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Abstract 

 
The OpenGL geometry pipeline lighting stage 

requires raising a number in the range [0, 1] to a power 
between [1, 128] to compute specular reflections and 
spotlights.  The result need only be accurate to a number 
of bits related to the color depth of the output device.  
This paper describes a hardware implementation of such 
a powering unit based on a logarithm lookup table, a 
multiplier, and an inverse log table. The log lookup table 
is partitioned into subintervals to reduce table size.  A 
synthesized design uses 84k gates to achieve 10-bit 
accuracy with a latency of 9.62 ns in a 180 nm process.  
Although the system is tailored for the OpenGL 
application, the same principles can be applied to the 
design of other powering units. 

 
 

1: Introduction 
 

OpenGL is a standard for professional 3D graphics 
[1,2].  The OpenGL pipeline consists of floating-point 
intensive transformation and lighting followed by short 
integer computations for rasterization.  Hardware 
graphics accelerators have traditionally focused on the 
rasterization stages, but have become so fast that 
transformation and lighting are now a bottleneck.  
Therefore, the transformation and lighting calculations 
are moving from the host processor to a hardware 
transform and lighting (T&L) engine [3]. 

The T&L Engine accepts vertices and normal 
vectors and performs matrix multiplies for coordinate 
system transformations.  It then calculates ambient, 
emissive, diffuse, and specular lighting.  Specular 
lighting results in highlights when light comes from a 
particular direction and reflects off the surface.   Lights 
may be specified as spotlights that also favor a particular 
direction.  Both specular lighting and directed spotlight 
calculations involve raising the cosine of an angle to a 
power to determine the light intensity reaching the 
viewer. Specifically, the OpenGL pipeline must raise a 
number in the range [0, 1] to a (possibly non-integer) 
power in the range [0, 128].  In practice the power is 
usually in the range [1,128] and this design is restricted 
to that range for ease of hardware implementation. Such 
a limit is consistent with the philosophy of accelerating 
the common OpenGL modes and trapping to software 

for other modes.  The inputs and outputs of the pipeline 
are commonly represented as single-precision IEEE 
floating-point numbers [4]. 

Accurately computing AB is considered a difficult 
floating-point operation [5].  Approximations for 
specific cases can be much more efficient.  For example, 
Tang [6,7] describes an algorithm for exp(B) using range 
reduction, a polynomial approximation, and 
reconstruction.  Lookup tables are used to assist the 
reconstruction.  Efficient approaches involving table 
lookup and interpolation exist when B is a constant 
[8,9]. Software math libraries [10] often rely on many 
multiplications.  If B were an integer, a limited number 
of multiplications would suffice.  Unfortunately, none of 
these approaches are well suited to a low-cost direct 
hardware implementation supporting floating-point 
values for A and B but requiring only modest accuracy. 
Indeed, the author is unaware of any published work on 
powering units optimized for such criteria. 

This paper describes an algorithm and hardware 
implementation for calculating P = AB.  A and B are 
provided at arbitrarily high precision with A ∈ [0,1], B ∈ 
[1,2b]. P ∈ [0,1] is expressed as a fixed point number 
faithfully rounded to p fractional bits.   The algorithm 
uses the identity  

 

ABBA 2log2=  (1) 
 

where lookup tables are used for the logarithm and 
exponential.  For OpenGL, b is 7 and p is typically 8 or 
10, depending on the number of bits used to represent 
each red, green, blue, and alpha color component. 

The hardware cost depends on the size of the lookup 
tables required to produce a p-bit result.  If a single 
logarithm lookup table were used, we will find the size 
grows as O(2b+p) and is impractically large.  A key idea 
of this paper is to partition the logarithm table into 
multiple tables over subintervals, as done by Coleman et 
al. [11].  This leads to O(b) tables that grow as O(2p) for 
an area of O(b2p). 

This paper presents the algorithm and error analysis.  
Based on the error analysis, we determine the size of the 
lookup tables.  The design was coded in Verilog and 
synthesized to produce area and timing results. The same 
principles apply to the design of hardware powering 
units for other applications. 

 



2: Algorithm 
 
We wish to compute P = AB where A and B are 

floating point numbers in the ranges [0,1] and [1,2b], 
respectively. The result is faithfully rounded to p 
fractional bits.  This means that the returned result is 
guaranteed to be one of the two fixed point numbers that 
surround the exact result.  Faithful rounding is more 
practical than exact rounding for a powering unit 
because it is very expensive to calculate the result to the 
high level of precision required to round exactly [5]. 

We begin with the identity ABBA 2log2= . The 
integer portion of log2 A is the exponent field of A 
because A is provided as a floating point number.  The 
fractional portion of the logarithm is looked up from a 
table given the significand field of A.  A multiplier 
computes  and the result is expressed in 
fixed point format.  We finally determine the result 2

ABX 2log=
X 

by table lookup on the fractional part of X followed by a 
shift by the integer portion of X.  For convenience, this 
fraction may be expressed as a floating point number for 
use later in the pipeline.   

To express the algorithm more precisely, we must 
define some notation.  Let the bit vector x[m:n] represent 

.  Let ; this is the number of 

bits required to represent the integer portion of the 
logarithm of the smallest A=2

∑
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m
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-p that will not generate a 
result of 0. Let  be A truncated to n1 

fractional bits and  be the corresponding fixed 
point representation of B with b+1 integer bits and n2 
fractional bits. One can readily convert from floating 
point inputs into these fixed point representations by 
truncation and shift of the signficands. Let  be 
the final result faithfully rounded to p fractional bits.   

[ ]pP −:0�

Figure 1 shows the powering algorithm.  It first 
handles special cases of large and small inputs. Note that 
only  bits of integer part must be maintained in the 
log lookup and multiplication because if the integer 
portion exceeds this range, the final result will be 0.  The 
number of bits for each intermediate result required to 
achieve a particular accuracy will be explored in the next 
section. 

p′

 
3: Error analysis 

 
To guarantee a faithfully rounded result, we must 

consider the sources of error introduced by the finite 
precision lookup tables and multiplier.  Given these 
sources, we determine the necessary table sizes. 

 

if 1� =A  then 1� =P  

else if ( )12� +−< pA   then  0� =P
else begin 

lookup [ ] ( ))1(
23

12�log:1 +−+−=−−′ nAnpL  

multiply [ ] BLnpX �:1 4 •=−−′  

if 1+≥ pX  then  0� =P
else begin 

 lookup [ ] [ ] ( )( )144 2:12:1
+−+−−−=−−

nnXpE  

right shift  [ ] ]0:1[:0� −′>>=− pXEpP
end 

end 
Figure 1: Powering algorithm 

 
The logarithm table should look up the logarithm of 

A, but instead looks up the logarithm of 1ε+A  = 
)1( 12� +−+ nA  where the truncation error is 

 

( )1
1

12 +−≤ nε  (2) 
 

Observe the benefit of programming the logarithm 
table for entry A�  with ( ))1(

2
12�log +−+− nA : if we had 

programmed the table with ( )A�log2− , the error ε1 
caused by truncation of A could be twice as great. 

The logarithm table produces a result rounded to the 
nearest fixed point number with n3 fractional bits.  This 
introduces another error representing the difference 
between the exact logarithm and the table contents. 

 

( )1
3

32 +−≤ nε  (3) 
 

The B input to the multiplier is truncated to 
[ ]2:� nbB −  with only n2 fractional bits so 

 

22�
2

nBB −<−=ε  (4) 
 

The product is truncated to n4 bits before being used 
in the exponent lookup table.  As in the logarithm table 

 

( )1
4

42 +−≤ nε  (5) 
 

Finally, the exponent table produces a result 
rounded to the nearest fixed point number with p 
fractional bits, introducing a further error. 

 

( )1
5 2 +−≤ pε  (6) 

 

Considering all these errors, we actually compute 
 

( ) ( )( )
5

log 431222� εεεεε += ++++ ABP  (7) 
 

For faithful rounding, we must choose tables large 
enough that the error is small enough: pPP −<− 2� . 
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5

log εεεεε  (8) 
 

Because the errors are small, we use first-order 
Taylor series approximations for log2 x and 2x 
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Substituting (9) into (8) and eliminating quadratic 
error terms, we find 
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Then substituting (10) into (11) and simplifying, we 
find our error bound 
 

( ) p
A
BB BAA −<++++ 22ln2ln2lnlog 543221 εεεεε (12) 

 

This bound depends on the input A; for small values 
of A, we can place looser constraints on the errors than 
when A is close to 1.  This suggests that we could benefit 
from partitioning the logarithm table into subintervals 
with greater precision for inputs close to unity.  We will 
choose upper bounds on ε1, ε2, ε3, ε4, and ε5 to ensure 
that (12) is satisfied.  The bounds on the logarithm table 
errors ε1 and ε3 will depend on the value of A.  The other 
bounds will be independent of A and B. 

To find bounds on ε1 and ε3 we take a derivative of 
their terms with respect to B to find the maximum value 
each term can take on for a given value of A.  In both 
cases, this maximum occurs at  
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Also observe that the weight on the ε2 term takes on 
a maximum value at A=1/e, B=1 of 
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Using (13) and (14) and taking an upper bound of 1 
for AB, we reduce (12) to 
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 (15) 

We already bounded ε5 in (6).  Reducing the 
errors ε1 and ε4 is costly because these determine the 
sizes of the logarithm and exponent lookup tables.  To 
minimize table sizes while obtaining sufficient accuracy, 
we will choose n1, n2, n3, and n4 to satisfy (15). 
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Taking 11 2−
<e  and , we solve (4) and (17) 

for n

022ln <

2 = p + 3 and (5) and (19) for n4 = p + 2. We will 
choose n1 and n3 in the next section based on our 
logarithm table design. 

 
4: Implementation 

 
This section describes a Verilog implementation of 

the powering algorithm. It presents the table designs, a 
block diagram of the unit, the verification methodology, 
and the synthesis results. The inputs A and B are IEEE 
single-precision floating-point numbers.  The output P is 
calculated as a fixed point number with p bits of fraction 
and is converted to floating-point format for later use.  
The Verilog model is parameterized by b and p.  The 
key for an efficient design is a logarithm table 
partitioned into multiple subintervals.   
 
4.1: Logarithm table design 

 
If a single logarithm lookup table indexed with n1 

bits were used to cover all inputs A across the interval 
[0,1], (16) implies it would have to be large enough that 
2bε1 < 2-(p+2) or ε1 < 2-(p+b+2).   (2) requires n1 = p+b+1, 
so the lookup table would have 2p+b+1 entries.  This is 
costly for b = 7, p = 10. 

Notice that the weight on the ε1 error in (16) 
increases as A approaches 1.  Hence, we use multiple 
logarithm lookup tables valid over different subintervals 
with greater precision for inputs close to unity.  
Specifically, we use b+2 tables: T0�Tb+1.  Table Ti 
covers the subinterval [1-2-i, 1-2-(i+1)) except table Tb+1 
covers the subinterval [1-2-(b+1), 1). Each table is indexed 
with only 1

~n  bits of A and returns an approximation to 



the logarithm  where the number of 

fractional bits n increases with the table number i.  
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We index the table using a fixed point 
representation of A.  Values of A in T ( )bii ≤≤0  are 
binary fractions with i leading 1�s.  We treat the 
subsequent ~n

th
[ ]

 bits as the index j into the table and 
truncate the remaining less significant bits.  Therefore, 
the  of Ti holds 

))2
3
i 1:1 ++−−′ inpL  for  

21� −−= iA + .  Hence, ( )2~
1ε 12 ++− in≤ .  Table 

Tb+1 covers the same size subinterval as table Tb, so for 
values of A in this table, ( )2~

1+− bn2 + .  Now we can 
find a bound on the error introduced in the result by the 
finite sized logarithm lookup tables.   

j

 
Theorem 1: The maximum weighted magnitude of 

the ε1 error term in (16) introduced by table Ti is 
)2

1
107.1 +•≤iw ε . 

Proof: The breakpoint  occurs in table T
b

eA
−−= 2

b, 
as seen from the Taylor series approximation 
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−
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into two parts, one for table Tb+1 and the other for tables 
T0�Tb. 
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Evaluating numerically, we find i
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a first order Taylor series approximation shows 
i

eiw 22→ , so the bound becomes loose for i  > 0. 

 
Theorem 2: The maximum weighted magnitude of 

the ε3 error term in (18) introduced by table Ti is 
(n

i
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Proof: From (3), we know ( )1
3
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inε . Again, we 

divide the proof into two parts, one for table Tb+1 and the 
other for tables T0�Tb. 
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Given Theorem 1 and (16), we choose pn =1
~  bits 

to index the logarithm tables.  Note that we violate the 
bound in (16) by the factor of 1.07.  This is compensated 
for by the slack in (19). Similarly, given Theorem 2 and 
(18), we choose . 33 ++= pini

Note that T0  contains  integer bits and p+3 
fractional bits.  For i > 0, one can determine numerically 
that the integer bits and i-1 most significant fractional 
bits in T

p′

+p

i are all 0�s, so the tables contain only p+4 
nontrivial bits in each entry.  The multiplier may thus be 
optimized to accept only  bits of L if followed 
by a right shift by i to compensate for the leading 0�s. In 
general, the total number of bits in the logarithm tables 
is 

3+′p

( )( )[ ]1−42 ′+++ ppbp2 .  
In summary, our design with b = 7, p = 10 requires 

nine logarithm tables of 1024 entries each.  T0 has four 
integer bits and thirteen fractional bits.  The other tables 
have fourteen fractional bits.  The total table size is 
about 16KB, nontrivial, yet still modest in comparison to 
the sea of multipliers used by a geometry engine.  The 
table size reduces significantly if less accuracy is 
necessary; for example, a table for p=8-bit color depth 
requires only 3.5KB of storage. 

 
4.2: Exponent table design 

 
 As shown earlier, the exponent table is indexed 

with the upper n4 = p + 2 fractional bits of the product 
computed by the multiplier and produces an answer 
rounded to p fractional bits.  Thus, the table requires 

 bits of storage.  The table for p = 10 has 5 KB of 
storage and a table for p = 8 has 1 KB of storage.  

22 +pp

 
4.3: Block diagram 

 
Figure 2 shows a block diagram of the powering 

unit. Portions of the significand of A are presented to the 
log tables to cover each subinterval of [0,1].  The result 
from the appropriate subinterval is selected and 
multiplied by B with an ordinary unsigned multiplier.  
The product X indexes an exponent table.  The result 
multiplexer selects 1 in the special cases of A = 1, 0 if A 
is tiny or X is too large, or AB otherwise.  Not shown are 
the small shifters and adders required to convert between 
floating point and the short fixed point formats. 

 
B

log
tables * exp

tableA ABlog A X
n1 n3

n2
n4 p

 
Figure 2:  Block diagram of powering unit 

 
 



4.4: Verification 
 
VCS simulations verified the Verilog 

implementation against a C reference model.  The C 
model determines both the expected Verilog result and 
the true value of AB to ensure the algorithm rounds 
faithfully.  

The test vectors include both directed and random 
tests for b = 7 and p = 8 and 10.  Six million random 
vectors were applied. The maximum error found in 
simulation for p = 8 was 0.0029.  This is better than our 
bound of 2-p =  0.0039 because the worst case errors in 
the log and exponent lookups do not occur 
simultaneously on any of the cases tested.  The 
maximum error found for p = 10 was 0.00076 < 2-p =  
0.00098. 

 
4.5: Synthesis results 

 
The powering unit was synthesized with Synopsys 

tools and mapped to the LSI Logic G12-p 180 nm cell 
library [12] using worst-case models.  The gate count of 
each component is listed in Table 1 with a conversion of 
one gate to 24 µm2, i.e. 4 LSI cell units. No ROM 
generator was available so lookup tables were 
synthesized into gates instead.  If a ROM generator were 
available, the number of ROM bits required in place of 
the table gates is also shown in the table with an 
estimated conversion of one bit to about 2 µm2.  

 
p = 8 p = 10 Module 

Bits Gates Bits Gates 
Log Tables 28416 14867 132096 72734 
Exponent Table 8192 1823 40960 6181 
Multiplier  2317  3035 
Random Logic  1176  1669 
Total 36608 20183 173056 83619 

Table 1: Powering unit size 

Adding a factor of two to account for estimated 
interconnect, the overall synthesized areas are 1 mm2 for 
p = 8 and 4 mm2 for p = 10. Using ROMs could reduce 
the area to 0.6 mm2 for p = 10. The latencies are 7.87 
and 9.62 ns, respectively.  The powering unit could be 
partitioned into a 3-stage pipeline to improve cycle time. 

 
5: Conclusion 

 
This paper described a hardware implementation of 

a powering unit suitable for OpenGL lighting 
computations or other applications with similar accuracy 
requirements.  The unit calculates P = AB, where A and B 
are IEEE single-precision floating-point numbers in the 
range [0,1] and [1,2b], respectively, and P is faithfully 
rounded to p fractional bits.  The unit uses a logarithm 

lookup, a multiplier, and an exponent lookup.  Error 
analysis shows that the logarithm lookup table accuracy 
requirements depend on the value of A, so the unit uses 
multiple tables over different ranges of A to minimize 
the overall table size.  This implementation, good to 10 
bits of accuracy, uses nine 1024-entry log lookup tables, 
a 2048-entry exponent lookup table, and a multiplier.  
Synthesized in a 180 nm process, it has an area of 4 mm2 
and a latency of 9.62 ns.  Using ROMs for table storage 
could reduce the area significantly. Another design with 
8-bit accuracy has an area of 1 mm2 and a latency of 
7.87 ns.  The designs are freely available through the 
Harvey Mudd Open Source Floating Point Project [13]. 
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