
Abstract

When a large VHDL model is being developped
by several individuals, a set of guidelines is nec-
essary to ensure maintainability, consistency and
readability throughout. This paper presents a set
of guidelines covering issues like file naming,
capitalization and code layout, successfully used
within BNR.

Section 1. File System Structure

A file shall contain one and only one library unit.
This minimizes the amount of recompilation
required when a library unit, on which other
library units depend, is modified. It also helps in
structuring the model in the host computer’s file
system as described in this section.

Each file shall be named according to the unit it
contains as shown in Table 1. This makes identi-
fying the file that contains a particular library unit
easier and, when alphabetically sorted, each enti-
ties are grouped with its corresponding architec-
ture and configuration, and package declarations
are grouped with their corresponding body. Since
certain file systems are case-insensitive, the case
mix of the filename need not follow the case mix
of the various library unit names it is made of. If
the file system imposes a limit on the length of a
filename, a different convention that yields
shorter names should be used (but a convention
nonetheless) in favor of keeping longer, more
meaningful names for the library units. Note that
a dash (-), not an underscore, separates the com-
ponents of the filename since the underscore is

used as a word separator in user-defined identifi-
ers (see section 2).

Table 1: File Naming Convention

Entity entityName.vhd
Architecture entityName-archName.vhd
Configuration entityName-confName.vhd
Package packageName.vhd
Package Body packageName-body.vhd

The structure of the file system hierarchy shall
mirror the logical structure of the system being
modelled.This makes it easier to locate the model
of a particular sub-module of the system. It does
not imply that each component in a structural
description have to be in individual subdirecto-
ries: a structural description of a “logical” struc-
tural component of the overall system should be
in a single directory. Soft-links may be used to
“instantiate” a directory containing a re-used sub-
component into the various directories where it is
used.

A directory shall correspond to one and only one
library. This is a requirement of certain toolsets.
It also reduces clutter of library units in a single
library.

RadarSys/

CPU/DSP/ Makefile

datapath/ ALU/ Fetch/

alu.vhd

Figure 1: File System Hierarchy

RCS/ VSS.lib/

Guidelines for Writing VHDL Models in a Team Environment

Janick Bergeron
Bell-Northern Research Ltd

P.O. Box 3511, Station C
Ottawa, Ontario, Canada K1Y 4H7

janick@bnr.ca

A directory shall have the same name as the top-
most unit it contains. The top-most unit should be
the only unit in the library usable outside of this
library and all others considered private. This
facilitates the identification of the top-level enti-
ties in a “logical” structural model. This guide-
line does not apply when a directory (and library)
contains several shared packages.

The name of a VHDL library shall be
“directoryName_LIB ”. It facilitates the identifi-
cation of the library that contains the units
located in a given directory and vice-versa. It
implies that the various directories in the hierar-
chy containing the model must have unique
names but that is also almost garanteed by the
previous guideline.

If the VHDL system requires a directory or a file
for its own data or object files, it shall be named
“toolName.lib”. This allows the use of several
VHDL systems on a single source hierarchy. If
several version of the same tool are used, the ver-
sion number should also be included.

Vantage-3.3.lib
Vantage-4.1.lib
VSS.lib

A complete copy of the entire hierarchy of the
model shall be kept in a shared central location.
This copy is a snapshot of the latest working ver-
sion of the model others can refer to. Develop-
pers copy their portion of the model into this
central repository at appropriate points through-
out the development

Each member of the development team shall have
a copy of only the portion of the hierarchy for
which (s)he is responsible for. Each member cre-
ates a complete picture of the model by having

RadarSys/

CPU/DSP/

datapath/ ALU/ Fetch/

alu.vhd

Central

Figure 2: Private and Central Model Repository

RadarSys/

CPU/

ALU/ Fetch/

alu.vhd

User B

DSP/

RadarSys/

CPU/DSP/

datapath/

User A

RCS/ VSS.lib/RCS/ VSS.lib/
soft-link

soft-links to the missing portions in the central
repository (see figure 2).

Each directory shall contain a makefile. A rule
named “all” should compile all units contained in
the directory and invoke make for all subdirecto-
ries. If several toolsets are used, the makefiles
should be named “Makefile.toolName” and a
soft-link named “Makefile” should point to the
makefile for the tool currently used. BNR has
released in the public domain a tool to automati-
cally create a makefile for various VHDL toolsets
from a set of VHDL source files[1].

all:
for dir in $(SUBDIRS); do \

cd $$dir; \
make all; \
cd ..; \

done
make all

All VHDL source and testcase input files shall be
maintained using a source control system. Sys-
tems like (but not limited to) SCCS or RCS
should be used. BNR has a PERL script which
provides an interface identical to Digital’s CMS
to both systems. The source control system files
should be kept in a subdirectory named “RCS” or
“SCCS” in each directory containing VHDL
source files.

Section 2. VHDL Syntax

All VHDL reserved words shall be in lowercase
and all other keywords shall be in uppercase.
User-defined keywords should not depend on
capitalization to be readable or meaningful since
a tool or filter may recapitalize the VHDL source.
It also makes user identifiers stand out from the
VHDL keywords.

entity MEMORY is
port(WHERE: in ADDRESS_TYP;

WHAT: inout DATA_TYP;
WRITE_IT: in BOOLEAN);

end entity MEMORY;

User-defined identifiers shall be meaningful and
have words separated by underscores. Abbrevia-
tions and acronyms should be avoided at all cost
because they reduce readability and maintainabil-
ity. Identifiers should have at least 8 characters.

PROGRAM_COUNTER
LEFT_DATA_BUS

User-defined type and subtype identifiers shall
end with “_TYP”. Coming up with significant
but different names for signals, variables and type
marks is often difficult and make the type mark
more meaningful.

type DATA_TYP is ...;
subtype ADDRESS_TYP is ...;

User-defined package identifiers shall end with
“ _PKG”. This makes it possible to have similar
names for the types and the packages that con-
tains them. It also makes the package name more
meaningful.

package INT_64_BIT_PKG is
type INT_64_BIT_TYP is ...

end package INT_64_BIT_PKG;

All predefined attributes shall be in lowercase.
Although they are not reserved words, it facili-
tates differentiating them from user-defined
attributes.

if CLOCK’event and CLOCK = ‘1’

The identifiers in predefined packages shall be
used in uppercase. Since the identifiers in pack-
ages like STD.STANDARD or
STD_1164_STANDARD can be overloaded as
any other user-defined identifier, they should be
capitalized the same way. It also helps identifying
them as separate from the language itself.

Underscore shall not be used in literals. This lex-
ical convenience mechanism is questionable as
some downstream tool may not accept it and
complicates the automatic translation of VHDL
into other languages that do not support it.

Only literals in base 2, 8, 10 or 16 shall be used.
These bases are the only ones most computer sci-
entists and hardware designers are familiar with.

Extended digits in base-16 literals and base spec-
ifiers shall be in uppercase. This makes for more
consistent and readable literals.

ADDRESS_BUS := 16#45E7FF0A#;
DATA_VALUE := 0”0377”;

Real literals shall be in decimal only. Non-inte-
ger mantissas and exponents in based literals are
very confusing.

Allowable replacement characters shall not be
used. They are a provision for limited character
sets and should be avoided at all cost. This sec-
tion of the LRM (13.10) makes for an excellent
“Trivial Pursuit” question amongst collegues.

Section 3. VHDL Source Layout

Declarative regions and blocks of statements
shall be indented by 4 spaces. A block of state-
ment can be the concurrent statement part of an
architecture, the “else” clause of an if statement,
the body of a subprogram, etc...

process
variable VARIABLE_NAME ...

begin
if CONDITION then

STATEMENT;
STATEMENT;

else
STATEMENT;

end if;
end process;

Indentation levels in sequential statements shall
not exceed 4. A large number of indentation lev-
els is often an indication of bad programming
style. Use subprograms to break the code into
manageable parts.

begin
if CONDITION then

loop
if CONDITION then

loop
LAST_LEVEL;

end loop;
end if;

end loop;
end if;

end;

Indented regions in sequential statements shall
not have more than 60 lines. This keeps indented
regions from spanning more than two pages when
printed which makes inspecting the code easier
when a complete control region is visible. Long
indented regions are often an indication of bad
programming style. Use subprograms to break
the code into manageable parts.

The TAB character shall not be used to indent.
Only used the SPC character. A mix of TAB and
spaces may result in improper indentation when
viewed in an environment with different tabstop
settings. The TAB key can still be used to indent
code in EMACS in an appropriate VHDL mode
but should only insert space characters. Use the
UNIX command expand(1) to replace TABs with
spaces.

Lines shall not exceed 80 characters in length. It
avoids confusing wrap-arounds when viewing the
source on a regular text terminal, standard-sized
window or when printed.

Long lines shall be broken where there is white
spaces. Breaking a line between adjacent tokens
is confusing.

Line continutations shall be indented to line-up
with the first token at the same nesting level or by
4 spaces. It makes it possible to quickly disting-
ish the continuation of a line from a new state-
ment.

SINK = FUNCTION_NAME(PARAM1,
PARAM2,
PARAM3);

variable LONG_NAME =
VERY_LONG_EXPRESSION;

Comments shall be on a line of their own. Trail-
ing comments are cumbersome when the line is
lenghtened or shortened and often need to be re-

formatted. They are also difficult to see unless
they are located close to the right margin.

Multi-line comments shall start and end with with
an empty comment line. It makes the comment
paragraph stand out from the surrounding code.
Single-line comments should be reserved for stra-
tegic comments in hard-to-understand code.

--
-- This is a multi-line
-- comment followed by the
-- code it describes
--
STATEMENT;

Comments shall be immediately followed by the
code they describe. One should be able to read a
comment to help understand the code one is
about to read, not the other way around.

Each file shall have a descriptive comment of its
content a the top. This can include the name of
the authors and subsequent contributors, copy-
right notices and a description of the content of
the file.

--
-- Interface of RS-232 modem
--
-- Janick Bergeron
-- Bell-Northern Research Ltd
-- janick@bnr.ca
--
-- (c) Copyright
-- Northern Telecom Ltd.
-- All rights reserved.
--

entity RS_232_MODEM is
...

end RS_232_MODEM;

Concurrent statements (and their descriptive
comments) shall be separated by 2 blank lines.
This clearly separates the section of codes which
execute in parallel.

-- Clock generator
CLOCK <= not CLOCK after 5 ns;

-- State Transition
process(CLOCK)
begin

STATE <= NEW_STATE;
end process;

Groups of logically related statements and decla-
rations shall be separated by 1 blank line. A
group is a sequence of statements or declarations
performing a given task at the same indentation
level as other goups and includes its descriptive
comment. It visually separates sections of codes
that perform different tasks.

-- Decode the instruction
STATEMENT;
STATEMENT;

-- Execute the instruction
STATEMENT;

Choices in a case statement shall be separated by
1 blank line and not be indented.. The sequence
of statements should immediately follow the case
alternative specification and be indented nor-
mally by 4 spaces. This visually separates the
various alternatives to choose from.

case EXPRESSION is
when CHOICE1 =>

STATEMENT;

when CHOICE2 =>
STATEMENT;

when others =>
STATEMENT;

end case;

Unless otherwise specified, tokens shall be sepa-
rated by 1 space. This aerates the code and makes
it easier to read.

No space shall preceed a close parenthesis,
comma, colon or semi-colon nor follow an open
parenthesis and no space shall surround a single
quote or dot. Furthermore, an open parenthesis
that encloses function arguments or array indices
should abut its subject array or function name.
This makes the code look more like written natu-
ral language.

VAR := FCT(A, B.C) + D’right;
EXPRESSION := A * (B + C);

Each statement shall start on a new line. More
than one statement on a single line makes the
code difficult to read or scan quickly. This
includes statements within statements.

STATEMENT;
if CONDITION then

STATEMENT;
else

STATEMENT;
end if;

Each declaration shall start on a new line. It
makes it easier to identify individual ports, gener-
ics, signals and variables, change their order or
modify the type of one of them.

signal NAME1: SIGNAL_TYP;
signal NAME2: SIGNAL_TYP;

Elements in interface declarations shall be verti-
cally aligned. This allows quick identification of
the various kind of interface declaration, their
name, direction and type.

procedure FOO(
signal FORM1: in A_TYP
variable FORM2: inout BIT;
constant FACTOR: in REAL;

RESULT: out BIT);

Elements in named associations than span more
than one line shall be vertically aligned. It makes
identifying the formals and actuals easier.

CALL(FRM1 => ACT1, FRM2 => VAL,
FRM3 => PI, RESULT => Z);

Concurrent statements shall be labeled. It facili-
tates cross-referencing when a statement is
replaced by a component instantatiation in an
alternative architecture and makes for better doc-
umentation.

-- Clock generator
CLOCK_GENRATOR:
CLOCK <= not CLOCK after 5 ns;

Loop statements shall be labeled. It enables bet-
ter loop control with the next and exit statements.

INFINITE_LOOP: loop
STATEMENT;

end loop INFINITE_LOOP;

Next and exit statements shall specify the loop
label they control. It makes for more readable
code in nested loops and will prevent errors if a
portion of the body of the loop containing a next
or exit statement is included in an inner loop
later.

CONTROL_LOOP: loop
exit CONTROL_LOOP;

end loop CONTROL_LOOP;

Whenever possible End keywords shall be quali-
fied. This makes identifying the corresponding
end of a statement with a body much easier.

CLOCK_GENERATOR:
process
begin

CLOCK <= not CLOCK;
wait for 5 ns;

end process CLOCK_GENERATOR;

Section 4. VHDL Constructs

Named association shall be used preferably to
positional association. It reduces the risk of
errors when adjacent parameters are of the same
type and when parameters are added or removed.
It also makes using default values easier and con-
version functions on out and inout formals can-
not be used if positional association is used. It
also applies in literals for arrays and records.

FCT(FORMAL => ACTUAL);
MEMORY := (0 => -1; others => 0);
INT64 := (MSB32 => 0; LSB32 = 1);

Buffer ports shall not be used. Although handy
when an out port needs to be read, they do not
have any correspondence in actual hardware and
they impose restrictions on what can be con-
nected to them. The name “buffer” suggests the
presence of a logical buffer which isolate the
internal value from the external drivers, a buffer
which is not present when a netlist is automati-
cally generated from the structural description. If
internal feed-back in required, use an out port
with an internal signal and a concurrent signal
assignment.

signal OUT_VALUE: VALUE_TYP;

-- Emulate buffer port
BUFFERED_PORT:
OUT_PORT <= OUT_VALUE;

Linkage ports shall not be used.We are still not
sure what linkage ports are. Coolant fluid ?

Blocks shall not be used. The GUARD signal in a
guarded block can be explicitely emulated and

such an emulation is easier to understand as the
semantics are obvious in the model rather than
hidden in the simulation engine. Guarded blocks
also make it difficult to refine a model toward a
synthesizeable description. Blocks with ports and
generics are an attempt at structural decomposi-
tion without using the structural modelling con-
structs; however, the declarations in the enclosing
scopes are still visible which does not make a
block a true structural decomposition construct
thus a proper instantiation of an entity/architec-
ture should be used. Blocks can also be used to
create a declarative region: they are useful when
declarations are only needed by a subset of the
concurrent statements in an architecture but can-
not be used if the subsets intersect. Furthermore,
block-level declarations can overload a declara-
tion in the enclosing scopes which may lead to
confusion or errors if a process is moved outside
the block. This guideline does not apply when a
block is required to create a declarative region
needed by a generate statement

Guarded signals shall not be used. They are the
feature most often not (or badly) implemented in
VHDL tools. Their semantics are confusing and
they are difficult to debug. They cannot be initial-
ized to the disconnected state and are difficult to
refine into a synthesizeable form. It is preferable
to model the behavior of the guarded signal
within the model itself by having a “disconnect”
value properly handled by the resolution func-
tion. For example, using a record with a “discon-
nect” flag member has the advantage that a signal
can be easily disconnected then reconnected with
the same value, which is not possible with a
guarded signal.

Conditional signal assignment shall not be used.
Most of the time, a signal changes under a given
set of conditions and otherwise remains
unchanged. Since the conditional signal assign-
ment requires an else clause, this clause is often
used to simply assign the current value of the sin-
gal to itself again. This makes the statement sen-
sitive to itself and will cause its evaluation twice
as often as necessary. Furthermore, the order in
which the value and conditions are specified is
counter-intuitive. Use an equivalent process
statement instead.

Operators shall not be overloaded lightly. Only
overload an operator to perform an operation log-
ically equivalent to its original intent and to yield

more readable expressions. Operator overload-
ing is a powerful mechanism for writing concise
and easy to understand descriptions but can be a
source of confusion if they do not do what the
reader expects. Keep also in mind that the prior-
ity of the operators remains the same, reguardless
of its overloaded function.

Section 5. VHDL Coding Style

Variables shall be used in preference to signals.
Signals carry more overhead than variables do.
Unless something needs to be seen in another
process, use a variable.

Attributes ‘range and ‘reverse_range shall be
used when scanning arrays. Assuming specific
bounds makes resizing or changing the direction
of the indexes more difficult and may not be
caught at compile time. If a zero-based (or n-
based) index is required, create it in combination
with ‘left or ‘right .

SCAN: for I in A’range loop
A(I) := VALUE;
ZERO_BASED := I - A’left;

end loop SCAN;

Variable-width ports shall be constrained using
generics. It makes for better documentation of
the relationship between the size of different
ports, provides better control on the numbering
and direction of the index and lets the VHDL
environment perform a complete width consis-
tency check automatically. Also, downstream
tools, such as synthesis, that work on the unin-
stantiated version of the entity will require size
information for the variable-width ports. This
guideline does not apply to formal parameters of
subprograms since they don’t have generics.

entity ADDER is
generic(N: NATURAL);
port(A: in VECT(1 to N);

B: in VECT(1 to N);
S: out VECT(1 to N+1));

end ADDER;

Enumerals shall be used to represent non-arith-
metic discrete values. Unless arithmetic opera-
tions have to be performed on discrete values,
enumerals provide better documentation of the
individual values. Most synthesis tools will have

a mechanism to specify numeric values for spe-
cific enumerals at the implementation-level.

type OPCODES_TYP is (
ADD, SUB, MAD, CLR, LOD);

Constants shall be used to represent limits and
parameters. It makes it easier to globally change
these limits and parameters and makes for better
documentation.

constant SIZE: NATURAL := 32;
variable MEM: array(1 to SIZE)

of INTEGER;

Processes with a sensitivity list shall not be used.
They require special treatment when they are run
during initialization since none of the signals in
the sentivity list has experienced an event and
requires a condition which is evaluated every
time the process is run, condition which must be
appropriately modified whenever the sensitivity
list is changed. A process with a loop and an
explicit wait statement better separates the initial-
ization and run-time portions of the process. This
guideline does not apply to synthesizeable
descriptions.

BETTER: process
begin

-- Initialization stuff
INITIALIZATION_CODE;

INFINITE_LOOP: loop
wait on SENSITIVITY;

-- Actual model code
STATEMENT;

end loop INFINITE_LOOP;
end process BETTER;

The ‘event attribute shall be used explicitely
when testing for a change to a particular level.
Relying on the fact that the process as been awak-
ened to assume that a signal has changed is not
robust. If more signals are added to the sensitivity
list, this assumption is no longer valid.

wait on CLOCK;
if CLOCK’event and CLOCK = ‘1’

There shall be no more than 2 process statements
in an architecture. Processes cannot be tested in
isolation and having a lot of parallelism makes
understanding and debugging an architecture dif-
ficult. A structural decomposition is more appro-
priate. When there are several processes in a

synthesizeable description, it may be difficult to
identify the portion of the description which cre-
ates innefficiencies in the synthesized hardware.
There can be additional concurent signal assigne-
ments and component instantiation statements.

Section 6. Conclusion

These guidelines are not intended to be used as a
strict set of laws to abide by under all circum-
stances, but as a starting point to make the VHDL
source code in a large model have a consistent
“look-and-feel”, reguardless of who actually
wrote it. They also aim at making the code more
portable and maintanable. Use them wisely and
adapt (or add to) them to fit your particular situa-
tion. Remember one thing: Be consistent!.

Section 7. Aknowledgements

This set of guidelines is the product of the contri-
butions, experience and comments of several
individuals. I would like to thank (in no particular
order) Himanshu Thaker, Bernard Doray, Silvana
Romagnino, Barry Willms and Parviz Yousef-
pour from Bell-Northern Research, Duncan
Kitchin and Dan Clarke from BNR Europe and
Neal Ziring from the US Department of Defense.

Section 8. References

[1] vmkr , written by Himanshu Thaker
(hemi@bnr.ca), is available via anony-
mous ftp on thor.ece.uc.edu in /pub/Vdhl/
tools/vmkr.2.7.tar.Z. and is distributed
under the terms of the GNU copyleft.

