

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 99
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Clause 7

Expressions

The rules applicable to the different forms of expression, and to their evaluation, are given in this section clause

1

.

7.1 Expressions

An expression is a formula that defines the computation of a value.

expression ::=
 relation {

and

 relation }
| relation {

or

 relation }
| relation {

xor

 relation }
| relation [

nand

 relation]
| relation [

nor

 relation]
| relation {

xnor

 relation }

relation ::=
shift_expression [relational_operator shift_expression]

shift_expression ::=
simple_expression [shift_operator simple_expression]

simple_expression ::=
[sign] term { adding_operator term }

term ::=
factor { multiplying_operator factor }

factor ::=
 primary [** primary]
|

abs

 primary
|

not

 primary

primary ::=
 name
| literal
| aggregate
| function_call
| qualified_expression
| type_conversion
| allocator
| (expression)

1. To conform to IEEE rules.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

100 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Each primary has a value and a type. The only names allowed as primaries are attributes that yield values and
names denoting objects or values. In the case of names denoting objects other than objects of file types or pro-
tected types

2

, the value of the primary is the value of the object. In the case of names denoting either file objects
or objects of protected types, the value of the primary is the entity denoted by the name.

3

The type of an expression depends only upon the types of its operands and on the operators applied; for an over-
loaded operand or operator, the determination of the operand type, or the identification of the overloaded operator,
depends on the context (see 10.5). For each predefined operator, the operand and result types are given in the
following clause.

NOTE

—

The syntax for an expression involving logical operators allows a sequence of

and

,

or

,

xor

, or

xnor

 operators (whether
predefined or user-defined), since the corresponding predefined operations are associative. For the operators

nand

 and

nor

(whether predefined or user-defined), however, such a sequence is not allowed, since the corresponding predefined opera-
tions are not associative.

7.2 Operators

The operators that may be used in expressions are defined below. Each operator belongs to a class of operators,
all of which have the same precedence level; the classes of operators are listed in order of increasing precedence.

logical_operator ::=

and

|

or

|

nand

|

nor

|

xor

|

xnor

relational_operator ::= = | /= | < | <= | > | >=

shift_operator ::=

sll

|

srl

|

sla

|

sra

|

rol

|

ror

adding_operator ::= + | – | &

sign ::= + | –

multiplying_operator ::= * | / |

mod

|

rem

miscellaneous_operator ::= ** |

abs

|

not

Operators of higher precedence are associated with their operands before operators of lower precedence. Where
the language allows a sequence of operators, operators with the same precedence level are associated with their
operands in textual order, from left to right. The precedence of an operator is fixed and may not cannot

4

 be
changed by the user, but parentheses can be used to control the association of operators and operands.

In general, operands in an expression are evaluated before being associated with operators. For certain operations,
however, the right-hand operand is evaluated if and only if the left-hand operand has a certain value. These op-
erations are called

short-circuit

 operations. The logical operations

and

,

or

,

nand

, and

nor

 defined for operands
of types BIT and BOOLEAN are all short-circuit operations; furthermore, these are the only short-circuit opera-
tions.

Every predefined operator is a pure function (see 2.1). No predefined operators have named formal parameters;
therefore, named association (see 4.3.2.2) may not cannot

5

 be used when invoking a predefined operation.

2. Additional P1076a cleanup; noted by Peter Ashenden.
3. Additional P1076a cleanup; noted by Peter Ashenden.
4. IR1000.4.7.
5. IR1000.4.7.

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 101
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

NOTES

1—The predefined operators for the standard types are declared in package STANDARD as shown in 14.2.

2—The operator

not

 is classified as a miscellaneous operator for the purposes of defining precedence, but is otherwise classi-
fied as a logical operator.

7.2.1 Logical operators

The logical operators

and

,

or

,

nand

,

nor

,

xor

,

xnor

, and

not

 are defined for predefined types BIT and BOOL-
EAN. They are also defined for any one-dimensional array type whose element type is BIT or BOOLEAN. For
the binary operators

and

,

or

,

nand

,

nor

,

xor

, and

xnor

, the operands must be of the same base type. Moreover,
for the binary operators

and

,

or

,

nand

,

nor

,

xor

, and

xnor

 defined on one-dimensional array types, the operands
must be arrays of the same length, the operation is performed on matching elements of the arrays, and the result
is an array with the same index range as the left operand. For the unary operator

not

 defined on one-dimensional
array types, the operation is performed on each element of the operand, and the result is an array with the same
index range as the operand.

The effects of the logical operators are defined in the following tables. The symbol T represents TRUE for type
BOOLEAN, '1' for type BIT; the symbol F represents FALSE for type BOOLEAN, '0' for type BIT.

A B A

and

 B A B A

or

 B A B A

xor

 B A

not

 A

T T T T T T T T F T F
T F F T F T T F T F T
F T F F T T F T T
F F F F F F F F F

A B A

nand

 B A B A

nor

 B A B A

xnor

 B

T T F T T F T T T
T F T T F F T F F
F T T F T F F T F
F F T F F T F F T

For the short-circuit operations

and

,

or

,

nand

, and

nor

 on types BIT and BOOLEAN, the right operand is eval-
uated only if the value of the left operand is not sufficient to determine the result of the operation. For operations

and

 and

nand

, the right operand is evaluated only if the value of the left operand is T; for operations

or

 and

nor

,
the right operand is evaluated only if the value of the left operand is F.

NOTE

—

All of the binary logical operators belong to the class of operators with the lowest precedence. The unary logical operator

not

 belongs to the class of operators with the highest precedence.

7.2.2 Relational operators

Relational operators include tests for equality, inequality, and ordering of operands. The operands of each rela-
tional operator must be of the same type. The result type of each relational operator is the predefined type BOOL-
EAN.

Operator Operation Operand type Result type

= Equality Any type, other than a file
type or a protected type

BOOLEAN

/= Inequality Any type, other than a file
type or a protected type

BOOLEAN

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

102 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The equality and inequality operators (= and /=) are defined for all types other than file types and protected types.
The equality operator returns the value TRUE if the two operands are equal and returns the value FALSE other-
wise. The inequality operator returns the value FALSE if the two operands are equal and returns the value TRUE
otherwise.

Two scalar values of the same type are equal if and only if the values are the same. Two composite values of the
same type are equal if and only if for each element of the left operand there is a

matching

element

 of the right
operand and vice versa, and the values of matching elements are equal, as given by the predefined equality oper-
ator for the element type. In particular, two null arrays of the same type are always equal. Two values of an access
type are equal if and only if they both designate the same object or they both are equal to the null value for the
access type.

For two record values, matching elements are those that have the same element identifier. For two one-dimen-
sional array values, matching elements are those (if any) whose index values match in the following sense: the left
bounds of the index ranges are defined to match; if two elements match, the elements immediately to their right
are also defined to match. For two multi-dimensional array values, matching elements are those whose indices
match in successive positions.

The ordering operators are defined for any scalar type and for any discrete array type. A

discrete

array

 is a one-
dimensional array whose elements are of a discrete type. Each operator returns TRUE if the corresponding rela-
tion is satisfied; otherwise, the operator returns FALSE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types, the relation < (less
than) is defined such that the left operand is less than the right operand if and only if

— The left operand is a null array and the right operand is a nonnull array; otherwise,

— Both operands are nonnull arrays, and one of the following conditions is satisfied:

—

The leftmost element of the left operand is less than that of the right; or

—

The leftmost element of the left operand is equal to that of the right, and the tail of the left operand
is less than that of the right (the tail consists of the remaining elements to the right of the leftmost
element and can be null).

The relation <= (less than or equal) for discrete array types is defined to be the inclusive disjunction of the results
of the < and = operators for the same two operands. The relations > (greater than) and >= (greater than or equal)
are defined to be the complements of the <= and < operators respectively for the same two operands.

7.2.3 Shift operators

The shift operators

sll

,

srl

,

sla

,

sra

,

rol

, and

ror

 are defined for any one-dimensional array type whose element
type is either of the predefined types BIT or BOOLEAN.

<
<=
>
>=

Ordering Any scalar type or discrete
array type

BOOLEAN

Operator Operation Left operand type Right operand
type

Result
type

sll

Shift left
logical

Any one-dimensional
array type whose ele-
ment type is BIT or
BOOLEAN

INTEGER Same as
left

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 103
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The index subtypes of the return values of all shift operators are the same as the index subtypes of their left argu-
ments.

The values returned by the shift operators are defined as follows. In the remainder of this section clause

6

, the val-
ues of their leftmost arguments are referred to as L and the values of their rightmost arguments are referred to as R.

— The

sll

 operator returns a value that is L logically shifted left by R index positions. That is, if R is 0
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a value
that is the result of a concatenation whose left argument is the rightmost (L'Length – 1) elements of L
and whose right argument is T'Left, where T is the element type of L. If R is positive, this basic shift
operation is repeated R times to form the result. If R is negative, then the return value is the value of
the expression L

srl

 –R.

— The

srl

 operator returns a value that is L logically shifted right by R index positions. That is, if R is 0
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a value
that is the result of a concatenation whose right argument is the leftmost (L'Length – 1) elements of L
and whose left argument is T'Left, where T is the element type of L. If R is positive, this basic shift
operation is repeated R times to form the result. If R is negative, then the return value is the value of
the expression L

sll

 –R.

— The

sla operator returns a value that is L arithmetically shifted left by R index positions. That is, if R
is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a
value that is the result of a concatenation whose left argument is the rightmost (L'Length – 1) elements
of L and whose right argument is L(L'Right). If R is positive, this basic shift operation is repeated R
times to form the result. If R is negative, then the return value is the value of the expression L sra –R.

— The sra operator returns a value that is L arithmetically shifted right by R index positions. That is, if
R is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a
value that is the result of a concatenation whose right argument is the leftmost (L'Length – 1) elements
of L and whose left argument is L(L'Left). If R is positive, this basic shift operation is repeated R times
to form the result. If R is negative, then the return value is the value of the expression L sla –R.

6. To conform to IEEE rules.

srl Shift right
logical

Any one-dimensional
array type whose ele-
ment type is BIT or
BOOLEAN

INTEGER Same as
left

sla Shift left
arithmetic

Any one-dimensional
array type whose ele-
ment type is BIT or
BOOLEAN

INTEGER Same as
left

sra Shift right
arithmetic

Any one-dimensional
array type whose ele-
ment type is BIT or
BOOLEAN

INTEGER Same as
left

rol Rotate left
logical

Any one-dimensional
array type whose ele-
ment type is BIT or
BOOLEAN

INTEGER Same as
left

ror Rotate right
logical

Any one-dimensional
array type whose ele-
ment type is BIT or
BOOLEAN

INTEGER Same as
left

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

104 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

— The rol operator returns a value that is L rotated left by R index positions. That is, if R is 0 or if L is
a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value that is
the result of a concatenation whose left argument is the rightmost (L'Length – 1) elements of L and
whose right argument is L(L'Left). If R is positive, this basic rotate operation is repeated R times to
form the result. If R is negative, then the return value is the value of the expression L ror –R.

— The ror operator returns a value that is L rotated right by R index positions. That is, if R is 0 or if L
is a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value that is
the result of a concatenation whose right argument is the leftmost (L'Length – 1) elements of L and
whose left argument is L(L'Right). If R is positive, this basic rotate operation is repeated R times to
form the result. If R is negative, then the return value is the value of the expression
L rol –R.

NOTES

1—The logical operators may be overloaded, for example, to disallow negative integers as the second argument.

2—The subtype of the result of a shift operator is the same as that of the left operand.

7.2.4 Adding operators

The adding operators + and – are predefined for any numeric type and have their conventional mathematical
meaning. The concatenation operator & is predefined for any one-dimensional array type.

For concatenation, there are three mutually exclusive cases:

a) If both operands are one-dimensional arrays of the same type, the result of the concatenation is a one-
dimensional array of this same type whose length is the sum of the lengths of its operands, and whose
elements consist of the elements of the left operand (in left-to-right order) followed by the elements of
the right operand (in left-to-right order). The direction of the result is the direction of the left operand,
unless the left operand is a null array, in which case the direction of the result is that of the right oper-
and.7

a. Clarification
b. Clarification
c. Clarification
d. Clarification

7. LCS 4.

Operator Operation Left operand type Right operand type Result type

+ Addition Any numeric type Same type Same type

– Subtraction Any numeric type Same type Same type

& Concatenation Any one-dimensionala
array type

Same array type Same array type

Any one-dimensionalb
array type

The element type Same array type

The element type Any one-dimensionalc
array type

Same array type

The element type The element type Any one-dimensionald
array type

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 105
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

If both operands are null arrays, then the result of the concatenation is the right operand. Otherwise,
the direction and bounds of the result are determined as follows: Let S be the index subtype of the base
type of the result. The direction of the result of the concatenation is the direction of S, and the left
bound of the result is S’LEFT.

b) If one of the operands is a one-dimensional array and the type of the other operand is the element type
of this aforementioned one-dimensional array, the result of the concatenation is given by the rules in
case a, using in place of the other operand an implicit array having this operand as its only element.
Both the left and right bounds of the index subtype of this implicit array is S’LEFT, and the direction
of the index subtype of this implicit array is the direction of S, where S is the index subtype of the base
type of the result.8

c) If both operands are of the same type and it is the element type of some one-dimensional array type,
the type of the result must be known from the context and is this one-dimensional array type. In this
case, each operand is treated as the one element of an implicit array, and the result of the concatenation
is determined as in case a. The bounds and direction of the index subtypes of the implicit arrays are
determined as in the case of the implicit array in case b).9

In all cases, it is an error if either bound of the index subtype of the result does not belong to the index subtype of
the type of the result, unless the result is a null array. It is also an error if any element of the result does not belong
to the element subtype of the type of the result.

Examples:

subtype BYTE is BIT_VECTOR (7 downto 0);
type MEMORY is array (Natural range <>) of BYTE;

-- The following concatenation accepts two BIT_VECTORs and returns a BIT_VECTOR
-- (case a):

constant ZERO: BYTE := "0000" & "0000";

-- The next two examples show that the same expression can represent either case a or
-- case c, depending on the context of the expression.

-- The following concatenation accepts two BIT_VECTORS and returns a BIT_VECTOR
-- (case a):

constant C1: BIT_VECTOR := ZERO & ZERO;

-- The following concatenation accepts two BIT_VECTORs and returns a MEMORY
-- (case c):

constant C2: MEMORY := ZERO & ZERO;

-- The following concatenation accepts a BIT_VECTOR and a MEMORY, returning a
-- MEMORY (case b):

constant C3: MEMORY := ZERO & C2;

-- The following concatenation accepts a MEMORY and a BIT_VECTOR, returning a
-- MEMORY (case b):

constant C4: MEMORY := C2 & ZERO;

8. LCS 4.
9. LCS 4.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

106 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

-- The following concatenation accepts two MEMORYs and returns a MEMORY (case a):

constant C5: MEMORY := C2 & C3;

type R1 is range10 0 to 7;
type R2 is range11 7 downto 0;

type T1 is array (R1 range <>) of Bit;
type T2 is array (R2 range <>) of Bit;

subtype S1 is T1(R1);
subtype S2 is T2(R2);

constant K1: S1 := (others => '0');
constant K2: T1 := K1(1 to 3) & K1(3 to 4); -- K2'Left = 0 and K2'Right = 4
constant K3: T1 := K1(5 to 7) & K1(1 to 2); -- K3'Left = 0 and K3'Right = 4
constant K4: T1 := K1(2 to 1) & K1(1 to 2); -- K4'Left = 0 and K4'Right = 1

constant K5: S2 := (others => '0');
constant K6: T2 := K5(3 downto 1) & K5(4 downto 3); -- K6'Left = 7 and K6'Right = 3
constant K7: T2 := K5(7 downto 5) & K5(2 downto 1); -- K7'Left = 7 and K7'Right = 3
constant K8: T2 := K5(1 downto 2) & K5(2 downto 1); -- K8'Left = 7 and K8'Right = 6

NOTES

1—For a given concatenation whose operands are of the same type, there may be visible more than one array type that could
be the result type according to the rules of case c. The concatenation is ambiguous and therefore an error if, using the over-
load resolution rules of 2.3 and 10.5, the type of the result is not uniquely determined.

2—Additionally, for a given concatenation, there may be visible array types that allow both case a and case c to apply. The
concatenation is again ambiguous and therefore an error if the overload resolution rules cannot be used to determine a result
type uniquely.

7.2.5 Sign operators

Signs + and – are predefined for any numeric type and have their conventional mathematical meaning: they re-
spectively represent the identity and negation functions. For each of these unary operators, the operand and the
result have the same type.

NOTE

—Because of the relative precedence of signs + and – in the grammar for expressions, a signed operand must not follow a
multiplying operator, the exponentiating operator **, or the operators abs and not. For example, the syntax does not allow the
following expressions:

A/+B -- An illegal expression
A**–B -- An illegal expression

However, these expressions may be rewritten legally as follows:

10. IR1000.1.7.
11. IR1000.1.7.

Operator Operation Operand type Result type

+ Identity Any numeric type Same type

– Negation Any numeric type Same type

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 107
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

A/(+B) -- A legal expression
A**(–B) -- A legal expression

7.2.6 Multiplying operators

The operators * and / are predefined for any integer and any floating point type and have their conventional math-
ematical meaning; the operators mod and rem are predefined for any integer type. For each of these operators,
the operands and the result are of the same type.

Integer division and remainder are defined by the following relation:

A = (A/B)*B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer division sat-
isfies the following identity:

(–A)/B = –(A/B) = A/(–B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less than the
absolute value of B; in addition, for some integer value N, this result must satisfy the relation:

A = B*N + (A mod B)

In addition to the above table, the operators * and / are predefined for any physical type.

Operator Operation Left operand type Right operand type Result type

* Multiplica-
tion

Any integer type Same type Same type

Any floating-point
type

Same type Same type

/ Division Any integer type Same type Same type

Any floating-point
type

Same type Same type

mod Modulus Any integer type Same type Same type

rem Remainder Any integer type Same type Same type

Operator Operation Left operand type Right operand type Result type

* Multiplication Any physical type INTEGER Same as left

Any physical type REAL Same as left

INTEGER Any physical type Same as right

REAL Any physical type Same as right

/ Division Any physical type INTEGER Same as left

Any physical type REAL Same as left

Any physical type The same type Universal integer

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

108 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Multiplication of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the following
computation:

Tp'Val(Tp'Pos(P) * I)

Multiplication of a value P of a physical type Tp by a value F of type REAL is equivalent to the following com-
putation:

Tp'Val(INTEGER(REAL(Tp'Pos(P)) * F))

Division of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the following compu-
tation:

Tp'Val(Tp'Pos(P) / I)

Division of a value P of a physical type Tp by a value F of type REAL is equivalent to the following computation:

Tp'Val(INTEGER(REAL(Tp'Pos(P)) / F))

Division of a value P of a physical type Tp by a value P2 of the same physical type is equivalent to the following
computation:

Tp'Pos(P) / Tp'Pos(P2)

Examples:

5 rem 3 = 2
5 mod 3 = 2

(–5) rem 3 = –2
(–5) mod 3 = 1

(–5) rem (–3) = –2
(–5) mod(–3) = –2

5 rem (–3) = 2
5 mod(–3) = –1

NOTE

—Because of the precedence rules (see 7.2), the expression “–5 rem 2” is interpreted as “–(5 rem 2)” and not as
“(–5) rem 2”.

7.2.7 Miscellaneous operators

The unary operator abs is predefined for any numeric type.

Operator Operation Operand type Result type

abs Absolute value Any numeric type Same numeric type

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 109
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The exponentiating operator ** is predefined for each integer type and for each floating point type. In either case
the right operand, called the exponent, is of the predefined type INTEGER.

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left operand by itself for a
number of times indicated by the absolute value of the exponent and from left to right; if the exponent is negative,
then the result is the reciprocal of that obtained with the absolute value of the exponent. Exponentiation with a
negative exponent is only allowed for a left operand of a floating point type. Exponentiation by a zero exponent
results in the value one. Exponentiation of a value of a floating point type is approximate.

7.3 Operands

The operands in an expression include names (that denote objects, values, or attributes that result in a value), lit-
erals, aggregates, function calls, qualified expressions, type conversions, and allocators. In addition, an expres-
sion enclosed in parentheses may be an operand in an expression. Names are defined in 6.1; the other kinds of
operands are defined in the following subclauses.

7.3.1 Literals

A literal is either a numeric literal, an enumeration literal, a string literal, a bit string literal, or the literal null.

literal ::=
 numeric_literal
| enumeration_literal
| string_literal
| bit_string_literal
| null

numeric_literal ::=
 abstract_literal
| physical_literal

Numeric literals include literals of the abstract types universal_integer and universal_real, as well as literals of
physical types. Abstract literals are defined in 13.4; physical literals are defined in 3.1.3.

Enumeration literals are literals of enumeration types. They include both identifiers and character literals. Enu-
meration literals are defined in 3.1.1.

String and bit string literals are representations of one-dimensional arrays of characters. The type of a string or
bit string literal must be determinable solely from the context in which the literal appears, excluding the literal
itself but using the fact that the type of the literal must be a one-dimensional array of a character type. The lexical
structure of string and bit string literals is defined in Section Clause12 13.

For a nonnull array value represented by either a string or bit-string literal, the direction and bounds of the array
value are determined according to the rules for positional array aggregates, where the number of elements in the
aggregate is equal to the length (see 13.6 and 13.7) of the string or bit string literal. For a null array value repre-
sented by either a string or bit-string literal, the direction and leftmost bound of the array value are determined as
in the non-null case. If the direction is ascending, then the rightmost bound is the predecessor (as given by the
'PRED attribute) of the leftmost bound; otherwise the rightmost bound is the successor (as given by the 'SUCC
attribute) of the leftmost bound.

12. To conform to IEEE rules.

Operator Operation Left operand type Right operand type Result type

** Exponentiation Any integer type INTEGER Same as left

Any floating-point type INTEGER Same as left

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

110 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The character literals corresponding to the graphic characters contained within a string literal or a bit string literal
must be visible at the place of the string literal.

The literal null represents the null access value for any access type.

Evaluation of a literal yields the corresponding value.

Examples:

3.14159_26536 -- A literal of type universal_real.
5280 -- A literal of type universal_integer.
10.7 ns -- A literal of a physical type.
O"4777" -- A bit-string literal.
"54LS281" -- A string literal.
"" -- A string literal representing a null array.

7.3.2 Aggregates

An aggregate is a basic operation (see the introduction to Section Clause13 3) that combines one or more values
into a composite value of a record or array type.

aggregate ::=
(element_association { , element_association })

element_association ::=
[choices =>] expression

choices ::= choice { | choice }

choice ::=
 simple_expression
| discrete_range
| element_simple_name
| others

Each element association associates an expression with elements (possibly none). An element association is said
to be named if the elements are specified explicitly by choices; otherwise, it is said to be positional. For a posi-
tional association, each element is implicitly specified by position in the textual order of the elements in the cor-
responding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional associations appear-
ing first (in textual order) and all named associations appearing next (in any order, except that no it is an error if
any14 associations may15 follow an others association). Aggregates containing a single element association must
always be specified using named association in order to distinguish them from parenthesized expressions.

An element association with a choice that is an element simple name is only allowed in a record aggregate. An
element association with a choice that is a simple expression or a discrete range is only allowed in an array aggre-
gate: a simple expression specifies the element at the corresponding index value, whereas a discrete range speci-
fies the elements at each of the index values in the range. The discrete range has no significance other than to
define the set of choices implied by the discrete range. In particular, the direction specified or implied by the dis-
crete range has no significance. An element association with the choice others is allowed in either an array ag-
gregate or a record aggregate if the association appears last and has this single choice; it specifies all remaining
elements, if any.

13. To conform to IEEE rules.
14. IR1000.4.7.
15. IR1000.4.7.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 111
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Each element of the value defined by an aggregate must be represented once and only once in the aggregate.

The type of an aggregate must be determinable solely from the context in which the aggregate appears, excluding
the aggregate itself but using the fact that the type of the aggregate must be a composite type. The type of an ag-
gregate in turn determines the required type for each of its elements.

7.3.2.1 Record aggregates

If the type of an aggregate is a record type, the element names given as choices must denote elements of that record
type. If the choice others is given as a choice of a record aggregate, it must represent at least one element. An
element association with more than one choice, or with the choice others, is only allowed if the elements specified
are all of the same type. The expression of an element association must have the type of the associated record
elements.

A record aggregate is evaluated as follows. The expressions given in the element associations are evaluated in an
order (or lack thereof) not defined by the language. The expression of a named association is evaluated once for
each associated element. A check is made that the value of each element of the aggregate belongs to the subtype
of this element. It is an error if this check fails.

7.3.2.2 Array aggregates

For an aggregate of a one-dimensional array type, each choice must specify values of the index type, and the ex-
pression of each element association must be of the element type. An aggregate of an n-dimensional array type,
where n is greater than 1, is written as a one-dimensional aggregate in which the index subtype of the aggregate
is given by the first index position of the array type, and the expression specified for each element association is
an (n–1)-dimensional array or array aggregate, which is called a subaggregate. A string or bit string literal is al-
lowed as a subaggregate in the place of any aggregate of a one-dimensional array of a character type.

Apart from a final element association with the single choice others, the rest (if any) of the element associations
of an array aggregate must be either all positional or all named. A named association of an array aggregate is
allowed to have a choice that is not locally static, or likewise a choice that is a null range, only if the aggregate
includes a single element association and this element association has a single choice. An others choice is locally
static if the applicable index constraint is locally static.

The subtype of an array aggregate that has an others choice must be determinable from the context. That is, an
array aggregate with an others choice may only appear must appear only in one of the following contexts:16

a) As an actual associated with a formal parameter or formal generic declared to be of a constrained array
subtype (or subelement thereof)

b) As the default expression defining the default initial value of a port declared to be of a constrained ar-
ray subtype

c) As the result expression of a function, where the corresponding function result type is a constrained
array subtype

d) As a value expression in an assignment statement, where the target is a declared object, and the subtype
of the target is a constrained array subtype (or subelement of such a declared object)

e) As the expression defining the initial value of a constant or variable object, where that object is de-
clared to be of a constrained array subtype

f) As the expression defining the default values of signals in a signal declaration, where the correspond-
ing subtype is a constrained array subtype

16. IR1000.4.7.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

112 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

g) As the expression defining the value of an attribute in an attribute specification, where that attribute is
declared to be of a constrained array subtype

h) As the operand of a qualified expression whose type mark denotes a constrained array subtype

i) As a subaggregate nested within an aggregate, where that aggregate itself appears in one of these con-
texts

The bounds of an array that does not have an others choice are determined as follows. If the aggregate appears
in one of the contexts in the preceding list, then the direction of the index subtype of the aggregate is that of the
corresponding constrained array subtype; otherwise, the direction of the index subtype of the aggregate is that of
the index subtype of the base type of the aggregate. For an aggregate that has named associations, the leftmost
and rightmost bounds are determined by the direction of the index subtype of the aggregate and the smallest and
largest choices given. For a positional aggregate, the leftmost bound is determined by the applicable index con-
straint if the aggregate appears in one of the contexts in the preceding list; otherwise, the leftmost bound is given
by S'LEFT where S is the index subtype of the base type of the array. In either case, the rightmost bound is deter-
mined by the direction of the index subtype and the number of elements.

The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the choices of this
aggregate and of its subaggregates, if any, are evaluated in some order (or lack thereof) that is not defined by the
language. Second, the expressions of the element associations of the array aggregate are evaluated in some order
that is not defined by the language; the expression of a named association is evaluated once for each associated
element. The evaluation of a subaggregate consists of this second step (the first step is omitted since the choices
have already been evaluated).

For the evaluation of an aggregate that is not a null array, a check is made that the index values defined by choices
belong to the corresponding index subtypes, and also that the value of each element of the aggregate belongs to
the subtype of this element. For a multidimensional aggregate of dimension n, a check is made that all (n-1)-di-
mensional subaggregates have the same bounds. It is an error if any one of these checks fails.

7.3.3 Function calls

A function call invokes the execution of a function body. The call specifies the name of the function to be invoked
and specifies the actual parameters, if any, to be associated with the formal parameters of the function. Execution
of the function body results in a value of the type declared to be the result type in the declaration of the invoked
function.

function_call ::=
function_name [(actual_parameter_part)]

actual_parameter_part ::= parameter_association_list

For each formal parameter of a function, a function call must specify exactly one corresponding actual parameter.
This actual parameter is specified either explicitly, by an association element (other than the actual part open) in
the association list, or in the absence of such an association element, by a default expression (see 4.3.2).

Evaluation of a function call includes evaluation of the actual parameter expressions specified in the call and eval-
uation of the default expressions associated with formal parameters of the function that do not have actual param-
eters associated with them. In both cases, the resulting value must belong to the subtype of the associated formal
parameter. (If the formal parameter is of an unconstrained array type, then the formal parameter takes on the sub-
type of the actual parameter.) The function body is executed using the actual parameter values and default ex-
pression values as the values of the corresponding formal parameters.

NOTE

—If a name (including one used as a prefix) has an interpretation both as a function call and an indexed name, then the inner-
most complete context is used to disambiguate the name. If, after applying this rule, there is not exactly one interpretation
of the name, then the name is ambiguous. See 10.5.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 113
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

7.3.4 Qualified expressions

A qualified expression is a basic operation (see the introduction to Section Clause17 3) that is used to explicitly
state the type, and possibly the subtype, of an operand that is an expression or an aggregate.

qualified_expression ::=
 type_mark ' (expression)
| type_mark ' aggregate

The operand must have the same type as the base type of the type mark. The value of a qualified expression is the
value of the operand. The evaluation of a qualified expression evaluates the operand and checks that its value
belongs to the subtype denoted by the type mark.

NOTE

—Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified expression can be used
to state the type explicitly.

7.3.5 Type conversions

A type conversion provides for explicit conversion between closely related types.

type_conversion ::= type_mark (expression)

The target type of a type conversion is the base type of the type mark. The type of the operand of a type conversion
must be determinable independent of the context (in particular, independent of the target type). Furthermore, the
operand of a type conversion is not allowed to be the literal null, an allocator, an aggregate, or a string literal. An
expression enclosed by parentheses is allowed as the operand of a type conversion only if the expression alone is
allowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed by a check that
the result of the conversion belongs to the subtype.

Explicit type conversions are allowed between closely related types. In particular, a type is closely related to itself.
Other types are closely related only under the following conditions:

a) Abstract Numeric Types—Any abstract numeric type is closely related to any other abstract numeric
type. In an explicit type conversion where the type mark denotes an abstract numeric type, the operand
can be of any integer or floating point type. The value of the operand is converted to the target type,
which must also be an integer or floating point type. The conversion of a floating point value to an
integer type rounds to the nearest integer; if the value is halfway between two integers, rounding may
be up or down.

b) Array Types—Two array types are closely related if and only if

—The types have the same dimensionality;

—For each index position, the index types are either the same or are closely related; and

—The element types are the same.

In an explicit type conversion where the type mark denotes an array type, the following rules apply: if
the type mark denotes an unconstrained array type and if the operand is not a null array, then, for each
index position, the bounds of the result are obtained by converting the bounds of the operand to the
corresponding index type of the target type. If the type mark denotes a constrained array subtype, then

17. To conform to IEEE rules.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

114 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

the bounds of the result are those imposed by the type mark. In either case, the value of each element
of the result is that of the matching element of the operand (see 7.2.2).

No other types are closely related.

In the case of conversions between numeric types, it is an error if the result of the conversion fails to satisfy a
constraint imposed by the type mark.

In the case of conversions between array types, a check is made that any constraint on the element subtype is the
same for the operand array type as for the target array type. If the type mark denotes an unconstrained array type,
then, for each index position, a check is made that the bounds of the result belong to the corresponding index sub-
type of the target type. If the type mark denotes a constrained array subtype, a check is made that for each element
of the operand there is a matching element of the target subtype, and vice versa. It is an error if any of these checks
fail.

In certain cases, an implicit type conversion will be performed. An implicit conversion of an operand of type
universal_integer to another integer type, or of an operand of type universal_real to another floating point type,
can only be applied if the operand is either a numeric literal or an attribute, or if the operand is an expression con-
sisting of the division of a value of a physical type by a value of the same type; such an operand is called a con-
vertible universal operand. An implicit conversion of a convertible universal operand is applied if and only if the
innermost complete context determines a unique (numeric) target type for the implicit conversion, and there is no
legal interpretation of this context without this conversion.

NOTE

—Two array types may be closely related even if corresponding index positions have different directions.

7.3.6 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

allocator ::=
 new subtype_indication
| new qualified_expression

The type of the object created by an allocator is the base type of the type mark given in either the subtype indica-
tion or the qualified expression. For an allocator with a subtype indication, the initial value of the created object
is the same as the default initial value for an explicitly declared variable of the designated subtype. For an allo-
cator with a qualified expression, this expression defines the initial value of the created object.

The type of the access value returned by an allocator must be determinable solely from the context, but using the
fact that the value returned is of an access type having the named designated type.

The only allowed form of constraint in the subtype indication of an allocator is an index constraint. If an allocator
includes a subtype indication and if the type of the object created is an array type, then the subtype indication must
either denote a constrained subtype or include an explicit index constraint. A subtype indication that is part of an
allocator must not include a resolution function.

If the type of the created object is an array type, then the created object is always constrained. If the allocator
includes a subtype indication, the created object is constrained by the subtype. If the allocator includes a qualified
expression, the created object is constrained by the bounds of the initial value defined by that expression. For
other types, the subtype of the created object is the subtype defined by the subtype of the access type definition.

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the qualified ex-
pression is first performed. The new object is then created, and the object is then assigned its initial value. Finally,
an access value that designates the created object is returned.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 115
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

In the absence of explicit deallocation, an implementation must guarantee that any object created by the evaluation
of an allocator remains allocated for as long as this object or one of its subelements is accessible directly or indi-
rectly; that is, as long as it can be denoted by some name.

NOTES

1—Procedure Deallocate is implicitly declared for each access type. This procedure provides a mechanism for explicitly deal-
locating the storage occupied by an object created by an allocator.

2—An implementation may (but need not) deallocate the storage occupied by an object created by an allocator, once this object
has become inaccessible.

Examples:

new NODE -- Takes on default initial value.
new NODE'(15 ns, null) -- Initial value is specified.
new NODE'(Delay => 5 ns, \Next\ => Stack) -- Initial value is specified.
new BIT_VECTOR'("00110110") -- Constrained by initial value.
new STRING (1 to 10) -- Constrained by index constraint.
new STRING -- Illegal: must be constrained.

7.4 Static expressions

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be static, and the type marks
of certain subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated during the analysis of
the design unit in which they appear; such an expression is said to be locally static. Certain forms of expression
can be evaluated as soon as the design hierarchy in which they appear is elaborated; such an expression is said to
be globally static.

7.4.1 Locally static primaries

An expression is said to be locally static if and only if every operator in the expression denotes an implicitly de-
fined operator whose operands and result are scalar and if every primary in the expression is a locally static pri-
mary, where a locally static primary is defined to be one of the following:

a) A literal of any type other than type TIME

b) A constant (other than a deferred constant) explicitly declared by a constant declaration and initialized
with a locally static expression

c) An alias whose aliased name (given in the corresponding alias declaration) is a locally static primary

d) A function call whose function name denotes an implicitly defined operator, and whose actual param-
eters are each locally static expressions

e) A predefined attribute that is a value, other than the predefined attributes ’INSTANCE_NAME and18

'PATH_NAME, and whose prefix is either a locally static subtype or is an object name that is of a lo-
cally static subtype

f) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE,
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose
prefix is either a locally static subtype or is an object that is of a locally static subtype, and whose actual
parameter (if any) is a locally static expression

18. LCS 6.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

116 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

g) A user-defined attribute whose value is defined by a locally static expression

h) A qualified expression whose operand is a locally static expression

i) A type conversion whose expression is a locally static expression

j) A locally static expression enclosed in parentheses

A locally static range is either a range of the second form (see 3.1) whose bounds are locally static expressions,
or a range of the first form whose prefix denotes either a locally static subtype or an object that is of a locally static
subtype. A locally static range constraint is a range constraint whose range is locally static. A locally static scalar
subtype is either a scalar base type or a scalar subtype formed by imposing on a locally static subtype a locally
static range constraint. A locally static discrete range is either a locally static subtype or a locally static range.

A locally static index constraint is an index constraint for which each index subtype of the corresponding array
type is locally static and in which each discrete range is locally static. A locally static array subtype is a con-
strained array subtype formed by imposing on an unconstrained array type a locally static index constraint. A lo-
cally static record subtype is a record type whose fields are all of locally static subtypes. A locally static access
subtype is a subtype denoting an access type. A locally static file subtype is a subtype denoting a file type.

A locally static subtype is either a locally static scalar subtype, a locally static array subtype, a locally static record
subtype, a locally static access subtype, or a locally static file subtype.

7.4.2 Globally static primaries

An expression is said to be globally static if and only if every operator in the expression denotes a pure function
and every primary in the expression is a globally static primary, where a globally static primary is a primary that,
if it denotes an object or a function, does not denote a dynamically elaborated named entity (see 12.5) and is one
of the following:

a) A literal of type TIME

b) A locally static primary

c) A generic constant

d) A generate parameter

e) A constant (including a deferred constant)

f) An alias whose aliased name (given in the corresponding alias declaration) is a globally static primary

g) An array aggregate, if and only if

1) All expressions in its element associations are globally static expressions, and

2) All ranges in its element associations are globally static ranges

h) A record aggregate, if and only if all expressions in its element associations are globally static expres-
sions

i) A function call whose function name denotes a pure function and whose actual parameters are each
globally static expressions

j) A predefined attribute that is a value and whose prefix is either a globally static subtype or is an object
or function call that is of a globally static subtype

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 7 117
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

k) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE,
'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose
prefix is either a globally static subtype or is an object or function call that is of a globally static sub-
type, and whose actual parameter (if any) is a globally static expression

l) A user-defined attribute whose value is defined by a globally static expression

m) A qualified expression whose operand is a globally static expression

n) A type conversion whose expression is a globally static expression

o) An allocator of the first form (see 7.3.6) whose subtype indication denotes a globally static subtype

p) An allocator of the second form whose qualified expression is a globally static expression

q) A globally static expression enclosed in parentheses

r) A subelement or a slice of a globally static primary, provided that any index expressions are globally
static expressions and any discrete ranges used in slice names are globally static discrete ranges

A globally static range is either a range of the second form (see 3.1) whose bounds are globally static expressions,
or a range of the first form whose prefix denotes either a globally static subtype or an object that is of a globally
static subtype. A globally static range constraint is a range constraint whose range is globally static. A globally
static scalar subtype is either a scalar base type or a scalar subtype formed by imposing on a globally static subtype
a globally static range constraint. A globally static discrete range is either a globally static subtype or a globally
static range.

A globally static index constraint is an index constraint for which each index subtype of the corresponding array
type is globally static and in which each discrete range is globally static. A globally static array subtype is a con-
strained array subtype formed by imposing on an unconstrained array type a globally static index constraint. A
globally static record subtype is a record type whose fields are all of globally static subtypes. A globally static
access subtype is a subtype denoting an access type. A globally static file subtype is a subtype denoting a file type.

A globally static subtype is either a globally static scalar subtype, a globally static array subtype, a globally static
record subtype, a globally static access subtype, or a globally static file subtype.

NOTES

1—An expression that is required to be a static expression may must19 either be a locally static expression or a globally static
expression. Similarly, a range, a range constraint, a scalar subtype, a discrete range, an index constraint, or an array subtype
that is required to be static may must20 either be locally static or globally static.2—The rules for locally and globally static
expressions imply that a declared constant or a generic may be initialized with an expression that is neither globally nor
locally static; for example, with a call to an impure function. The resulting constant value may be globally or locally static,
even though its subtype or its initial value expression is neither. Only interface constant, variable, and signal declarations
require that their initial value expressions be static expressions.

7.5 Universal expressions

A universal_expression is either an expression that delivers a result of type universal_integer or one that delivers
a result of type universal_real.

19. IR1000.4.7.
20. IR1000.4.7.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

118 Clause 7
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The same operations are predefined for the type universal_integer as for any integer type. The same operations
are predefined for the type universal_real as for any floating-point type. In addition, these operations include the
following multiplication and division operators:

The accuracy of the evaluation of a universal expression of type universal_real is at least as good as the accuracy
of evaluation of expressions of the most precise predefined floating-point type supported by the implementation,
apart from universal_real itself.

For the evaluation of an operation of a universal expression, the following rules apply. If the result is of type
universal_integer, then the values of the operands and the result must lie within the range of the integer type with
the widest range provided by the implementation, excluding type universal_integer itself. If the result is of type
universal_real, then the values of the operands and the result must lie within the range of the floating-point type
with the widest range provided by the implementation, excluding type universal_real itself.

NOTE

—The predefined operators for the universal types are declared in package STANDARD as shown in 14.2.

Operator Operation Left operand type Right operand type Result type

* Multiplication Universal real Universal integer Universal real

Universal integer Universal real Universal real

/ Division Universal real Universal integer Universal real

