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Clause 3

Types

 

This section clause

 

1

 

 describes the various categories of types that are provided by the language as well as those
specific types that are predefined.  The declarations of all predefined types are contained in package STANDARD,
the declaration of which appears in Section Clause

 

2

 

 14.

A type is characterized by a set of values and a set of operations.  The set of operations of a type includes the
explicitly declared subprograms that have a parameter or result of the type.  The remaining operations of a type
are the basic operations and the predefined operators (see 7.2).  These operations are each implicitly declared for
a given type declaration immediately after the type declaration and before the next explicit declaration, if any.

A 

 

basic operation

 

  is an operation that is inherent in one of the following:

— An assignment (in assignment statements and initializations)

— An allocator

— A selected name, an indexed name, or a slice name

— A qualification (in a qualified expression), an explicit type conversion, a formal or actual part in the
form of a type conversion, or an implicit type conversion of a value of type 

 

universal_integer

 

 or

 

universal_real

 

 to the corresponding value of another numeric type

— A numeric literal (for a universal type), the literal 

 

null

 

 (for an access type), a string literal, a bit string
literal, an aggregate, or a predefined attribute 

There are five classes of types.  

 

Scalar

 

 types are integer types, floating point types, physical types, and types de-
fined by an enumeration of their values; values of these types have no elements.  

 

Composite

 

 types are array and
record types; values of these types consist of element values.  

 

Access

 

 types provide access to objects of a given
type.  

 

File

 

 types provide access to objects that contain a sequence of values of a given type.  

 

Protected types

 

 pro-
vide atomic and exclusive access to variables accessible to multiple processes.

The set of possible values for an object of a given type can be subjected to a condition that is called a 

 

constraint

 

(the case where the constraint imposes no restriction is also included); a value is said to 

 

satisfy

 

 a constraint if it
satisfies the corresponding condition.  A 

 

subtype

 

 is a type together with a constraint.  A value is said to 

 

belong to
a subtype

 

 of a given type if it belongs to the type and satisfies the constraint; the given type is called the 

 

base type

 

of the subtype.  A type is a subtype of itself; such a subtype is said to be 

 

unconstrained

 

 (it corresponds to a con-
dition that imposes no restriction).  The base type of a type is the type itself.

 

1. To conform to IEEE rules.
2. To conform to IEEE rules.
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The set of operations defined for a subtype of a given type includes the operations defined for the type; however,
the assignment operation to an object having a given subtype only assigns values that belong to the subtype.  Ad-
ditional operations, such as qualification (in a qualified expression) are implicitly defined by a subtype declara-
tion.

The term 

 

subelement

 

 is used in this manual in place of the term element to indicate either an element, or an element
of another element or subelement.  Where other subelements are excluded, the term 

 

element

 

 is used instead.

A given type must not have a subelement whose type is the given type itself.

A 

 

member

 

 of an object is either

—A slice oif of

 

3

 

 the object,

—A subelement of the object, or

—A slice of a subelement of the object.

The name of a class of types is used in this manual as a qualifier for objects and values that have a type of the class
considered.  For example, the term 

 

array object

 

 is used for an object whose type is an array type; similarly, the
term 

 

access value

 

 is used for a value of an access type.

 

NOTE

 

—

 

The set of values of a subtype is a subset of the values of the base type.  This subset need not be a proper subset.

 

3.1  Scalar Types

 

Scalar types consist of 

 

enumeration types, integer types, physical types

 

, and 

 

floating point types

 

.  Enumeration
types and integer types are called 

 

discrete

 

 types.  Integer types, floating point types, and physical types are called

 

numeric

 

 types.  All scalar types are ordered; that is, all relational operators are predefined for their values.  Each
value of a discrete or physical type has a position number that is an integer value.

scalar_type_definition ::=
   enumeration_type_definition | integer_type_definition
| floating_type_definition         | physical_type_definition

range_constraint ::=  

 

range

 

 range

range ::=
   

 

range

 

_attribute_name
| simple_expression direction simple_expression

direction ::=  

 

to

 

 | 

 

downto

 

A range specifies a subset of values of a scalar type.  A range is said to be a 

 

null

 

 range if the specified subset is
empty.

The range L 

 

to

 

 R is called an 

 

ascending

 

 range; if L > R, then the range is a null range.  The range L 

 

downto

 

 R is
called a 

 

descending

 

 range; if L < R, then the range is a null range.  The smaller of L and R is called the 

 

lower
bound

 

, and the larger, the 

 

upper bound

 

, of the range.  The value V is said to 

 

belong to the range

 

 if the relations
(

 

lower bound

 

 <= V) and (V <= 

 

upper bound

 

) are both true and the range is not a null range.  The operators >, <,
and <= in the preceding definitions are the predefined operators of the applicable scalar type.

 

3. Typo.
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For values of discrete or physical types, a value V1 is said to be 

 

to the left of

 

 a value V2 within a given range if
both V1 and V2 belong to the range and either the range is an ascending range and V2 is the successor of V1 or
the range is a descending range and V2 is the predecessor of V1.  A list of values of a given range is in 

 

left

 

 

 

to right
order

 

 if each value in the list is to the left of the next value in the list within that range, except for the last value
in the list.

If a range constraint is used in a subtype indication, the type of the expressions (likewise, of the bounds of a range
attribute) must be the same as the base type of the type mark of the subtype indication.  A range constraint is 

 

com-
patible

 

 with a subtype if each bound of the range belongs to the subtype or if the range constraint defines a null
range.  Otherwise, the range constraint is not compatible with the subtype.

The direction of a range constraint is the same as the direction of its range.

 

NOTE

 

—I

 

ndexing and iteration rules use values of discrete types.

 

3.1.1  Enumeration types

 

An enumeration type definition defines an enumeration type.

enumeration_type_definition ::=
( enumeration_literal { , enumeration_literal } )

enumeration_literal ::=  identifier | character_literal 

The identifiers and character literals listed by an enumeration type definition must be distinct within the enumer-
ation type definition.  Each enumeration literal is the declaration of the corresponding enumeration literal; for the
purpose of determining the parameter and result type profile of an enumeration literal, this declaration is equiva-
lent to the declaration of a parameterless function whose designator is the same as the enumeration literal and
whose result type is the same as the enumeration type.

An enumeration type is said to be a 

 

character type

 

 if at least one of its enumeration literals is a character literal.

Each enumeration literal yields a different enumeration value.  The predefined order relations between enumera-
tion values follow the order of corresponding position numbers.  The position number of the value of the first listed
enumeration literal is zero; the position number for each additional enumeration literal is one more than that of its
predecessor in the list.

If the same identifier or character literal is specified in more than one enumeration type definition, the correspond-
ing literals are said to be 

 

overloaded

 

.  At any place where an overloaded enumeration literal occurs in the text of
a program, the type of the enumeration literal is determined according to the rules for overloaded subprograms
(see 2.3).

Each enumeration type definition defines an ascending range.

 

Examples:

 

type

 

 MULTI_LEVEL_LOGIC 

 

is

 

 (LOW, HIGH, RISING, FALLING, AMBIGUOUS) ;

 

type

 

 BIT 

 

is

 

 ('0','1') ;

 

type

 

 SWITCH_LEVEL 

 

is

 

 ('0','1','X') ; --  Overloads '0' and '1'
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3.1.1.1  Predefined enumeration types

 

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL,
FILE_OPEN_KIND, and FILE_OPEN_STATUS.

The predefined type CHARACTER is a character type whose values are the 256 characters of the ISO 8859-1
character set.  Each of the 191 graphic characters of this character set is denoted by the corresponding character
literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL,
FILE_OPEN_KIND, and FILE_OPEN_STATUS appear in package STANDARD in Section Clause

 

4

 

 14.

 

NOTES

1—The first 17 33

 

5

 

 nongraphic elements of the predefined type CHARACTER (from NUL through DEL) are the ASCII ab-
breviations for the nonprinting characters in the ASCII set (except for those noted in Section Clause

 

6

 

 14).  The ASCII
names are chosen as ISO 8859-1 does not assign them abbreviations.  The next 16 32

 

7

 

 (C128 through C159) are also not
assigned abbreviations, so names unique to VHDL are assigned.

2—Type BOOLEAN can be used to model either active high or active low logic depending on the particular conversion func-
tions chosen to and from type BIT.  

 

3.1.2  Integer types

 

An integer type definition defines an integer type whose set of values includes those of the specified range.

integer_type_definition ::=  range_constraint

An integer type definition defines both a type and a subtype of that type.  The type is an anonymous type, the range
of which is selected by the implementation; this range must be such that it wholly contains the range given in the
integer type definition.  The subtype is a named subtype of this anonymous base type, where the name of the sub-
type is that given by the corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in an integer type definition must be a locally static expression of
some integer type, but the two bounds need not have the same integer type.  (Negative bounds are allowed.)

Integer literals are the literals of an anonymous predefined type that is called 

 

universal_integer 

 

in this standard.
Other integer types have no literals.  However, for each integer type there exists an implicit conversion that con-
verts a value of type 

 

universal_integer

 

 into the corresponding value (if any) of the integer type (see 7.3.5).

The position number of an integer value is the corresponding value of the type 

 

universal_integer

 

.

The same arithmetic operators are predefined for all integer types (see  7.2).  It is an error if the execution of such
an operation (in particular, an implicit conversion) cannot deliver the correct result (that is, if the value corre-
sponding to the mathematical result is not a value of the integer type).

An implementation may restrict the bounds of the range constraint of integer types other than type

 

universal_integer

 

.  However, an implementation must allow the declaration of any integer type whose range is
wholly contained within the bounds  –2147483647 and +2147483647 inclusive.

 

4. To conform to IEEE rules.
5. IR1000.1.5.
6. To conform to IEEE rules.
7. IR1000.1.5.
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Examples:

 

type

 

 TWOS_COMPLEMENT_INTEGER 

 

is

 

 

 

range

 

 –32768 

 

to

 

 32767;

 

type

 

 BYTE_LENGTH_INTEGER 

 

is

 

 

 

range

 

 0 

 

to

 

 255;

 

type

 

 WORD_INDEX 

 

is

 

 

 

range

 

 31 

 

downto

 

 0;

 

subtype

 

 HIGH_BIT_LOW 

 

is

 

 BYTE_LENGTH_INTEGER 

 

range

 

 0 

 

to

 

 127;

 

3.1.2.1  Predefined integer types

 

The only predefined integer type is the type INTEGER.  The range of INTEGER is implementation dependent,
but it is guaranteed to include the range –2147483647 to +2147483647.  It is defined with an ascending range.

 

NOTE

—The range of INTEGER in a particular implementation may be determined from the is determinable from the values of its

 

8

 

'LOW and 'HIGH attributes.

 

3.1.3  Physical types

 

Values of a physical type represent measurements of some quantity.  Any value of a physical type is an integral
multiple of the primary unit of measurement for that type.

physical_type_definition ::=
range_constraint

 

units

 

primary_unit_declaration
{ secondary_unit_declaration }

 

end

 

 

 

units

 

 [ 

 

physical_type

 

_simple_name ]

primary_unit_declaration ::=  identifier ;

 

9

 

secondary_unit_declaration ::=  identifier = physical_literal ;

physical_literal ::=  [ abstract_literal ] 

 

unit

 

_name

A physical type definition defines both a type and a subtype of that type.  The type is an anonymous type, the range
of which is selected by the implementation; this range must be such that it wholly contains the range given in the
physical type definition.  The subtype is a named subtype of this anonymous base type, where the name of the
subtype is that given by the corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a physical type definition must be a locally static expression of
some integer type, but the two bounds need not have the same integer type.  (Negative bounds are allowed.)

Each unit declaration (either the primary unit declaration or a secondary unit declaration) defines a 

 

unit name

 

.
Unit names declared in secondary unit declarations must be directly or indirectly defined in terms of integral mul-
tiples of the primary unit of the type declaration in which they appear.  The position numbers of unit names need
not lie within the range specified by the range constraint.

If a simple name appears at the end of a physical type declaration, it must repeat the identifier of the type decla-
ration in which the physical type definition is included.

 

8. IR1000.4.7.
9. Noted by Bert Molenkamp.
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The abstract literal portion (if present) of a physical literal appearing in a secondary unit declaration must be an
integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the unit name.

There is a position number corresponding to each value of a physical type.  The position number of the value cor-
responding to a unit name is the number of primary units represented by that unit name.  The position number of
the value corresponding to a physical literal with an abstract literal part is the largest integer that is not greater than
the product of the value of the abstract literal and the position number of the accompanying unit name.

The same arithmetic operators are predefined for all physical types (see 7.2).  It is an error if the execution of such
an operation cannot deliver the correct result (that is, if the value corresponding to the mathematical result is not
a value of the physical type).

An implementation may restrict the bounds of the range constraint of a physical type.  However, an imple-
mentation must allow the declaration of any physical type whose range is wholly contained within the bounds
–2147483647 and +2147483647 inclusive.

 

Examples:

 

type

 

 DURATION 

 

is

 

 

 

range

 

 –1E18 

 

to

 

 1E18

 

units

 

fs; --  femtosecond
ps = 1000 fs; --  picosecond
ns = 1000 ps; --  nanosecond
us = 1000 ns; --  microsecond
ms = 1000 us; --  millisecond
sec = 1000 ms; --  second
min = 60 sec; --  minute

 

end

 

 

 

units

 

;

 

type

 

 DISTANCE 

 

is

 

 

 

range

 

 0 

 

to

 

 1E16

 

units
--  primary unit:

A Å10; --  angstrom

--  metric lengths:
nm = 10 A Å11; --  nanometer
um = 1000 nm; --  micrometer (or micron)
mm = 1000 um; --  millimeter
cm = 10 mm; --  centimeter
m = 1000 mm; --  meter
km = 1000 m; --  kilometer

--  English lengths:
mil = 254000 A Å12; --  mil
inch = 1000 mil; --  inch
ft = 12 inch; --  foot
yd = 3 ft; --  yard
fm = 6 ft; --  fathom
mi = 5280 ft; --  mile
lg = 3 mi; --  league

end units DISTANCE;

10. Change that should have been made in 1076-1993.
11. Change that should have been made in 1076-1993.
12. Change that should have been made in 1076-1993.
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variable x: distance;  variable y: duration;  variable z: integer;

x := 5 A Å13 + 13 ft – 27 inch;
y := 3 ns + 5 min;
z := ns / ps;
x := z * mi;
y := y/10;
z := 39.34 inch / m;

NOTES

1— The 'POS and 'VAL attributes may be used to convert between abstract values and physical values.

2— The value of a physical literal whose abstract literal is either the integer value zero or the floating-point value zero is the
same value (specifically zero primary units) no matter what unit name follows the abstract literal.

3.1.3.1  Predefined physical types

The only predefined physical type is type TIME.  The range of TIME is implementation dependent, but it is guar-
anteed to include the range –2147483647 to +2147483647.  It is defined with an ascending range.  All specifica-
tions of delays and pulse rejection limits must be of type TIME.   The declaration of type TIME appears in package
STANDARD in Section Clause14 14.

By default, the primary unit of type TIME (1 femtosecond) is the resolution limit for type TIME.  Any TIME value
whose absolute value is smaller than this limit is truncated to zero (0) time units.  An implementation may allow
a given execution of a model (see 12.6) to select a secondary unit of type TIME as the resolution limit.  Further-
more, an implementation may restrict the precision of the representation of values of type TIME and the results
of expressions of type TIME, provided that values as small as the resolution limit are representable within those
restrictions.  It is an error if a given unit of type TIME appears anywhere within the design hierarchy defining a
model to be executed, and if the position number of that unit is less than that of the secondary unit selected as the
resolution limit for type TIME during the execution of the model, unless that unit is part of a physical literal whose
abstract literal is either the integer value zero or the floating-point value zero15.

NOTE

—By selecting a secondary unit of type TIME as the resolution limit for type TIME, it may be possible to simulate for a longer
period of simulated time, with reduced accuracy, or to simulate with greater accuracy for a shorter period of simulated time.

Cross-References:  Delay and rejection limit in a signal assignment, 8.4; Disconnection, delay of a guarded signal,
5.3; Function NOW, 14.2; Predefined attributes, functions of TIME, 14.1; Simulation time, 12.6.2 and 12.6.3;
Type TIME, 14.2; Updating a projected waveform, 8.4.1; Wait statements, timeout clause in, 8.1; Elaboration of
a declarative part, 12.316.

3.1.4  Floating-point types

Floating-point types provide approximations to the real numbers.  Floating point types are useful for models in
which the precise characterization of a floating point calculation is not important or not determined.17

floating_type_definition ::=  range_constraint

13. Change that should have been made in 1076-1993.
14. To conform to IEEE rules.
15. LCS 9.
16. LCS 9.
17. LCS 22.
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A floating type definition defines both a type and a subtype of that type.  The type is an anonymous type, the range
of which is selected by the implementation; this range must be such that it wholly contains the range given in the
floating type definition.  The subtype is a named subtype of this anonymous base type, where the name of the sub-
type is that given by the corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a floating type definition must be a locally static expression of
some floating-point type, but the two bounds need not have the same floating point type.  (Negative bounds are
allowed.)

Floating-point literals are the literals of an anonymous predefined type that is called universal_real in this stan-
dard.  Other floating-point types have no literals.  However, for each floating-point type there exists an implicit
conversion that converts a value of type universal_real into the corresponding value (if any) of the floating-point
type (see 7.3.5).

The same arithmetic operations are predefined for all floating-point types (see 7.2).  A design is erroneous if the
execution of such an operation cannot deliver the correct result (that is, if the value corresponding to the mathe-
matical result is not a value of the floating-point type).

An implementation must choose a representation for all floating-point types except for universal_real that con-
forms either to IEEE Std 754 or to IEEE Std 854; in either case, a minimum representation size of 64 bits is re-
quired for this chosen representation.18

An implementation may restrict the bounds of the range constraint of floating-point types other than type
universal_real.  However, an implementation must allow the declaration of any floating-point type whose range
is wholly contained within the bounds –1.0E38 and +1.0E38 inclusive allowed by the chosen representation19.
The representation of floating point types must include a minimum of six decimal digits of precision.20

NOTE

—An implementation is not required to detect errors in the execution of a predefined floating point arithmetic operation, since
the detection of overflow conditions resulting from such operations may might21 not be easily accomplished on many host
systems.

3.1.4.1  Predefined floating point types

The only predefined floating point type is the type REAL.  The range of REAL is host-dependent, but it is guar-
anteed to include the range –1.0E38 to +1.0E38 inclusive be the largest allowed by the chosen representation22.
It is defined with an ascending range.

NOTE

—The range of REAL in a particular implementation may be determined from the is determinable from the values of its23

'LOW and 'HIGH attributes. 

3.2  Composite types

Composite types are used to define collections of values.  These include both arrays of values (collections of val-
ues of a homogeneous type) and records of values (collections of values of potentially heterogeneous types).

18. LCS 22.
19. LCS 22.
20. LCS 22.
21. IR1000.4.7.
22. LCS 22
23. IR1000.4.7.
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composite_type_definition ::=
   array_type_definition
| record_type_definition

An object of a composite type represents a collection of objects, one for each element of the composite object.  A
composite type may only contain elements that are of scalar, composite, or access types; It is an error if a com-
posite type contains24 elements of file types or protected types are not allowed in a composite type25.  Thus an
object of a composite type ultimately represents a collection of objects of scalar or access types, one for each non-
composite subelement of the composite object.

3.2.1  Array types

An array object is a composite object consisting of elements that have the same subtype.  The name for an element
of an array uses one or more index values belonging to specified discrete types.  The value of an array object is a
composite value consisting of the values of its elements.

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array ( index_subtype_definition { , index_subtype_definition } )

of element_subtype_indication

constrained_array_definition ::=
array index_constraint of element_subtype_indication

index_subtype_definition ::=  type_mark range <>

index_constraint ::=  ( discrete_range { , discrete_range } )

discrete_range ::=  discrete_subtype_indication | range

An array object is characterized by the number of indices (the dimensionality of the array); the type, position, and
range of each index; and the type and possible constraints of the elements.  The order of the indices is significant.

A one-dimensional array has a distinct element for each possible index value.  A multidimensional array has a
distinct element for each possible sequence of index values that can be formed by selecting one value for each
index (in the given order).  The possible values for a given index are all the values that belong to the corresponding
range; this range of values is called the index range.

An unconstrained array definition defines an array type and a name denoting that type.  For each object that has
the array type, the number of indices, the type and position of each index, and the subtype of the elements are as
in the type definition.  The index subtype for a given index position is, by definition, the subtype denoted by the
type mark of the corresponding index subtype definition.  The values of the left and right bounds of each index
range are not defined but must belong to the corresponding index subtype; similarly, the direction of each index
range is not defined.  The symbol <> (called a box) in an index subtype definition stands for an undefined range
(different objects of the type need not have the same bounds and direction). 

A constrained array definition defines both an array type and a subtype of this type:

— The array type is an implicitly declared anonymous type; this type is defined by an (implicit) uncon-
strained array definition, in which the element subtype indication is that of the constrained array defi-
nition and in which the type mark of each index subtype definition denotes the subtype defined by the
corresponding discrete range.

24. IR1000.4.7.
25. IR1000.4.7.
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— The array subtype is the subtype obtained by imposition of the index constraint on the array type.

If a constrained array definition is given for a type declaration, the simple name declared by this declaration de-
notes the array subtype.

The direction of a discrete range is the same as the direction of the range or the discrete subtype indication that
defines the discrete range. If a subtype indication appears as a discrete range, the subtype indication must not con-
tain a resolution function.

Examples:

—Examples of constrained array declarations:

type MY_WORD is array (0 to 31) of BIT ;
--  A memory word type with an ascending range.

type DATA_IN is array (7 downto 0) of FIVE_LEVEL_LOGIC ;
--  An input port type with a descending range.

—Example of unconstrained array declarations:

type MEMORY is array (INTEGER range <>) of MY_WORD ;
--  A memory array type.

—Examples of array object declarations:

signal DATA_LINE : DATA_IN ;
--  Defines a data input line.

variable MY_MEMORY : MEMORY (0 to 2**n–1) ;

--  Defines a memory of 2n 32-bit words.

NOTE

—The rules concerning constrained type declarations mean that a type declaration with a constrained array definition such as

type T is array (POSITIVE range MINIMUM to MAX) of ELEMENT;

is equivalent to the sequence of declarations

subtype index_subtype is POSITIVE range MINIMUM to MAX;
type array_type is array (index_subtype range <>) of ELEMENT;
subtype T is array_type (index_subtype);

where index_subtype and array_type are both anonymous.  Consequently, T is the name of a subtype and all objects declared
with this type mark are arrays that have the same index range.

3.2.1.1  Index constraints and discrete ranges

An index constraint determines the index range for every index of an array type and, thereby, the corresponding
array bounds.

For a discrete range used in a constrained array definition and defined by a range, an implicit conversion to the
predefined type INTEGER is assumed if each bound is either a numeric literal or an attribute, and if the type of
both bounds (prior to the implicit conversion) is the type universal_integer.  Otherwise, both bounds must be of
the same discrete type, other than universal_integer; this type must be determined independently of the context,
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but using the fact that the type must be discrete and that both bounds must have the same type.  These rules apply
also to a discrete range used in an iteration scheme (see 8.9) or a generation scheme (see 9.7).

If an index constraint appears after a type mark in a subtype indication, then the type or subtype denoted by the
type mark must not already impose an index constraint.  The type mark must denote either an unconstrained array
type or an access type whose designated type is such an array type.  In either case, the index constraint must pro-
vide a discrete range for each index of the array type, and the type of each discrete range must be the same as that
of the corresponding index.

An index constraint is compatible with the type denoted by the type mark if and only if the constraint defined by
each discrete range is compatible with the corresponding index subtype.  If any of the discrete ranges defines a
null range, any array thus constrained is a null array, having no components elements26.  An array value satisfies
an index constraint if at each index position the array value and the index constraint have the same index range.
(Note, however, that assignment and certain other operations on arrays involve an implicit subtype conversion.) 

The index range for each index of an array object is determined as follows:

— For a variable or signal declared by an object declaration, the subtype indication of the corresponding
object declaration must define a constrained array subtype (and thereby, the index range for each index
of the object).  The same requirement exists for the subtype indication of an element declaration, if the
type of the record element is an array type, and for the element subtype indication of an array type def-
inition, if the type of the array element is itself an array type.

— For a constant declared by an object declaration, the index ranges are defined by the initial value, if the
subtype of the constant is unconstrained; otherwise, they are defined by this subtype (in which case the
initial value is the result of an implicit subtype conversion).

— For an attribute whose value is specified by an attribute specification, the index ranges are defined by
the expression given in the specification, if the subtype of the attribute is unconstrained; otherwise,
they are defined by this subtype (in which case the value of the attribute is the result of an implicit sub-
type conversion).

— For an array object designated by an access value, the index ranges are defined by the allocator that
creates the array object (see 7.3.6).

— For an interface object declared with a subtype indication that defines a constrained array subtype, the
index ranges are defined by that subtype.

— For a formal parameter of a subprogram that is of an unconstrained array type and that is associated in
whole (see 4.3.2.2), the index ranges are obtained from the corresponding association element in the
applicable subprogram call.

— For a formal parameter of a subprogram that is of an unconstrained array type and whose subelements
are associated individually (see 4.3.2.2), the index ranges are obtained as follows:

The directions of the index ranges of the formal parameter are that of the those of the base27 type of
the formal; the high and low bounds of the index ranges are respectively determined from the maxi-
mum and minimum values of the indices given in the association elements corresponding to the formal.

— For a formal generic or a formal port of a design entity or of a block statement that is of an uncon-
strained array type and that is associated in whole, the index ranges are obtained from the correspond-
ing association element in the generic map aspect (in the case of a formal generic) or port map aspect
(in the case of a formal port) of the applicable (implicit or explicit) binding indication.

26. IR1000.2.3.
27. IR1000.1.10.
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— For a formal generic or a formal port of a design entity or of a block statement that is of an uncon-
strained array type and whose subelements are associated individually, the index ranges are obtained
as follows:

The directions of the index ranges of the formal generic or formal port are that of the those of the base28

type of the formal; the high and low bounds of the index ranges are respectively determined from the
maximum and minimum values of the indices given in the association elements corresponding to the
formal.

— For a local generic or a local port of a component that is of an unconstrained array type and that is as-
sociated in whole, the index ranges are obtained from the corresponding association element in the ge-
neric map aspect (in the case of a local generic) or port map aspect (in the case of a local port) of the
applicable component instantiation statement.

— For a local generic or a local port of a component that is of an unconstrained array type and whose
subelements are associated individually, the index ranges are obtained as follows:

The directions of the index ranges of the local generic or local port are that of the those of the base29

type of the local; the high and low bounds of the index ranges are respectively determined from the
maximum and minimum values of the indices given in the association elements corresponding to the
local.

If the index ranges for an interface object or member of an interface object are obtained from the corresponding
association element (when associating in whole) or elements (when associating individually), then they are deter-
mined either by the actual part(s) or by the formal part(s) of the association element(s), depending upon the mode
of the interface object, as follows:

— For an interface object or member of an interface object whose mode is in, inout, or linkage, if the
actual part includes a conversion function or a type conversion, then the result type of that function or
the type mark of the type conversion must be a constrained array subtype, and the index ranges are
obtained from this constrained subtype; otherwise, the index ranges are obtained from the object or val-
ue denoted by the actual designator(s).

— For an interface object or member of an interface object whose mode is out, buffer, inout, or linkage,
if the formal part includes a conversion function or a type conversion, then the parameter subytpe of
that function or the type mark of the type conversion must be a constrained array subtype,  and the in-
dex ranges are obtained from this constrained subtype; otherwise, the index ranges are obtained from
the object denoted by the actual designator(s).

For an interface object of mode inout or linkage, the index ranges determined by the first rule must be identical
to the index ranges determined by the second rule.

Examples:

type Word is array (NATURAL range <>) of BIT;
type Memory is array (NATURAL range <>) of Word (31 downto 0);

constant A_Word: Word := "10011";
--  The index range of A_Word is 0 to 4

28. IR1000.1.10.
29. IR1000.1.10.



IEEE
LANGUAGE  REFERENCE  MANUAL Std P1076a-1999 2000/D3

Clause 3 45
Copyright © 2000, IEEE.  All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

entity E is
generic (ROM: Memory);
port (Op1, Op2: in Word;  Result: out Word);

end entity E;
--  The index ranges of the generic and the ports are defined by the actuals associated
--  with an instance bound to E; these index ranges are accessible via the predefined
--  array attributes (see 14.1).

signal A, B: Word (1 to 4);
signal C: Word (5 downto 0);

Instance: entity E
generic map ((1 to 2) => (others => '0') (1 to 2 => (others => ’0’))30)
port map (A, Op2(3 to 4) => B (1 to 2), Op2(2) => B (3), Result => C (3 downto 1));

--  In this instance, the index range of ROM is 1 to 2 (matching that of the actual),
--  The index range of Op1  is 1 to 4 (matching the index range of A), the index range 
--  of Op2 is 2 to 4, and the index range of Result is (3 downto 1) 
--  (again matching the index range of the actual).

3.2.1.2  Predefined array types

The predefined array types are STRING and BIT_VECTOR, defined in package STANDARD in Section
Clause31 14.

The values of the predefined type STRING are one-dimensional arrays of the predefined type CHARACTER, in-
dexed by values of the predefined subtype POSITIVE:

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH ;
type STRING is array (POSITIVE range <>) of CHARACTER ;

The values of the predefined type BIT_VECTOR are one-dimensional arrays of the predefined type BIT, indexed
by values of the predefined subtype NATURAL:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH ;
type BIT_VECTOR is array (NATURAL range <>) of BIT ;

Examples:

variable MESSAGE : STRING(1 to 17) := "THIS IS A MESSAGE" ;

signal LOW_BYTE : BIT_VECTOR (0 to 7) ;

3.2.2  Record types

A record type is a composite type, objects of which consist of named elements.  The value of a record object is a
composite value consisting of the values of its elements.

record_type_definition ::=
record

  element_declaration
{ element_declaration }

end record [ record_type_simple_name ]

30. IR1000.1.3 (as corrected by Ashenden).
31. To conform to IEEE rules.



IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

46 Clause 3
Copyright © 2000, IEEE.  All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

element_declaration ::=
identifier_list : element_subtype_definition ;

identifier_list ::=  identifier { , identifier }

element_subtype_definition ::=  subtype_indication

Each element declaration declares an element of the record type.  The identifiers of all elements of a record type
must be distinct.  The use of a name that denotes a record element is not allowed within the record type definition
that declares the element.

An element declaration with several identifiers is equivalent to a sequence of single element declarations.  Each
single element declaration declares a record element whose subtype is specified by the element subtype definition.

If a simple name appears at the end of a record type declaration, it must repeat the identifier of the type declaration
in which the record type definition is included.

A record type definition creates a record type; it consists of the element declarations in the order in which they
appear in the type definition.

Example:

type DATE is
record

DAY: INTEGER range 1 to 31;
MONTH: MONTH_NAME;
YEAR: INTEGER range 0 to 4000;

end record;

3.3  Access types

An object declared by an object declaration is created by the elaboration of the object declaration and is denoted
by a simple name or by some other form of name.  In contrast, objects that are created by the evaluation of allo-
cators (see 7.3.6) have no simple name.  Access to such an object is achieved by an access value returned by an
allocator; the access value is said to designate the object.

access_type_definition ::=  access subtype_indication

For each access type, there is a literal null that has a null access value designating no object at all.  The null value
of an access type is the default initial value of the type.  Other values of an access type are obtained by evaluation
of a special operation of the type, called an allocator.  Each such access value designates an object of the subtype
defined by the subtype indication of the access type definition. This subtype is called the designated subtype and
the base type of this subtype is called the designated type.  The designated type must not be a file type or a pro-
tected type; moreover, it may must32 not have a subelement that is a file type or a protected type.

An object declared to be of an access type must be an object of class variable.  An object designated by an access
value is always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype indication is an index
constraint.  An access value belongs to a corresponding subtype of an access type either if the access value is the
null value or if the value of the designated object satisfies the constraint.

32. IR1000.4.7.
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Examples:

type ADDRESS is access MEMORY;
type BUFFER_PTR is access TEMP_BUFFER;

NOTES

1—An access value delivered by an allocator can be assigned to several variables of the corresponding access type.  Hence, it
is possible for an object created by an allocator to be designated by more than one variable of the access type.  An access
value can only designate an object created by an allocator; in particular, it cannot designate an object declared by an object
declaration.

2—If the type of the object designated by the access value is an array type, this object is constrained with the array bounds
supplied implicitly or explicitly for the corresponding allocator.

3.3.1  Incomplete type declarations

The designated type of an access type can be of any type except a file type or a protected type33 (see 3.3).  In
particular, the type of an element of the designated type can be another access type or even the same access type.
This permits mutually dependent and recursive access types.  Declarations of such types require a prior incomplete
type declaration for one or more types.

incomplete_type_declaration ::=  type identifier ;

For each incomplete type declaration there must be a corresponding full type declaration with the same identifier.
This full type declaration must occur later and immediately within the same declarative part as the incomplete type
declaration to which it corresponds.

Prior to the end of the corresponding full type declaration, the only allowed use of a name that denotes a type de-
clared by an incomplete type declaration is as the type mark in the subtype indication of an access type definition;
no constraints are allowed in this subtype indication.

Example of a recursive type:

type CELL; --  An incomplete type declaration.

type LINK is access CELL;

type CELL is
record

VALUE: INTEGER;
SUCC: LINK;
PRED: LINK;

end record CELL;
variable HEAD : LINK := new CELL'(0, null, null);
variable \NEXT\ : LINK := HEAD.SUCC;

Examples of mutually dependent access types:

type PART; --  Incomplete type declarations.
type WIRE;

type PART_PTR is access PART;
type WIRE_PTR is access WIRE;

33. Correction—missed during P1076a.
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type PART_LIST is array (POSITIVE range <>) of PART_PTR;
type WIRE_LIST is array (POSITIVE range <>) of WIRE_PTR;

type PART_LIST_PTR is access PART_LIST;
type WIRE_LIST_PTR is access WIRE_LIST;

type PART is record
PART_NAME: STRING (1 to MAX_STRING_LEN);
CONNECTIONS: WIRE_LIST_PTR;

end record;

type WIRE is record
WIRE_NAME: STRING (1 to MAX_STRING_LEN);
CONNECTS: PART_LIST_PTR;

end record;

3.3.2  Allocation and deallocation of objects

An object designated by an access value is allocated by an allocator for that type.  An allocator is a primary of an
expression; allocators are described in 7.3.6.  For each access type, a deallocation operation is implicitly declared
immediately following the full type declaration for the type.  This deallocation operation makes it possible to deal-
locate explicitly the storage occupied by a designated object.

Given the following access type declaration:

type AT is access T;

the following operation is implicitly declared immediately following the access type declaration:

procedure DEALLOCATE (P: inout AT) ;

Procedure DEALLOCATE takes as its single parameter a variable of the specified access type.  If the value of that
variable is the null value for the specified access type, then the operation has no effect.  If the value of that variable
is an access value that designates an object, the storage occupied by that object is returned to the system and may
then be reused for subsequent object creation through the invocation of an allocator.  The access parameter P is
set to the null value for the specified type.

NOTE

—If a pointer an access value34 is copied to a second variable and is then deallocated, the second variable is not set to null
and thus references invalid storage.

3.4  File types

A file type definition defines a file type.  File types are used to define objects representing files in the host system
environment.  The value of a file object is the sequence of values contained in the host system file.

file_type_definition ::=  file of type_mark

The type mark in a file type definition defines the subtype of the values contained in the file.  The type mark may
denote either a constrained or an unconstrained subtype.  The base type of this subtype must not be a file type, an
access type, or a protected type.  If the base type is a composite type, it must not contain a subelement of an access
type, a file type, or a protected type.  If the base type is an array type, it must be a one-dimensional array type.

34. Terminological correction.
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Examples:

file of STRING --  Defines a file type that can contain
--  an indefinite number of strings of arbitrary length.

file of NATURAL --  Defines a file type that can contain
--  only nonnegative integer values.

3.4.1  File operations

The language implicitly defines the operations for objects of a file type.  Given the following file type declaration:

type FT is file of TM;

where type mark TM denotes a scalar type, a record type, or a constrained array subtype, the following operations
are implicitly declared immediately following the file type declaration:

procedure FILE_OPEN (file F: FT;
External_Name: in STRING;
Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_OPEN (Status: out FILE_OPEN_STATUS;
file F: FT;
External_Name: in STRING;
Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_CLOSE (file F: FT);

procedure READ (file F: FT; VALUE: out TM);

procedure WRITE (file F: FT; VALUE: in TM);

function ENDFILE (file F: FT) return BOOLEAN;

The FILE_OPEN procedures open an external file specified by the External_Name parameter and associate it with
the file object F.  If the call to FILE_OPEN is successful (see below), the file object is said to be open and the file
object has an access mode dependent on the value supplied to the Open_Kind parameter (see 14.2).

— If the value supplied to the Open_Kind parameter is READ_MODE, the access mode of the file object
is read-only.  In addition, the file object is initialized so that a subsequent READ will return the first
value in the external file.  Values are read from the file object in the order that they appear in the ex-
ternal file.

— If the value supplied to the Open_Kind parameter is WRITE_MODE, the access mode of the file object
is write-only.  In addition, the external file is made initially empty.  Values written to the file object are
placed in the external file in the order in which they are written.

— If the value supplied to the Open_Kind parameter is APPEND_MODE, the access mode of the file ob-
ject is write-only.  In addition, the file object is initialized so that values written to it will be added to
the end of the external file in the order in which they are written.

In the second form of FILE_OPEN, the value returned through the Status parameter indicates the results of the
procedure call:

— A value of OPEN_OK indicates that the call to FILE_OPEN was successful.  If the call to FILE_OPEN
specifies an external file that does not exist at the beginning of the call, and if the access mode of the
file object passed to the call is write-only, then the external file is created.
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— A value of STATUS_ERROR indicates that the file object already has an external file associated with
it.

— A value of NAME_ERROR indicates that the external file does not exist (in the case of an attempt to
read from the external file) or the external file cannot be created (in the case of an attempt to write or
append to an external file that does not exist).  This value is also returned if the external file cannot be
associated with the file object for any reason.

— A value of MODE_ERROR indicates that the external file cannot be opened with the requested
Open_Kind.

The first form of FILE_OPEN causes an error to occur if the second form of FILE_OPEN, when called under iden-
tical conditions, would return a Status value other than OPEN_OK.

A call to FILE_OPEN of the first form is successful if and only if the call does not cause an error to occur.  Sim-
ilarly, a call to FILE_OPEN of the second form is successful if and only if it returns a Status value of OPEN_OK.

If a file object F is associated with an external file, procedure FILE_CLOSE terminates access to the external file
associated with F and closes the external file.  If F is not associated with an external file, then FILE_CLOSE has
no effect.  In either case, the file object is no longer open after a call to FILE_CLOSE that associates the file object
with the formal parameter F.

An implicit call to FILE_CLOSE exists in a subprogram body for every file object declared in the corresponding
subprogram declarative part.  Each such call associates a unique file object with the formal parameter F and is
called whenever the corresponding subprogram completes its execution.

Procedure READ retrieves the next value from a file; it is an error if the access mode of the file object is write-
only or if the file object is not open.  Procedure WRITE appends a value to a file; it is similarly an error if the
access mode of the file object is read-only or if the file is not open.  Function ENDFILE returns FALSE if a sub-
sequent READ operation on an open file object whose access mode is read-only can retrieve another value from
the file; otherwise, it returns TRUE.  Function ENDFILE always returns TRUE for an open file object whose ac-
cess mode is write-only.  It is an error if ENDFILE is called on a file object that is not open.

For a file type declaration in which the type mark denotes an unconstrained array type, the same operations are
implicitly declared, except that the READ operation is declared as follows:

procedure READ (file F: FT; VALUE: out TM; LENGTH: out Natural);

The READ operation for such a type performs the same function as the READ operation for other types, but in
addition it returns a value in parameter LENGTH that specifies the actual length of the array value read by the
operation.  If the object associated with formal parameter VALUE is shorter than this length, then only that portion
of the array value read by the operation that can be contained in the object is returned by the READ operation, and
the rest of the value is lost.  If the object associated with formal parameter VALUE is longer than this length, then
the entire value is returned and remaining elements of the object are unaffected by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would return TRUE at that
point.

At the beginning of the execution of any file operation, the execution of the file operation blocks (see 12.5) until
exclusive access to the file object denoted by the formal parameter F can be granted.  Exclusive access to the given
file object is then granted and the execution of the file operation proceeds.  Once the file operation completes,
exclusive access to the given file object is rescinded.35

35. Noted as part of the P1076a cleanup initiated by Peter Ashenden.
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NOTE

—Predefined package TEXTIO  is provided to support formatted human-readable I/O.  It defines type TEXT (a file type rep-
resenting files of variable-length text strings) and type LINE (an access type that designates such strings).  READ and
WRITE operations are provided in package TEXTIO that append or extract data from a single line.  Additional operations
are provided to read or write entire lines and to determine the status of the current line or of the file itself.  Package TEXTIO
is defined in Section Clause36 14.;

3.5  Protected types

A protected type definition defines a protected type.  A protected type implements instantiatiable regions of se-
quential statements, each of which are guaranteed exclusive access to shared data.  Shared data is a set of variable
objects that may be potentially accessed as a unit by multiple processes.

protected_type_definition  ::=
   protected_type_declaration

 |  protected_type_body

Each protected type declaration appearing immediately within a given declarative region (see 10.1) must have ex-
actly one corresponding protected type body appearing immediately within the same declarative region and tex-
tually subsequent to the protected type declaration.  Similarly, each protected type body appearing immediately
within a given declarative region must have exactly one corresponding protected type declaration appearing im-
mediately within the same declarative region and textually prior to the protected type body.

3.5.1  Protected type declarations

A protected type declaration declares the external interface to a protected type.

protected_type_declaration  ::=
protected

protected_type_declarative_part
end protected [ protected_type_simple_name ]

protected_type_declarative_part  ::=
{ protected_type_declarative_item }

protected_type_declarative_item  ::=
  subprogram_declaration
| attribute_specification
| use_clause

If a simple name appears at the end of a protected type declaration, it must repeat the identifier of the type decla-
ration in which the protected type definition is included.

Each subprogram specified within a given protected type declaration defines an abstract operation, called a meth-
od, that operates atomically and exclusively on a single object of the protected type.  In addition to the (implied)
object of the protected type operated on by the subprogram, additional parameters may be explicitly specified in
the formal parameter list of the subprogram declaration of the subprogram.  Such formal parameters must not be
of an access type or a file type; moreover, they must not have a subelement that is an access type or a file type.
Additionally, in the case of a function subprogram, the return type of the function must not be of an access type
or file type; moreover, it must not have a subelement that is an access type or a file type.

36. To conform to IEEE rules.
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Examples:

type SharedCounter is protected
procedure increment  (N: Integer := 1);
procedure decrement (N: Integer := 1);
impure function value return Integer;

end protected SharedCounter;

type ComplexNumber is protected
procedure extract (variable r, i: out Real);
procedure add (variable a, b: inout ComplexNumber);

end protected ComplexNumber;

type VariableSizedBitArray is protected
procedure add_bit (index: Positive; value: Bit);
impure function size return Natural;

end protected VariableSizedBitArray;

3.5.2  Protected type bodies

A protected type body provides the implementation for a protected type.

protected_type_body  ::=
protected body

protected_type_body_declarative_part
end protected body [ protected_type_simple name ]

protected_type_body_declarative_part ::=
{ protected_type_body_declarative_item }

protected_type_body_declarative_item ::=
  subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

Each subprogram declaration appearing in a given protected type declaration shall have a corresponding subpro-
gram body appearing in the corresponding protected type body.

NOTE

—Subprogram bodies appearing in a protected type body not conformant to any of the subprogram declarations in the corre-
sponding protected type declaration are visible only within the protected type body.  Such subprograms may have parame-
ters and (in the case of functions) return types that are or contain access and file types.
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Examples:

type SharedCounter is protected body

variable counter: Integer := 0;

procedure increment (N: Integer := 1) is
begin

counter := counter + N;
end procedure increment;

procedure decrement (N: Integer := 1) is
begin

counter := counter – N;
end procedure decrement;

impure function value return Integer is
begin

return counter;
end function value;

end protected body SharedCounter;

type ComplexNumber is protected body

variable re, im: Real;

procedure extract (r, i: out Real) is
begin

r := re;
i := im;

end procedure extract;

procedure add (variable a, b: inout ComplexNumber) is
variable a_real, b_real: Real;
variable a_imag, b_imag: Real;

begin
a.extract (a_real, a_imag);
b.extract (b_real, b_imag);
re  := a_real + b_real;
im := a_imag + b_imag;

end procedure add;
end protected body ComplexNumber;

type VariableSizeBitArray is protected body
type bit_vector_access is access Bit_Vector;

variable bit_array: bit_vector_access := null;
variable bit_array_length: Natural := 0;
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procedure add_bit (index: Positive; value: Bit) is
variable tmp: bit_vector_access;

begin
if index > bit_array_length then

tmp := bit_array;
bit_array := new bit_vector (1 to index);
if tmp /= null then

bit_array (1 to bit_array_length) := tmp.all;
deallocate (tmp);

end if;
bit_array_length := index;

end if;
bit_array (index) := value;

end procedure add_bit;

impure function size return Natural is
begin

return bit_array_length;
end function size;

end protected body VariableSizeBitArray;


