begin

  process(PHI_1, A, LOOP_BACK)

  begin

    if(PHI_1 = ’1’) then

      TEMP <= A and LOOP_BACK;

    end if;

  end process;

  process(PHI_2, TEMP)

  begin

    if(PHI_2 = ’1’) then

      LOOP_BACK <= not TEMP;

    end if;

  end process;

  t <= LOOP_BACK;

end EXAMPLE;

Figure 8-4: Two-Phase Clocks 
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FPGA Express does not automatically infer dual-phase latches (devices with master and slave clocks).  
To use these devices, you must instantiate them as components, as described in Chapter 3.

Describing Flip-Flops
Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7: Inferred Flip-Flop

process(CLK, DATA)

begin

  if (CLK’event and CLK = ’1’)  then

    Q <= DATA;

  end if;

end process;  

Figure 8-5: Inferred Flip-Flop 

Flip-Flop with Asynchronous Reset
Example 8-8 shows how to specify a flip-flop with an asynchronous reset.

Example 8-8: Inferred Flip-Flop with Asynchronous Reset

process(RESET_LOW, CLK, SYNC_DATA)

begin

  if RESET_LOW = ’0’  then

    Q <= ’0’;

  elsif (CLK’event and CLK = ’1’)  then

    Q <= SYNC_DATA;

  end if;

end process;  
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Note how the flip-flop in Example 8-8 is wired.

■ The D input of the flip-flop is wired to SYNC_DATA. 

■ If the reset condition is computable (see "Computable Operands" in Chapter 5), either the SET or 
CLEAR pin of the flip-flop is wired to the RESET (or RESET_LOW) signal, as shown in 
Example 8–8.

■ If the reset condition (ANY_SIGNAL in Example 8–9) is not computable, SET is wired to 
(ANY_SIGNAL AND ASYNC_DATA) and CLEAR is wired to (ANY_SIGNAL AND 
NOT(ASYNC_DATA)), as shown in Example 8–9.

Example 8-9 shows an inferred flip-flop with an asynchronous reset, where the reset condition is not 
computable.

Example 8-9: Inferred Flip-Flop with Asynchronous Set or Clear

process (CLK, ANY_SIGNAL, ASYNC_DATA, SYNC_DATA)

  begin

    if (ANY_SIGNAL) then

      Q <= ASYNC_DATA;

    elsif (CLK’event and CLK = ’1’)  then

      Q <= SYNC_DATA;

    end if;

  end process;

Example—Synchronous Design with Asynchronous Reset
Example 8-10 describes a synchronous finite state machine (FSM) with an asynchronous reset.
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Example 8-10: Synchronous Finite State Machine with Asynchronous Reset

package MY_TYPES is

  type STATE_TYPE is (S0, S1, S2, S3);

end MY_TYPES;

use WORK.MY_TYPES.ALL;

entity STATE_MACHINE is

  port(CLK, INC, A, B: in BIT; RESET: in Boolean;

       t: out BIT);

end STATE_MACHINE;

architecture EXAMPLE of STATE_MACHINE is

  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

begin

  SYNC: process(CLK, RESET)

  begin

    if (RESET) then

      CURRENT_STATE <= S0;

    elsif (CLK’event and CLK = ’1’) then

      CURRENT_STATE <= NEXT_STATE;

    end if;

  end process SYNC;

  FSM: process(CURRENT_STATE, A, B)

  begin

    t <= A;            -- Default assignment

    NEXT_STATE <= S0;  -- Default assignment

    if (INC = ’1’) then

      case CURRENT_STATE is

        when S0 =>

          NEXT_STATE <= S1;

        when S1 =>

          NEXT_STATE <= S2;

          t <= B;

        when S2 =>

          NEXT_STATE <= S3;

        when S3 =>

          null;

      end case;

    end if;

  end process FSM;
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end EXAMPLE;

Figure 8-6: Synchronous Finite State Machine with Asynchronous Reset 

Attributes
New attributes used to assist register inference are discussed in this section. The attributes are 
defined in a VHDL library called Synopsys Attribute’s package.

attribute async_set_reset : string;

attribute sync_set_reset : string;

attribute async_set_reset_local : string;

attribute sync_set_reset_local : string;

attribute async_set_reset_local_all : string;

attribute sync_set_reset_local_all : string;

attribute one_hot : string;

attribute one_cold : string;

async_set_reset

The async_set_reset attribute is attached to single-bit signals using the attribute construct. FPGA 
Express checks signals with the async_set_reset attribute set to TRUE to determine whether these 
signals asynchronously set or reset a latch in the entire design. 

The syntax of async_set_reset is 

        attribute async_set_reset of signal_name,. : signal is "true";

Latch with Asynchronous Set or Clear Inputs
The asynchronous clear signal for a latch is inferred by driving the "Q" pin of your latch to 0. The asyn-
chronous set signal for a latch is inferred by driving the "Q" pin of your latch to 1. Although FPGA 
Express does not require that the clear (set) be the first condition in your conditional branch, it is best 
to write your VHDL in this manner. 
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Example 8-11 shows how to specify a latch with an asynchronous clear input.  To specify a latch with 
an asynchronous set, change the logic as indicated by the comments.  

Example 8-11: Inferred Latch with Asynchronous Clear Input

attribute async_set_reset of clear : signal is "true";

process(clear, gate, a)

begin

  if (clear = ’1’ ) then

    q <= ’0’ ;

  elsif (gate = ’1’) then

    q <= a;

  end if;

end process;

Figure 8-7: Inferred Latch with Asynchronous Clear 

sync_set_reset
The sync_set_reset attribute is attached to single-bit signals with the attribute constructs. FPGA 
Express checks signals with the sync_set_reset attribute set to TRUE to determine whether these 
signals synchronously set or reset a flip-flop in the entire design. 

The syntax of sync_set_reset is 

            attribute sync_set_reset of signal_name,... : signal is "true";

Flip-Flop with Synchronous Reset Input
Example 8-12 shows how to specify a flip-flop with a synchronous reset.

Example 8-12: Inferred Flip-Flop with Synchronous Reset Input

attribute sync_set_reset of RESET, SET : signal is "true";

process(RESET, CLK)

begin

  if (CLK’event and CLK = ’1’)  then

    if RESET = ’1’  then

      Q <= ’0’;
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    else

      Q <= DATA_A;

    end if;

  end if;

end process;  

process (SET, CLK)

begin

  if (CLK’event and CLK = ’1’)  then

    if SET = ’1’  then

      T <= ’1’;

    else

      T <= DATA_B;

    end if;

  end if;

end process;

async_set_reset_local
The async_set_reset_local attribute is attached to the label of a process with a value of a dou-
ble-quoted list of single-bit signals. Every signal in the list is treated as though it has the 
async_set_reset attribute attached in the specified process. 

The syntax of async_set_reset_local is

attribute async_set_reset_local of process_label : label is
 "signal_name,...";

Example 8-13: Asynchronous Set/Reset on a Single Block

library IEEE;

library synopsys;

use IEEE.std_logic_1164.all;

use synopsys.attributes.all;

entity e_async_set_reset_local is

port(reset, set, gate: in std_logic; y, t: out std_logic);

end e_async_set_reset_local;
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architecture rtl of e_async_set_reset_local is

attribute async_set_reset_local of direct_set_reset : label 
is "reset, set";

begin

  direct_set_reset: process (reset, set)

  begin

    if (reset = ’1’) then

      y <= ’0’;             -- asynchronous reset

    elsif (set = ’1’) then

      y <= ’1’;             -- asynchronous set

    end if;

  end process direct_set_reset;

  gated_data: process (gate, reset, set)

  begin

    if (gate = ’1’) then

      if (reset = ’1’) then

        t <= ’0’;             -- gated data

      elsif (set = ’1’) then

        t <= ’1’;             -- gated data

      end if;

    end if;

  end process gated_set_reset;

end rtl;

Figure 8-8: Asynchronous Set/Reset on a Single Block 

y

z

reset

set
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sync_set_reset_local
The sync_set_reset_local attribute is attached to the label of a process with a value of a double-
quoted list of single-bit signals. Every signal in the list is treated as though it has the 
sync_set_reset attribute attached in the specified process.

The syntax of sync_set_reset_local is 
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attribute sync_set_reset_local of process_label : label is 
"signal_name,..."

Example 8-14: Synchronous Set/Reset on a Single Block

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local is
port(clk, reset, set, gate : in std_logic; y, t: out std_logic);
end e_sync_set_reset_local;

architecture rtl of e_sync_set_reset_local is
attribute sync_set_reset_local of clocked_set_reset : label is "reset, 
set";
begin

  clocked_reset: process (clk, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (reset = ’1’) then
        y <= ’0’;             -- synchronous reset
      else
        y <= ’1’;               -- synchronous set
      end if;
    end if;
  end process clocked_set_reset;

  gated_data: process (clk, gate, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          t <= ’0’;             -- gated data
        elsif (set = ’1’) then
          t <= ’1’;             -- gated data
        end if;
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-9: Synchronous Set/Reset on a Single Block 

async_set_reset_local_all
The async_set_reset_local_all attribute is attached to a process label. The attribute 
async_set_reset_local_all specifies that all the signals in the process are used to detect an 
asynchronous set or reset condition for inferred latches or flip-flops. 

The syntax of async_set_reset_local_all is 

attribute async_set_reset_local_all of process_label,... : label is "true";
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Example 8-15: Asynchronous Set/Reset on Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_async_set_reset_local_all is
port(reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_async_set_reset_local_all;

architecture rtl of e_async_set_reset_local_all is
attribute async_set_reset_local_all of
          direct_set_reset, direct_set_reset_too: label is "true";
begin
  direct_set_reset: process (reset, set)
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set
    end if;
  end process direct_set_reset;

  direct_set_reset_too: process (gate, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        t <= ’0’;             -- asynchronous reset
      elsif (set = ’1’) then
        t <= ’1’;             -- asynchronous set
      end if;
    end if;
  end process direct_set_reset_too;

  gated_data: process (gate2, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        w <= ’0’;             -- gated data
      elsif (set = ’1’) then
        w <= ’1’;             -- gated data
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-10: Asynchronous Set/Reset on Part of a Design 

sync_set_reset_local_all
The sync_set_reset_local_all attribute is attached to a process label. The attribute 
sync_set_reset_local_all specifies that all the signals in the process are used to detect a syn-
chronous set or reset condition for inferred latches or flip-flops.

The syntax of sync_set_reset_local_all is 

attribute sync_set_reset_local_all of process_label,... : label is "true";
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Example 8-11: Example 8-16Synchronous Set/Reset on a Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local_all is
port(clk, reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_sync_set_reset_local_all;

architecture rtl of e_sync_set_reset_local_all is
attribute sync_set_reset_local_all of
          clocked_set_reset, clocked_set_reset_too: label is "true";
begin

  clocked_set_reset: process (clk, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (reset = ’1’) then
        y <= ’0’;             -- synchronous reset
      elsif (set = ’1’) then
        y <= ’1’;             -- synchronous set
      end if;
    end if;
  end process clocked_set_reset;

  clocked_set_reset_too: process (clk, gate, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          t <= ’0’;             -- synchronous reset
        elsif (set = ’1’) then
          t <= ’1’;             -- synchronous set
        end if;
      end if;
    end if;
  end process clocked_set_reset_too;

  gated_data: process (clk, gate2, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          w <= ’0’;             -- gated data
        elsif (set = ’1’) then
          w <= ’1’;             -- gated data
        end if;
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-11: Synchronous Set/Reset on a Part of a Design 

Note:  Use the one_hot and one_cold directives to implement D-type flip-flops with asynchronous 
set and reset signals.  These two attributes tell FPGA Express that only one of the objects in the 
list are active at a time.  If you are defining active high signals, use one_hot.  For active low, 
use one_cold.  Each attribute has two objects specified.

one_hot
The one_hot directive takes one argument of a double-quoted list of signals separated by commas. 
This attribute indicates that the group of signals are one_hot, in other words, at any time, no more 
than one signal can have a Logic 1 value. You must make sure that the group of signals are really 
one_hot. FPGA Express does not produce any logic to check this assertion.

The syntax of one_hot is

attribute one_hot signal_name,... : label is "true";
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Example 8-17: Using one_hot for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_hot is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_hot of reset, set : signal is "true";
end e_one_hot;

architecture rtl of e_one_hot is
begin
  direct_set_reset: process (reset, set )
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset by "reset"
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set by "set"
    end if;
  end process direct_set_reset;
  direct_set_reset_too: process (reset2, set2 )
  begin
    if (reset2 = ’1’) then
      t <= ’0’;             -- asynchronous reset by "reset2"
    elsif (set2 = ’1’) then
      t <= ’1’;             -- asynchronous set by "~reset2 set2"
    end if;
  end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
  assert not (reset=’1’ and set=’1’)
    report "One-hot violation"
    severity Error;
end process;
-- synopsys synthesis_on
end rtl;
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Figure 8-12: Using one_hot for Set and Reset 

one_cold
The one_cold directive is similar to the one_hot directive. one_cold indicates that no more than 
one signal in the group can have a Logic 0 value at any time. 

The syntax of one_cold is

attribute one_cold signal_name,... : label is "true";
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Example 8-18 Using one_cold for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_cold is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_cold of reset, set : signal is "true";
end e_one_cold;

architecture rtl of e_one_cold is
begin

  direct_set_reset: process (reset, set )
  begin
    if (reset = ’0’) then
      y <= ’0’;             -- asynchronous reset by "not reset"
    elsif (set = ’0’) then
      y <= ’1’;             -- asynchronous set by "not set"
    end if;
  end process direct_set_reset;

  direct_set_reset_too: process (reset2, set2 )
  begin
    if (reset2 = ’0’) then
      t <= ’0’;             -- asynchronous reset by "not reset2"
    elsif (set2 = ’0’) then
      t <= ’1’;           -- asynchronous set by "(not reset2) (not set2)"
    end if;
  end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
  assert not (reset=’0’ and set=’0’)
    report "One-cold violation"
    severity Error;
end process;
-- synopsys synthesis_on

end rtl;
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Figure 8-13: Using one_cold for Set and Reset 

FPGA Express Latch and Flip-Flop Inference
FPGA Express inferes latches and flip-flops as follows:

•  Asynchronous Flip-Flop Resets
FPGA Express reports asynchronous set and reset conditions of flip-flops.

•  Asynchronous Latch Resets
FPGA Express interprets each control object of a latch as synchronous. If you want to asynchro-
nously set or reset a latch, set this variable to TRUE. 

•  Flip-Flop Feedback Loops
FPGA Express removes all flip-flop feedback loops. For example, feedback loops inferred from a 
statement such as Q=Q are removed. With the state feedback removed from a simple D flip-flop, it 
becomes a synchronous loaded flip-flop. 

•  Flip-Flop Inverted Feedback Loops
FPGA Express removes all inverted flip-flop feedback loops. For example, feedback loops inferred 
from a statement such as Q=Q are removed and synthesized as T flip-flops. 

y

z

reset

set

reset2

set2
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•  Reporting Inferred Modules
FPGA Express generates a brief report on inferred latches, flip-flops, or three-state devices. 

Efficient Use of Registers
Organize your HDL description so that you build only as many flip-flops as the design requires.  Exam-
ple 8-19 shows a description where too many flip-flops are implied.

Example 8-19: Circuit with Six Implied Registers

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ex8_13 is

port ( clk , reset : in std_logic;

       and_bits , or_bits , xor_bits : out std_logic

);

end ex8_13;

architecture rtl of ex8_13 is

begin

process

variable count : std_logic_vector (2 downto 0);

begin

     wait until (clk’event and clk = ’1’);

     if (reset = ’1’) then

          count := "000";

     else count := count + 1;

     end if;

     and_bits <= count(2) and count(1) and count(0);

     or_bits <= count(2) or count(1) or count(0);

     xor_bits <= count(2) xor count(1) xor count(0);

end process;

end rtl;
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Figure 8-14: Circuit with Six Implied Registers 

In Example 8-19, the outputs AND_BITS, OR_BITS, and XOR_BITS depend solely on the value of 
COUNT. Because COUNT is registered, the three outputs do not need to be registered. To avoid imply-
ing extra registers, assign the outputs from within a process that does not have a wait statement. 
Example 8-20 shows a description with two processes, one with a wait statement and one without. 
This description style lets you choose the signals that are registered and those that are not.

Example 8-20: Circuit with Three Implied Registers

use work.ARITHMETIC.all;

entity COUNT is

  port(CLOCK, RESET: in BIT; 
       AND_BITS, OR_BITS, XOR_BITS : out BIT);

end COUNT;

architecture RTL of COUNT is

  signal COUNT : UNSIGNED (2 downto 0);

begin

  REG: process                  -- Registered logic

  begin

    wait until CLOCK’event and CLOCK = ’1’;

    if (RESET = ’1’) then

       COUNT <= "000";

    else

       COUNT <= COUNT + 1;

    end if;

  end process;
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  COMBIN: process(COUNT)        -- Combinational logic

  begin

    AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);

    OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);

    XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);

  end process;

end RTL;

Figure 8-15: Circuit with Three Implied Registers

This technique of separating combinational logic from registered or sequential logic is useful when 
describing finite state machines.

See the following examples in Appendix A:

•  Moore machine

•  Mealy machine

•  Count zeros—sequential version

•  Soft drink machine controller—state machine version

Example—Using Synchronous and Asynchronous Processes
You might want to keep some of the values computed by a process in flip-flops, while allowing other 
values to change between clock edges. 

You can do this by splitting your algorithm between two processes, one with a wait statement and 
one without. Put the registered (synchronous) assignments into the wait process.  Put the other 
(asynchronous) assignments into the other process. Use signals to communicate between the two pro-
cesses. 

For example, suppose you want to build a design with the following characteristics:

•  Inputs A_1, A_2, A_3 and A_4 change asynchronously.

•  Output t is driven from one of A_1, A_2, A_3, or A_4.

•  Input CONTROL is valid only on the positive edge of CLOCK. The value at the edge determines which 
of the four inputs is selected during the next clock cycle.
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•  Output t must always reflect changes in the value of the currently selected signal.

The implementation of this design requires two processes. The process with a wait statement syn-
chronizes the CONTROL value. The other process multiplexes the output, based on the synchronized 
control. The signal SYNC_CONTROL communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible implementation.

Example 8-21: Two Processes:  One Synchronous, One Asynchronous

entity SYNC_ASYNC is

   port (CLOCK:   in BIT;

         CONTROL: in INTEGER range 0 to 3;

         A:       in BIT_VECTOR(0 to 3);

         t:      out BIT);

end SYNC_ASYNC;

architecture EXAMPLE of SYNC_ASYNC is

  signal SYNC_CONTROL: INTEGER range 0 to 3;

begin

  process

  begin

    wait until CLOCK’event and CLOCK = ’1’;

    SYNC_CONTROL <= CONTROL;

  end process;

  process (A, SYNC_CONTROL)

  begin

    t <= A(SYNC_CONTROL);

  end process;

end EXAMPLE;
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Figure 8-16: Two Processes:  One Synchronous, One Asynchronous 

Three-State Inference
FPGA Express can infer three-state gates (high-impedance output) from enumeration encoding in 
VHDL.  After inferrence, FPGA Express maps the gates to a specified technology library.  See "Enu-
meration Encoding" in Chapter 4 for more information.

When a variable is assigned the value of ’Z’ , the output of the three-state gate is disabled. Example 
8-22 shows the VHDL for a three-state gate 

Example 8-22: Creating a Three-State Gate in VHDL

signal OUT_VAL, IN_VAL: std_logic;

...

if (COND) then

    OUT_VAL <= IN_VAL;

else

    OUT_VAL <= ’Z’;     -- assigns high-impedance

end if;

You can assign a high impedance value to a four-bit wide bus with "ZZZZ".

One three-state device is inferred from a single process.  Example 8-23 infers only one three-state 
device.
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Example 8-23: Inferring One Three-State Device from a Single Process

process (sela, a, selb, b) begin

  t <= ’z’;

    if (sela = ’1’) then

      t <= a;

    if (selb = ’1’) then

      t <= b;

end process;

Example 8-24 infers two three-state devices.

Example 8-24: Inferring Two Three-State Devices

process (sela, a) begin

    if (sela = ‘1’) then

      t = a;

    else t = ‘z’;

end process;

process (selb, b) begin

    if (selb = ‘1’) then

      t = b;

    else t = ‘z’;

end process;

The VHDL conditional assignment may also be used for three-state inferencing.

Assigning the Value Z
Assigning variables the value Z is allowed. The value Z can also appear in function calls, return state-
ments, and aggregates.  However, except for comparisons to Z, you cannot use Z in an expression. 
Example 8-25 shows an incorrect use of Z (in an expression), and Example 8-26 shows a correct use 
of Z (in a comparison).

Example 8-25: Incorrect Use of the Value Z in an Expression

OUT_VAL <= ’Z’ and IN_VAL;

...

Example 8-26: Correct Expression Comparing to Z

if IN_VAL = ’Z’ then

...
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Caution Expressions comparing to Z are synthesized as though values are not equal to Z. 

For example:

if X = ’Z’ then

...

is synthesized as:

if FALSE then

...

If you use expressions comparing values to ’Z’,  the presynthesis and postsynthesis simulation 
results might differ. For this reason, FPGA Express issues a warning when it synthesizes such com-
parisons.

Latched Three-State Variables
When a variable is latched (or registered) in the same process in which it is three-stated, the enable of 
the three-state Z is also latched (or registered). This process is shown in Example 8-27.  

Example 8-27: Three-State Inferred with Registered Enable

-- Creates a flip-flop on input and on enable

if (THREESTATE = ’0’) then

    OUTPUT <= ’Z’;

elsif (CLK’event and CLK = ’1’) then

    if (CONDITION) then

        OUTPUT <= INPUT;

    end if;

end if;

Figure 8-17: Three-State Inferred with Registered Enable 

In Example 8-27, the three-state gate has a registered enable signal. Example 8-28 uses two pro-
cesses to instantiate a three-state with a flip-flop only on the input.
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Example 8-28: Example 8-28Latched Three-State with Flip-flop on Input

entity LATCH_3S is

  port(CLK, THREESTATE, INPUT: in std_logic;

       OUTPUT: out std_logic; CONDITION: in Boolean);

end LATCH_3S;

architecture EXAMPLE of LATCH_3S is

  signal TEMP: std_logic;

begin

  process(CLK, CONDITION, INPUT)

  begin      -- creates three-state

    if (CLK’event and CLK = ’1’) then

      if (CONDITION) then

          TEMP <= INPUT;

      end if;

    end if;

  end process;

  process(THREESTATE, TEMP)

  begin

    if (THREESTATE = ’0’) then

        OUTPUT <= ’Z’;

    else

        OUTPUT <= TEMP;

    end if;

  end process;

end EXAMPLE;

Figure 8-18: Latched Three-State with Flip-Flop on Input 
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FPGA Express Directives
Synopsys has defined several methods of providing circuit design information directly in your VHDL 
source code.

•  Using FPGA Express directives, you can direct the translation from VHDL to components with spe-
cial VHDL comments. These synthetic comments turn translation on or off, specify one of several 
hard-wired resolution methods, and provide a means to map subprograms to hardware components.

•  Using Synopsys-defined VHDL attributes, you can add synthesis-related signal and constraint infor-
mation to ports, components, and entities. This information is used by FPGA Express during synthe-
sis.

To familiarize yourself with FPGA Express directives, consider the following topics:

•  Notation for FPGA Express Directives

•  FPGA Express Directives

•  Synthesis Attributes and Constraints

Notation for FPGA Express Directives
FPGA Express directives are special VHDL comments (synthetic comments) that affect the actions of 
FPGA Express. These comments are just a special case of regular VHDL comments, so they are 
ignored by other VHDL tools. Synthetic comments are used only to direct the actions of FPGA 
Express.

Synthetic comments begin with two hyphens (--), just like a regular comment. If the word following 
these characters is pragma or synopsys, the remaining comment text is interpreted by FPGA 
Express as a directive. 

Note:  FPGA Express displays a syntax error if an unrecognized directive is encountered after 
-- synopsys or -- pragma.

FPGA Express Directives
The three types of directives are

•  Translation stop and start Directives

-- pragma translate_off

-- pragma translate_on

-- pragma synthesis_off
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-- pragma synthesis_on

•  Resolution function directives 

-- pragma resolution_method wired_and 

-- pragma resolution_method wired_or 

-- pragma resolution_method three_state 

•  Component implication directives

-- pragma map_to_entity entity_name

-- pragma return_port_name port_name

Other directives such as the map_to operator are used to drive inference of HDL operators such as *, 
+, and -.

Translation Stop and Start Directives
Translation directives stop and start the translation of a VHDL source file by FPGA Express.

-- pragma translate_off 

-- pragma translate_on

The translate_off and translate_on directives instruct FPGA Express to stop and start synthe-
sizing VHDL source code. The VHDL code between these two directives is, however, checked for syn-
tax.  

Translation is enabled at the beginning of each VHDL source file. You can use translate_off and 
translate_on directives anywhere in the text.

The synthesis_off and synthesis_on directives are the recommended mechanisms for hiding 
simulation-only constructs from synthesis.  Any text between these directives is checked for syntax, 
but no corresponding hardware is synthesized. The behavior of the synthesis_off and 
synthesis_on directives is not affected by the variable hdlin_translate_off_skip_text.

Example 9-1 shows how you can use the directives to protect a simulation driver.
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Example 9-1: Using synthesis_on and synthesis_off Directives 

-- The following test driver for entity EXAMPLE

--   should not be translated:

--

-- pragma synthesis_off

--   Translation stops

entity DRIVER is

end;

architecture VHDL of DRIVER is

    signal A, B : INTEGER range 0 to 255;

    signal SUM  : INTEGER range 0 to 511;

    component EXAMPLE 

        port (A, B: in INTEGER range 0 to 255;

              SUM: out INTEGER range 0 to 511);

    end component;

begin

    U1: EXAMPLE port map(A, B, SUM);

    process

    begin

        for I in 0 to 255 loop

            for J in 0 to 255 loop

                A <= I;

                B <= J;

                wait for 10 ns;

                assert SUM = A + B;

            end loop;

        end loop;

    end process;

end;

-- pragma synthesis_on

--   Code from here on is translated

entity EXAMPLE is

    port (A, B: in INTEGER range 0 to 255;

          SUM: out INTEGER range 0 to 511);

end;

architecture VHDL of EXAMPLE is

begin

    SUM <= A + B;

end;
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Resolution Function Directives  
Resolution function directives determine the resolution function associated with resolved signals (see 
‘‘Signal Declarations“ in Chapter 3). FPGA Express does not currently support arbitrary resolution 
functions. It does support the following three methods:

-- pragma resolution_method wired_and 

-- pragma resolution_method wired_or 

-- pragma resolution_method three_state 

Note:  Do not connect signals that use different resolution functions. FPGA Express supports only one 
resolution function per network.

Component Implication Directives 
Component implication directives map VHDL subprograms onto existing components or VHDL enti-
ties. These directives are described under ‘‘Mapping Subprograms to Components“ in Chapter 6:

-- pragma map_to_entity entity_name

-- pragma return_port_name port_name
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Chapter 10
Synopsys Packages
Three Synopsys packages are included with this release:

•  std_logic_1164 Package

Defines a standard for designers to use when describing the interconnection data types used in 
VHDL modeling. 

•  std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison functions for SIGNED, UNSIGNED, INTE-
GER, STD_ULOGIC, STD_LOGIC, and STD_LOGIC_VECTOR types. 

•  std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions for the std_logic_1164 package.  

To understand the contents of each package, review the following sections. 

std_logic_1164 Package
This package defines the IEEE standard for designers to use when describing the interconnection data 
types used in VHDL modeling. The logic system defined in this package might be insufficient for mod-
eling switched transistors, because such a requirement is out of the scope of this effort. Furthermore, 
mathematics, primitives, and timing standards are considered orthogonal issues as they relate to this 
package and are therefore beyond the scope of this effort.

The std_logic_1164 package contains Synopsys synthesis directives. Three functions, however, 
are not currently supported for synthesis: rising_edge, falling_edge, and is_x. 

To use this package in a VHDL source file, include the following lines at the top of the source file:

library IEEE;

use IEEE.std_logic_1164.all;

When you analyze your VHDL source file, FPGA Express automatically finds the IEEE library and the 
std_logic_1164 package. However, you must analyze the use packages not contained in the IEEE 
and Synopsys libraries before processing a source file that uses them. 
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std_logic_arith Package
Functions defined in the std_logic_arith package provide conversion to and from the predefined 
VHDL data type INTEGER, and arithmetic, comparison, and Boolean operations. This package lets 
you perform arithmetic operations and numeric comparisons on array data types. The package defines 
some arithmetic operators (+, -, *, and abs) and the relational operators (<, >, <=, >=, =, and /=). 
Note that IEEE VHDL does not define arithmetic operators for arrays and defines the comparison 
operators in a manner inconsistent with an arithmetic interpretation of array values. 

The package also defines two major data types of its own: UNSIGNED and SIGNED. Details can be 
found in ‘‘Synopsys Data Types" later in this appendix. The std_logic_arith package is legal 
VHDL; you can use it for both synthesis and simulation.

The std_logic_arith package can be configured to work on any array of single-bit types. You 
encode single-bit types in one bit with the ENUM_ENCODING attribute.

You can make the vector type (for example, std_logic_vector) synonymous with either SIGNED 
or UNSIGNED. This way, if you plan to use mostly UNSIGNED numbers, you do not need to convert 
your vector type to call UNSIGNED functions. The disadvantage of making your vector type synony-
mous with either UNSIGNED or SIGNED is that it causes the standard VHDL comparison functions (=, /
=, <, >, <=, and >=) to be redefined.

Table 10-1 shows that the standard comparison functions for BIT_VECTOR do not match the SIGNED 
and UNSIGNED functions.

Table 10-1: UNSIGNED, SIGNED and BIT_VECTOR Comparison Functions

Using the Package
The std_logic_arith package is in the $synopsys/packages/IEEE/src/
std_logic_arith.vhd subdirectory of the Synopsys root directory. To use this package in a VHDL 
source file, include the following lines at the top of the source file:

library IEEE;

use IEEE.std_logic_arith.all;

Synopsys packages are preanalyzed and do not require further analyzing. 

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

"000" = "000" TRUE TRUE TRUE

"00" = "000" TRUE TRUE FALSE

"100" = "0100" TRUE FALSE FALSE

"000" < "000" FALSE FALSE FALSE

"00" < "000" FALSE FALSE TRUE

"100" < "0100" FALSE TRUE FALSE
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Modifying the Package
The std_logic_arith package is written in standard VHDL. You can modify or add to it. The appro-
priate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an INTEGER, you can write the function shown 
in Example 10-1.  This MVL_TO_INTEGER function returns the integer value corresponding to the vec-
tor when the vector is interpreted as an unsigned (natural) number.  If unknown values are in the vec-
tor, the return value is -1.

Example 10-1: New Function Based on a std_logic_arith Package Function

library IEEE;

use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR) 

  return INTEGER is

  -- pragma built_in SYN_FEED_THRU

  variable uns: UNSIGNED (ARG’range);

begin

    for i in ARG’range loop

        case ARG(i) is

            when ’0’ | ’L’ => uns(i) := ’0’;

            when ’1’ | ’H’ => uns(i) := ’1’;

            when others    => return -1;

        end case;

    end loop;

    return CONV_INTEGER(uns);

end;

Note the use of the CONV_INTEGER function in Example 10-1.

FPGA Express performs almost all synthesis directly from the VHDL descriptions. However, several 
functions are hard wired for efficiency. These functions can be identified by the following comment in 
their declarations

-- pragma built_in

This statement marks functions as special, causing the body to be ignored. Modifying the body does 
not change the synthesized logic unless you remove the built_in comment. If you want new func-
tionality, use the built_in functions; this is more efficient than removing the built_in and modify-
ing the body.
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Data Types
The std_logic_arith package defines two data types, UNSIGNED and SIGNED:

type UNSIGNED is array (natural range <>) of std_logic;

type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type BIT_VECTOR, but the std_logic_arith 
package defines the interpretation of variables and signals of these types as numeric values. With the 
install_vhdl conversion script, you can change these data types to arrays of other one-bit types.  

UNSIGNED 
The UNSIGNED data type represents an unsigned numeric value. FPGA Express interprets the number 
as a binary representation, with the farthest left bit being most significant. For example, the decimal 
number 8 can be represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED, a larger vector holds a larger number. A 
four-bit variable holds values up to decimal 15; an eight-bit variable holds values up to 255, and so on. 
By definition, negative numbers cannot be represented in an UNSIGNED variable. Zero is the smallest 
value that can be represented. 

Example 10-2 illustrates some UNSIGNED declarations. Note that the most significant bit is the farthest 
left array bound, rather than the high or low range value.

Example 10-2: UNSIGNED Declarations

variable VAR: UNSIGNED (1 to 10);

  -- 11-bit number

  -- VAR(VAR’left) = VAR(1) is the most significant bit

signal SIG: UNSIGNED (5 downto 0); 

  -- 6-bit number

  -- SIG(SIG’left) = SIG(5) is the most significant bit

SIGNED
The SIGNED data type represents a signed numeric value. FPGA Express interprets the number as a 
2’s complement binary representation, with the farthest left bit as the sign bit. For example, you can 
represent decimal 5 and -5 as

SIGNED’("0101")  -- represents +5

SIGNED’("1011")  -- represents -5

When you declare SIGNED variables or signals, a larger vector holds a larger number.  A four-bit vari-
able holds values from -8 to 7; an eight-bit variable holds values from –128 to 127. Note that a SIGNED 
value cannot hold as large a value as an UNSIGNED value with the same bit width. 
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Example 10-3 shows some SIGNED declarations. Note that the sign bit is the farthest left bit, rather 
than the highest or lowest.

Example 10-3: SIGNED Declarations

variable S_VAR: SIGNED (1 to 10);  

  -- 11-bit number

  -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0); 

  -- 6-bit number

  -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions
The std_logic_arith package provides three sets of functions to convert values between its 
UNSIGNED and SIGNED types, and the predefined type INTEGER. This package also provides the 
std_logic_vector.

Example 10-4 shows the declarations of these conversion functions. BIT and BIT_VECTOR types are 
shown.

Example 10-4: Conversion Functions

subtype SMALL_INT is INTEGER range 0 to 1;

function CONV_INTEGER(ARG: INTEGER)  return INTEGER;

function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;

function CONV_INTEGER(ARG: SIGNED)   return INTEGER;

function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER;  

                       SIZE: INTEGER) return UNSIGNED;

function CONV_UNSIGNED(ARG: UNSIGNED;

                       SIZE: INTEGER) return UNSIGNED;

function CONV_UNSIGNED(ARG: SIGNED;  

                       SIZE: INTEGER) return UNSIGNED;

function CONV_UNSIGNED(ARG: STD_ULOGIC;      

                       SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;  

                     SIZE: INTEGER)   return SIGNED;

function CONV_SIGNED(ARG: UNSIGNED; 

                     SIZE: INTEGER)   return SIGNED;

function CONV_SIGNED(ARG: SIGNED;
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                     SIZE: INTEGER)   return SIGNED;

function CONV_SIGNED(ARG: STD_ULOGIC;

                     SIZE: INTEGER)   return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;  

                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;

function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED; 

                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;

function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;

                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;

function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;

                     SIZE: INTEGER)   return STD_LOGIC_VECTOR;

Note that there are four versions of each conversion function. 

The operator overloading mechanism of VHDL determines the correct version from the function call’s 
argument types.

The CONV_INTEGER functions convert an argument of type INTEGER, UNSIGNED, SIGNED, or 
STD_ULOGIC to an INTEGER return value. The CONV_UNSIGNED and CONV_SIGNED functions con-
vert an argument of type INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC to an UNSIGNED or SIGNED 
return value whose bit width is SIZE.

The CONV_INTEGER functions have a limitation on the size of operands. VHDL defines INTEGER val-
ues as between -2147483647 and 2147483647. This range corresponds to a 31-bit UNSIGNED value 
or a 32-bit SIGNED value. You cannot convert an argument outside this range to an INTEGER.

The CONV_UNSIGNED and CONV_SIGNED functions require two operands. The first operand is the 
value converted. The second operand is an INTEGER that specifies the expected size of the converted 
result. For example, the following function call returns a 10-bit UNSIGNED value representing the value 
in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is smaller than the expected bit width (such 
as representing the value 2 in a 24-bit number), the value is bit-extended appropriately.  FPGA 
Express places zeros in the more significant (left) bits for an UNSIGNED return value and uses sign 
extension for a SIGNED return value. 

You can use the conversion functions to extend a number’s bit width even if conversion is not required.  
For example:

CONV_SIGNED(SIGNED’("110"), 8) % "11111110"

An UNSIGNED or SIGNED return value is truncated when its bit width is too small to hold the ARG value.  
For example:

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"
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Arithmetic Functions
The std_logic_arith package provides arithmetic functions for use with combinations of Synop-
sys’ UNSIGNED and SIGNED data types and the predefined types STD_ULOGIC and INTEGER. These 
functions produce adders and subtracters. 

There are two sets of arithmetic functions: binary functions with two arguments, such as A+B or A*B, 
and unary functions with one argument, such as -A. The declarations for these functions are shown in 
Examples 10-5 and 10-6.
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Example 10-5: Binary Arithmetic Functions

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED)   return SIGNED;
function "+"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function "+"(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: INTEGER)  return SIGNED;
function "+"(L: INTEGER;  R: SIGNED)   return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED)   return SIGNED;
function "-"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function "-"(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: INTEGER)  return SIGNED;
function "-"(L: INTEGER;  R: SIGNED)   return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return
 STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
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function "*"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "*"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "*"(L: UNSIGNED; R: SIGNED)   return SIGNED;

Example 10-6: Example 9-6Unary Arithmetic Functions

function "+"(L: UNSIGNED) return UNSIGNED;

function "+"(L: SIGNED)   return SIGNED;

function "-"(L: SIGNED)   return SIGNED;

function "ABS"(L: SIGNED) return SIGNED;

These functions determine the width of their return values as follows:

1. When only one UNSIGNED or SIGNED argument is present, the width of the return value is the 
same as that argument. 

2. When both arguments are either UNSIGNED or SIGNED, the width of the return value is the larger of 
the two argument widths. An exception is that when an UNSIGNED number is added to or sub-
tracted from a SIGNED number of the same size or smaller, the return value is a SIGNED number 
one bit wider than the UNSIGNED argument. This size guarantees that the return value is large 
enough to hold any (positive) value of the UNSIGNED argument. 

The number of bits returned by + and - is illustrated in Table 10-2.

signal U4: UNSIGNED (3 downto 0);

signal U8: UNSIGNED (7 downto 0);

signal S4: SIGNED (3 downto 0);

signal S8: SIGNED (7 downto 0);

Table 10-2: Number of Bits Returned by + and - 

In some circumstances, you might need to obtain a carry-out bit from the + or - operation. To do this, 
extend the larger operand by one bit. The high bit of the return value is the carry-out bit, as illustrated 
in Example 10-7.

+ or -    U4 U8 S4 S8

U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
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Example 10-7: Using the Carry-Out Bit

process

    variable a, b, sum: UNSIGNED (7 downto 0);

    variable temp: UNSIGNED (8 downto 0);

    variable carry: BIT;

begin

    temp  := CONV_UNSIGNED(a,9) + b;

    sum   := temp(7 downto 0);

    carry := temp(8);

end process;

Comparison Functions
The std_logic_arith package provides functions to compare UNSIGNED and SIGNED data types 
to each other and to the predefined type INTEGER. FPGA Express compares the numeric values of 
the arguments, returning a Boolean value.  For example, the following expression evaluates to TRUE.

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith comparison functions are similar to the built-in VHDL comparison functions. 
The only difference is that the std_logic_arith functions accommodate signed numbers and vary-
ing bit widths. The predefined VHDL comparison functions perform bit-wise comparisons and so do not 
have the correct semantics for comparing numeric values (see ‘‘Relational Operators" in Chapter 5).

These functions produce comparators. The function declarations are listed in two groups, ordering 
functions (<, <=, >, and >=) and equality functions (= and /=), in Examples 10-8 and 10-9. 
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Example 10-8: Ordering Functions

function "<"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED;   R: SIGNED)   return Boolean;
function "<"(L: UNSIGNED; R: SIGNED)   return Boolean;
function "<"(L: SIGNED;   R: UNSIGNED) return Boolean;
function "<"(L: UNSIGNED; R: INTEGER)  return Boolean;
function "<"(L: INTEGER;  R: UNSIGNED) return Boolean;
function "<"(L: SIGNED;   R: INTEGER)  return Boolean;
function "<"(L: INTEGER;  R: SIGNED)   return Boolean;

function "<="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED;   R: SIGNED)   return Boolean;
function "<="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "<="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "<="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "<="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "<="(L: SIGNED;   R: INTEGER)  return Boolean;
function "<="(L: INTEGER;  R: SIGNED)   return Boolean;

function "" functions">">"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED;   R: SIGNED)   return Boolean;
function ">"(L: UNSIGNED; R: SIGNED)   return Boolean;
function ">"(L: SIGNED;   R: UNSIGNED) return Boolean;
function ">"(L: UNSIGNED; R: INTEGER)  return Boolean;
function ">"(L: INTEGER;  R: UNSIGNED) return Boolean;
function ">"(L: SIGNED;   R: INTEGER)  return Boolean;
function ">"(L: INTEGER;  R: SIGNED)   return Boolean;

function ="" functions">">="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED;   R: SIGNED)   return Boolean;
function ">="(L: UNSIGNED; R: SIGNED)   return Boolean;
function ">="(L: SIGNED;   R: UNSIGNED) return Boolean;
function ">="(L: UNSIGNED; R: INTEGER)  return Boolean;
function ">="(L: INTEGER;  R: UNSIGNED) return Boolean;
function ">="(L: SIGNED;   R: INTEGER)  return Boolean;
function ">="(L: INTEGER;  R: SIGNED)   return Boolean;
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Example 10-9: Equality Functions

function "="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "="(L: SIGNED;   R: SIGNED)   return Boolean;
function "="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "="(L: SIGNED;   R: INTEGER)  return Boolean;
function "="(L: INTEGER;  R: SIGNED)   return Boolean;

function "/="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED;   R: SIGNED)   return Boolean;
function "/="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "/="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "/="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "/="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "/="(L: SIGNED;   R: INTEGER)  return Boolean;
function "/="(L: INTEGER;  R: SIGNED)   return Boolean;

Shift Functions
The std_logic_arith package provides functions for shifting the bits in SIGNED and UNSIGNED 
numbers. These functions produce shifters. Example 10-10 shows the shift function declarations.

Example 10-10: Shift Functions

function SHL(ARG: UNSIGNED; 

             COUNT: UNSIGNED)  return UNSIGNED;

function SHL(ARG: SIGNED;

             COUNT: UNSIGNED)  return SIGNED;

function SHR(ARG: UNSIGNED; 

             COUNT: UNSIGNED)  return UNSIGNED;

function SHR(ARG: SIGNED;

             COUNT: UNSIGNED)  return SIGNED;

The SHL function shifts the bits of its argument ARG to the left by COUNT bits. SHR shifts the bits of its 
argument ARG to the right by COUNT bits. 

The SHL functions work the same for both UNSIGNED and SIGNED values of ARG, shifting in zero bits 
as necessary. The SHR functions treat UNSIGNED and SIGNED values differently.  If ARG is an 
UNSIGNED number, vacated bits are filled with zeros; if  ARG is a SIGNED number, the vacated bits are 
copied from the sign bit of ARG. 

Example 10-11 shows some shift function calls and their return values.
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Example 10-11: Shift Operations

variable U1, U2: UNSIGNED (7 downto 0);

variable S1, S2: SIGNED   (7 downto 0);

variable COUNT:  UNSIGNED (1 downto 0);

. . .

U1 := "01101011";   

U2 := "11101011";

S1 := "01101011";   

S2 := "11101011";

COUNT := CONV_UNSIGNED(ARG => 3, SIZE => 2);

. . .

SHL(U1, COUNT) = "01011000"

SHL(S1, COUNT) = "01011000"

SHL(U2, COUNT) = "01011000"

SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"

SHR(S1, COUNT) = "00001101"

SHR(U2, COUNT) = "00011101"

SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts
You can use shift operations for simple multiplication and division of UNSIGNED numbers, if you multi-
ply or divide by a power of two.

For example, to divide the following UNSIGNED variable U by 4:

variable U: UNSIGNED (7 downto 0) := "11010101";

variable quarter_U: UNSIGNED (5 downto 0);

quarter_U := SHR(U, "01");
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ENUM_ENCODING Attribute
Place the synthesis attribute ENUM_ENCODING on your primary logic type (see ‘‘Enumeration Encod-
ing" in Chapter 4). This attribute allows FPGA Express to interpret your logic correctly.

pragma built_in
Label your primary logic functions with the built_in pragma. This pragma allows FPGA Express to 
interpret your logic functions easily. When you use a built_in pragma, FPGA Express parses but 
ignores the body of the function. Instead, FPGA Express directly substitutes the appropriate logic for 
the function.  You need not use built_in pragmas; however using these pragmas result in run times 
that are ten times faster.

Use built_in pragmas by placing a comment in the declaration part of a function.  FPGA Express 
interprets a comment as a directive if the first word of the comment is pragma. 

Example 10-12 shows the use of built_in pragmas.

Example 10-12: Using a built_in pragma

function "XOR" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

  -- pragma built_in SYN_XOR

    begin

        if (L = ’1’) xor (R = ’1’) then

            return ’1’;

        else 

            return ’0’;

        end if;

end "XOR";

Two-Argument Logic Functions
Synopsys provides six built-in functions to perform two-argument logic functions:

•  SYN_AND

•  SYN_OR

•  SYN_NAND

•  SYN_NOR

•  SYN_XOR

•  SYN_XNOR

You can use these functions on single-bit arguments or equal-length arrays of single bits. 

Example 10-13 shows a function that generates the logical AND of two equal-size arrays.
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Example 10-13: Built-In AND for Arrays

function "AND" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

  -- pragma built_in SYN_AND

    variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);

    variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);

    variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);

begin

    assert L’length = R’length;

    MY_L := L;

    MY_R := R;

    for i in RESULT’range loop

        if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then

            RESULT(i) := ’1’;

        else

            RESULT(i) := ’0’;

        end if;

    end loop;

    return RESULT;

end "AND";

One-Argument Logic Functions
Synopsys provides two built-in functions to perform one-argument logic functions: 

•  SYN_NOT

•  SYN_BUF

You can use these functions on single-bit arguments or equal-length arrays of single bits. Example 10-
14 shows a function that generates the logical NOT of an array.

Example 10-14: Built-In NOT for Arrays

function "NOT" (L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

  -- pragma built_in SYN_NOT

     variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);

     variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);

begin

    MY_L := L;

    for i in result’range loop

        if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then

            RESULT(i) := ’1’;
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        elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then

            RESULT(i) := ’0’;

        else

            RESULT(i) := ’X’;

        end if;

    end loop;

    return RESULT;

end "NOT";

end;

Type Conversion
The built-in function SYN_FEED_THRU performs fast type conversion between unrelated types. The 
synthesized logic from SYN_FEED_THRU wires the single input of a function to the return value. This 
connection can save the CPU time required to process a complicated conversion function, as shown in 
Example 10-15.

Example 10-15: Use of SYN_FEED_THRU

type COLOR is (RED, GREEN, BLUE);

attribute ENUM_ENCODING : STRING;

attribute ENUM_ENCODING of COLOR : type is "01 10 11";

...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is

  -- pragma built_in SYN_FEED_THRU

begin

    case L is

       when RED   => return "01";

       when GREEN => return "10";

       when BLUE  => return "11";

    end case;

end COLOR_TO_BV;

translate_off Directive
If there are constructs in your "types" package that are not supported for synthesis, or that produce 
warning messages, you may need to use the FPGA Express directive  
-- synopsys translate_off. 

You can make liberal use of the translate_off directive when you use built_in pragmas 
because FPGA Express ignores the body of built_in functions.  For examples of illustrating how to 
use the translate_off directive, see the std_logic_arith.vhd package.
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std_logic_misc Package
The std_logic_misc package resides in the Synopsys libraries directory ($synopsys/packages/
IEEE/src/std_logic_misc.vhd).  This package declares the primary data types supported by the 
Synopsys VSS Family. 

Boolean reduction functions use one argument, an array of bits, and return a single bit. For example, 
the and-reduction of "101" is "0", the logical AND of all three bits. 

Several functions in the std_logic_misc package provide Boolean reduction operations for the pre-
defined type STD_LOGIC_VECTOR. Example 10-16 shows the declarations of these functions.

Example 10-16: Boolean Reduction Functions

function AND_REDUCE  (ARG: STD_LOGIC_VECTOR) return UX01;

function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function OR_REDUCE   (ARG: STD_LOGIC_VECTOR) return UX01;

function NOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return UX01;

function XOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return UX01;

function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;

function AND_REDUCE  (ARG: STD_ULOGIC_VECTOR) return UX01;

function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

function OR_REDUCE   (ARG: STD_ULOGIC_VECTOR) return UX01;

function NOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return UX01;

function XOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return UX01;

function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

These functions combine the bits of the STD_LOGIC_VECTOR, as the name of the function indicates. 
For example, XOR_REDUCE returns the XOR value of all bits in ARG.

Example 10-17 shows some reduction function calls and their return values.

Example 10-17: Boolean Reduction Operations

AND_REDUCE("111") = ’1’

AND_REDUCE("011") = ’0’

OR_REDUCE("000")  = ’0’

OR_REDUCE("001")  = ’1’

XOR_REDUCE("100") = ’1’

XOR_REDUCE("101") = ’0’

NAND_REDUCE("111") = ’0’

NAND_REDUCE("011") = ’1’
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std_logic_misc Package
NOR_REDUCE("000") = ’1’

NOR_REDUCE("001") = ’0’

XNOR_REDUCE("100") = ’0’

XNOR_REDUCE("101") = ’1’ 
10–18 • VeriBest FPGA Synthesis VHDL Reference Manual



Chapter 11
HDL Constructs
Many VHDL language constructs, although useful for simulation and other stages in the design pro-
cess, are not relevant to synthesis. Because these constructs cannot be synthesized, they are not sup-
ported by FPGA Express.

This appendix provides a list of all VHDL language constructs with the level of support for each, fol-
lowed by a list of VHDL reserved words.  

This appendix describes

•  VHDL Construct Support

•  VHDL Reserved Words

VHDL Construct Support
A construct can be fully supported, ignored, or unsupported. Ignored and unsupported constructs are 
defined as follows:

•  Ignored means that the construct is allowed in the VHDL source, but is ignored by FPGA Express.

•  Unsupported means that the construct is not allowed in the VHDL source and that FPGA Express 
flags the construct as an error.  If errors are found in a VHDL description, the description is not trans-
lated (synthesized).

Constructs are listed in the following order:

•  Design units

•  Data types

•  Declarations

•  Specifications

•  Names

•  Operators

•  Operands and expressions

•  Sequential statements

•  Concurrent statements

•  Predefined language environment
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VHDL Construct Support
Design Units
entity

The entity statement part is ignored.

Generics are supported, but only of type INTEGER.

Default values for ports are ignored.

architecture
Multiple architectures are allowed. 

Global signal interaction between architectures is unsupported.

configuration
Configuration declarations and block configurations are supported, but only to specify the top-level 
architecture for a top-level entity.  

Attribute specifications, use clauses, component configurations, and nested block configurations are 
unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.  

subprogram
Default values for parameters are unsupported.  Assigning to indexes and slices of unconstrained out 
parameters is unsupported, unless the actual parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a static value. 

Resolution functions are supported for wired-logic and three-state functions only.

Subprograms can only be declared in packages and in the declaration part of an architecture.

Data Types
enumeration

Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported. 

Integer types are automatically converted to bit vectors whose width is as small as possible to accom-
modate all possible values of the type’s range, either in unsigned binary for nonnegative ranges, or in 
2’s-complement form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types is ignored in delay specifications.
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VHDL Construct Support
floating
Floating-point type declarations are ignored. The use of floating-point types is unsupported except for 
floating-point constants used with Synopsys-defined attributes (see Chapter 9).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types is unsupported.

file
File type declarations are ignored, and the use of file types is unsupported.

incomplete type declarations
Incomplete type declarations are unsupported.

Declarations
constant

Constant declarations are supported, except for deferred constant declarations.

signal
register and bus declarations are unsupported. 

Resolution functions are supported for wired and three-state functions only.

Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

file
File declarations are unsupported.

interface
buffer and linkage are translated to out and inout, respectively.

alias
Alias declarations are ignored.

component
Component declarations that list a name other than a valid entity name are unsupported.
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VHDL Construct Support
attribute
Attribute declarations are fully supported. However, the use of user-defined attributes is unsupported.

Specifications
attribute

others and all are unsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined attributes is unsupported.

configuration
Configuration specifications are unsupported. 

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of user-defined attributes is unsupported.

Names
simple

Simple names are fully supported.

selected
Selected (qualified) names outside of a use clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception. Indexing an unconstrained out parameter in a 
procedure is unsupported.

slice
Slice names are fully supported, with one exception. Using a slice of an unconstrained out parameter 
in a procedure is unsupported unless the actual parameter is an identifier.

attribute
Only the following predefined attributes are supported: base, left, right, high, low, range, 
reverse_range, and length.

event and stable attributes are supported only as described with the wait and if statements (see 
Chapter 6).

User-defined attribute names are unsupported.

The use of attributes with selected names (name.name’attribute ) is unsupported.
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VHDL Construct Support
Operators
logical

Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are both fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported.

The / (division), mod, and rem operators are supported only when both operands are constant or 
when the right operand is a constant power of 2.

miscellaneous
The ** operator is supported only when both operands are constant or when the left operand is 2.

The abs operator is fully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.

Operands and Expressions
based literals

Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals
Physical literals are ignored.

strings
Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.
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VHDL Construct Support
function calls
Function conversions on input ports are not supported, because type conversions on formal ports in a 
connection specification are unsupported.

qualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.

static expressions
Static expressions are fully supported.

universal expressions
Floating-point expressions are unsupported, except in a Synopsys-recognized attribute definition.

Infinite-precision expressions are not supported. 

Precision is limited to 32 bits; all intermediate results are converted to integer.

Sequential Statements
wait

The wait statement is unsupported unless it is of one the following forms:

wait until                      clock = VALUE;

wait until     clock’ event  and clock = VALUE;

wait until not clock’ stable and clock = VALUE;

where VALUE is 0, 1 or an enumeration literal whose encoding is 0 or 1. A wait statement in this form 
is interpreted to mean “wait until the falling (VALUE is 0) or rising (VALUE is 1) edge of the signal 
named clock.”

wait statements cannot be used in subprograms or in  for loops.

assertion
assertion statements are ignored.

signal
Guarded signal assignment is unsupported. 

transport and after are ignored. 

Multiple waveform elements in signal assignment statements are unsupported.

variable
variable statements are fully supported.
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VHDL Construct Support
procedure call
Type conversion on formal parameters is unsupported. 

Assignment to single bits of vectored ports is unsupported.

if
if statements are fully supported.

case
case statements are fully supported.

loop
for loops are supported, with two constraints:  the loop index range must be globally static, and the 
loop body must not contain a wait statement.

while loops are supported, but the loop body must contain at least one wait statement. 

loop statements with no iteration scheme (infinite loops) are supported, but the loop body must con-
tain at least one wait statement. 

next
next statements are fully supported.

exit
exit statements are fully supported.

return
return statements are fully supported.

null
null statements are fully supported.

Concurrent Statements
block

Guards on block statements are unsupported. 

Ports and generics in block statements are unsupported.

process
Sensitivity lists in process statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guarded and transport keywords are ignored. Multiple waveforms are unsupported.
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VHDL Construct Support
component instantiation
Type conversion on the formal port of a connection specification is unsupported. 

generate
generate statements are fully supported.

Predefined Language Environment
severity_level type

severity_level type is unsupported.

time type
time type is unsupported.

now function
now function is unsupported.

TEXTIO package
The TEXTIO package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base, left, right, high, low, range, 
reverse_range, and length. 

The event and stable attributes are supported only in the if and wait statements, as described in 
Chapter 6.
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VHDL Reserved Words
VHDL Reserved Words
The following words are reserved for the VHDL language and cannot be used as identifiers:

abs if select

access in severity

after inout signal

alias is subtype

all

and label then

architecture library to

array linkage transport

assert loop type

attribute map units

begin mod until

block use

body nand

buffer new variable

bus next

nor wait

case not when

component null while

configuration with

constant of

on xor

disconnect open

downto or

others

else out

elsif

end package

entity port

exit procedure

process

file

for range

function record

register

generate rem

generic report

guarded return
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VHDL Reserved Words
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Index
Index
 expression 8-3, 8-5
register inference

 expressions 8-2

Symbols
5-4

- 5-5, 5-8
" 5-4
* 5-8, 5-10
+ 5-5, 5-8
/ 5-4, 5-8
= 5-4

A
abs (absolute value operator) 5-10
absolute value operator 5-10
abstraction 1-3
access (pointer) types 4-12
actual parameters (to subprograms) 3-18
adding operators 5-5
aggregate target 6-6
aggregates (array literals) 5-21
algorithms

processes 3-6
subprograms 3-17

and (logical operator) 5-3
architecture

concurrent statements 3-5
dataflow 3-2
declarations 3-5
hardware model 1-3
organization 3-5
overriding entity port names 3-15
signals 3-5
statement 3-13
structural 3-2

arithmetic operators 5-5
adding 5-5
multiplying 5-8
negation 5-8

array attributes 4-7
RANGE

example 6-16
using 4-7

array literals
as aggregates 5-21
as bit strings 5-16

array ordering 5-4
array types 4-5

array attributes 4-7
VeriBest FPGA
concatenating 5-5
constrained 4-6
defining

constrained 4-6
unconstrained 4-6

unconstrained 4-6
assignment

aggregate target 6-6
field target 6-5
indexed name target 6-3
signal 6-7
simple name target 6-2
slice target 6-4
variable 6-7

assignment statements 6-2
asynch_set_reset 8-14
asynch_set_reset,, see also 
hdlin_ff_always_asynch_set_reset
asynchronous processes 8-4

example 8-31
asynchronous reset 8-11, 8-15
asynchronous sequential element inferencing 8-
1
Attributes 8-14
attributes

array 4-7
as operands 5-22
ENUM_ENCODING 4-3, 10-14

B
behavioral

constructs 1-3
binary arithmetic functions

example 10-8
binary bit string 5-16
bit string literals 5-16
BIT type 4-10
bit vectors

as bit strings 5-16
bit width (of operands) 5-12
BIT_VECTOR type 4-10, 10-2
block statement 7-6
blocks 3-6
Boolean reduction functions 10-17
BOOLEAN type 4-10
buffer (port mode) 3-12
built_in directive

logic functions 10-14
type conversion 10-16
using 10-14

built_in pragma
example of using 10-14
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Index
C
carry-out bit

example of using 10-10
case statement 6-10

illegal usages 6-12
catenation operator 5-5
character literals 5-15
CHARACTER type 4-10
combinational processes 6-33, 7-3
compiler directives,, see also directives)
component declaration 7-14
component implication 6-25, 8-29

example 6-25
latches and registers 6-33
registers 8-1
three-state 8-33

component instantiation
statement 7-13

component instantiation statement 3-27
component instantiations 3-6
components

declarations 3-26
generics 3-26

in design hierarchy 3-25
instantiation 3-27

search order 3-27
port map 3-28

computable operands 5-12
concurrent procedure call 7-7

eqivalent process 7-7
concurrent signal assignment 7-9

conditional signal assignment 7-10
selected signal assignment 7-11

concurrent statements 7-1
supported 11-7

conditional signal assignment 7-10
equivalent process 7-11

conditionally-assigned variable 8-9
constants

declarations 3-22
constrained array 4-6
CONV_INTEGER functions 10-5
CONV_SIGNED functions 10-5, 10-6
CONV_UNSIGNED functions 10-5
conversion functions 10-7

std_logic_arith package 10-5

D
data types

supported 11-2
dataflow

architecture 3-2
VeriBest FPGA Synthesis VHDL Reference Man
constructs 1-4
declarations 11-3
declaring constant

incorrect use of port name 3-15
declaring signal

incorrect use of port name example 3-15
description style

data types 2-2
description styles

asynchronous designs 2-2
design hierarchy 2-1
language constructs 2-3
register selection 2-2

design 3-3
files 3-4

Design Compiler
component instantiation 3-27
designs (VHDL entities) 3-25
restructuring 1-4
synthesis and optimization 1-4

design flow 1-4
design styles

design constraints 2-2
design units 11-2
designs

hierarchy 3-25
directives 9-1

built_in 10-3
using 10-14

component implication 6-25
map_to_entity 6-24, 7-8
resolution_method 3-24
return_port_name 6-25
translate_off 9-2, 10-16
translate_on 9-2

E
edge expression () 8-3
entity

architectures 3-13
example 3-2

as design in Design Compiler 3-25
design hierarchy 3-1
example 3-14
generic specifications 3-12

example 3-12
hardware model 1-3
implementation 3-1
interface 3-1
overriding port names 3-15
port specifications 3-12
specification

example 3-1
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Index
syntax 3-11
ENUM_ENCODING attribute 4-3, 10-14
enumerated types

ordering 5-4
enumeration literals 4-2, 5-15
enumeration types 4-2

encoding 4-3
values 4-4

ENUM_ENCODING attribute 4-3
enumeration literals 4-2

equality functions
example 10-12

equality operators 5-4
examples

asynchronous process 8-32
case statement

enumerated type 6-10
combinational process 7-3
component implication 6-26
flip-flop inference

asynchronous reset 8-11
synchronous reset 8-15

for..generate 7-16
function call 6-23
if statement 6-9
inference

flip-flop 8-11
latch 8-7

latch inference 8-7
processes 8-32
sequential processes 7-4
simulation driver 9-2
subprograms

component implication 6-26
declarations 6-20
function call 6-23

synchronous process 8-32
three-state component 8-33

registered input 8-35
two-phase clocked design 8-10
wait statement

multiple waits 6-30
exit statement 6-18
exponentiation operator 5-10
expressions 5-1

supported 11-5

F
field target 6-5
file types 4-12
files 3-4
finite-state machine

examples
VeriBest FPGA
synchronous with asynchronous reset 8-
12

flip-flop inference 8-28
asynchronous reset 8-11
example 8-11
synchronous reset 8-15

flip-flops 8-1
floating point types 4-12
for..generate statement

example 7-16
syntax 7-15

for..loop statement 6-14
and exit statement 6-18
and next statement 6-16

formal parameters (to subprograms) 3-18
function call 5-22
functional description 1-5
functions 3-17

body
syntax 3-19

calling 6-23
declarations

example 3-18
syntax 3-17

description 6-20
implementations

mapped to component 6-26
mapped to gates 6-28

return statement 6-24

G
generate statements

for..generate 7-15
if..generate 7-15

generic map (component instantiation) 3-28
generics 3-12

in components 3-26

H
hardware description languages (HDLs)

advantages 1-2
design methodology 1-2

hdlin_ff_always_asynch_set_reset 8-28
HDLs (see hardware description languages) 1-1
hexadecimal bit string 5-16
high impedance state 8-33

I
identifiers 5-16

enumeration literals 5-15
if statement 6-8

creating registers 8-2
if..generate statement
 Synthesis VHDL Reference Manual  •  Index–3



Index
syntax 7-17
implying registers 8-1
in (port mode) 3-12
indexed name target 6-3
indexed names 5-17

computability 5-17
using 5-17

inout (port mode) 3-12
instantiation 3-25

search order 3-27
INTEGER type 4-10

and subtypes 4-11
integer types

defining 4-5
encoding 4-5

bit width 4-5
range 4-5

K
keywords 11-9

L
latch inference 8-28

automatic 8-8
example 8-7
local variables 8-9
restrictions 8-9

latches 8-1
literals

as operands 5-14
bit strings 5-16
character 5-15
enumeration 5-15
numeric 5-14
string 5-15

logic optimization 1-2
logical operators 5-3
loop statement 6-13

M
map_to_entity directive 6-24, 7-8
mod (multiplying operator) 5-8
multiplication using shifts 10-13
multiply-driven signals 7-5
multiplying operators 5-8

N
named notation 3-29
names 11-4

attributes 5-22
field names 5-20
indexed names 5-17
qualified 5-23
VeriBest FPGA Synthesis VHDL Reference Man
record names 5-20
slice names 5-18

nand (logical operator) 5-3
NATURAL subtype 4-10
next statement 6-16

in named loops 6-17
non-computable operands 5-13
nor (logical operator) 5-3
not (logical operator) 5-3
null range 5-19
null slice 5-19
null statement 6-34
numeric literals 5-14

O
octal bit string 5-16
operands 5-1

aggregates 5-21
attributes 5-22
bit width 5-12
computable 5-12
field 5-20
function call 5-22
identifiers 5-16
indexed names 5-17
literal 5-14

character 5-15
enumeration 5-15
numeric 5-14
string 5-15

non-computable 5-13
qualified expressions 5-23
record 5-20
slice names 5-18
supported 11-5
type conversions 5-24

operators 5-1
absolute value 5-10
adding 5-5
arithmetic

adding 5-5
multiplying 5-8
negation 5-8

array
catenation 5-5
relational 5-4

catenation 5-5
defined 5-2
equality 5-4
exponentiation 5-10
logical 5-3
multiplying 5-8

restrictions on use 5-8
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Index
ordering 5-4
and array types 5-4
and enumerated types 5-4

overloading 3-21
syntax 3-21

precedence 5-2
predefined 5-2
relational 5-4
sign 5-8
supported 11-5
unary 5-8

or (logical operator) 5-3
ordering functions

example 10-11
ordering operators 5-4
others (in aggregates) 5-22
others (in case statement) 6-10
out (port mode) 3-12
overloading

enumeration literals 4-3, 5-15
operators 3-21
resolving by qualification 5-23
subprograms 3-20

P
packages 3-8

bodies 3-9
syntax 3-10

declarations 3-9
example 3-10
syntax 3-9

description 3-8
names 3-9
organization 3-8
structure 3-9
Synopsys-supplied 10-1
using 3-8

parameters
mode 3-18
profile 3-20

performance constraints 2-2
physical types 4-12
port map (component instantiation) 3-28
port modes 3-12
ports

as signals 3-22
positional notation 3-29
POSITIVE subtype 4-10
pragmas,, see also directives)
predefined attributes

supported 11-4
predefined language environment 11-8
predefined VHDL attributes
VeriBest FPGA
array 4-7
procedure calls 3-6
procedures 3-17

body
syntax 3-19

calling 6-21
declarations

examples 3-18
syntax 3-17

process statement 7-2
processes 3-6

as algorithms 3-6
asynchronous 8-4
combinational 6-33

example 7-3
declarations 3-6
description 3-6
hardware model 1-3
organization 3-6
sensitivity lists 7-2
sequential 6-33

example 7-4
sequential statements in 3-6
synchronous 8-4
wait statement 6-29

Q
qualified expressions 5-23

R
record operands 5-20
record types 4-8
register inference 8-1

efficient usages 8-29
example 8-32
flip-flop 8-11
if statement 8-2
if vs. wait 8-3
latches 8-7
restrictions 8-5
signal edge 8-2
templates 8-4
wait statement 8-2
wait vs. if 8-3

relational operators 5-4
rem (multiplying operator) 5-8
reserved words 11-9
resolution functions 3-22

creating 3-23
resolution_method three_state (directive) 3-24
resolution_method wired_and (directive) 3-24
resolution_method wired_or (directive) 3-24
resolved signals 3-23
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Index
return statement 6-24
return_port_name directive 6-25

S
selected signal assignment 7-11

equivalent process 7-12
sensitivity lists 7-2
sequential processes 6-33, 7-4
sequential statements 6-1

supported 11-6
shift functions

example 10-12
shift operations

example 10-13
signal assignments 3-6
signals

assignments 6-2, 6-7
can be ports 3-22
concurrent signal assignment 7-9
conditional signal assignment 7-10
declarations 3-22
drivers 7-5
edge detection 8-2
hardware model 1-3
in packages 3-9
registering 8-30
resolved 3-23
selected signal assignment 7-11
three-state 7-5

SIGNED data type 10-4
SIGNED type 10-2

defined 10-4
simple name target 6-3
simulation 1-5, 1-6

driver example 9-2
place in the design process 1-5
test vectors 1-5

slice names 5-18
limitations 5-19

slice target 6-4
STANDARD package 4-10
std_logic_1164 Package 10-1
std_logic_1164 package 10-1
std_logic_arith Package 10-1, 10-2
std_logic_arith package 10-1

10-8, 10-11, 10-12
_REDUCE functions 10-17
arithmetic functions 10-7
Boolean reduction functions 10-17
built_in functions 10-3
comparison functions 10-10
CONV_INTEGER functions 10-5
CONV_SIGNED functions 10-5, 10-6
VeriBest FPGA Synthesis VHDL Reference Man
CONV_UNSIGNED functions 10-5
conversion functions 10-7
data types 10-4
modifying the package 10-3
ordering functions 10-10
shift functions 10-12
SYNOPSYS data types 4-12
using the package 10-2

std_logic_misc Package 10-17
std_logic_misc package 10-1, 10-17
string literals 5-15

bit 5-16
STRING type 4-10
structural

architecture 3-2
components in 3-27
constructs 1-4
example 3-29

structural description 1-5
subprograms 3-7

actual parameters 3-18
bodies 3-19

examples 3-20
calling 6-20

examples 3-18
declarations 3-17

examples 3-18
parameters 3-18
syntax 3-19

defined 6-19
defining 6-19
formal parameters 3-18
mapping to components 6-25

example 6-25
overloading 3-20
parameters

declarations 3-18
modes 3-18
profile 3-20

procedure vs. function 6-20
procedures and functions 3-17

subtype
defining 4-12

subtypes
declarations 3-21

SYN_FEED_THRU
example of using 10-16

synch_set_reset 8-15
synch_set_reset,, see also 
hdlin_ff_always_sync_set_reset
synchronous processes 8-4

example 8-32
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synchronous reset 8-15
SYNOPSYS data types

std_logic_arith package 4-12
Synopsys packages 10-1

std_logic_misc package 10-17
synthetic comments,, see also directives)

T
test vectors

simulation 1-5
TEXTIO package 4-9
three-state

registered input 8-35
three-state inference 8-33
three-state signals 7-5
translate_off directive 9-2, 10-16
translate_on directive 9-2
two-phase design 8-10
type conversions 5-24
types

converting 5-24
declarations 3-21

U
unary arithmetic functions

example 10-9
unary operators 5-8
unconstrained array 4-6
UNSIGNED data type 10-4
UNSIGNED type 10-2

defined 10-4
unsupported types 4-12
use statement 3-8

V
variable assignments 6-2
variables

assignments 6-7
conditionally-assigned 8-9
declarations 3-25

verification, of description implementation 1-6
VHDL

abstraction 1-3
access (pointer) types 4-12
aggregates 5-21
architecture 1-3
architectures 3-5, 7-1
array types 4-5
assignment statements 6-2
BIT type 4-11
BIT_VECTOR type 4-12
block statement 7-6
BOOLEAN type 4-11
VeriBest FPGA
case statement 6-10
CHARACTER type 4-11
component implication 6-25
component instantiation 7-13
components 1-3, 3-25

declarations 3-26
instantiation 3-27

concurrent procedure call 7-7
concurrent statements 7-1

supported 11-7
constants 3-22
constructs 3-3
data types

supported 11-2
declarations 11-3
defining designs 3-11
description style 2-1
design 3-3

files 3-4
design hierarchy 2-1, 3-25
design units 11-2
directives 9-1
entity 1-3, 3-1

architecture 3-1
specification 3-1

enumeration types 4-2
exit statement 6-18
expressions 5-1

supported 11-5
file types 4-12
floating point types 4-12
for..loop statement 6-14
functions 3-17
generate statement 7-15
generics 3-12
hardware model 1-2
identifiers 5-16
if statement 6-8
INTEGER type 4-11
integer type 4-5
keywords 11-9
literals 5-14
modeling hardware 1-2
names 11-4
NATURAL subtype 4-11
next statement 6-16
null statement 6-34
operands

supported 11-5
operators 5-1

precedence 5-2
predefined 5-2
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supported 11-5
overloading

operators 3-21
subprograms 3-20

packages 3-8
physical types 4-12
port modes 3-12
POSITIVE subtype 4-11
predefined attributes

supported 11-4
predefined data types 4-9
predefined language environment 11-8
predefined operators 5-2
procedures 3-17
process statement 7-2
processes 1-3, 3-6
qualified expressions 5-23
record types 4-8
register inference 2-2
reserved words 11-9
resolution functions 3-22
return statement 6-24
sensitivity lists 7-2
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