
0018-9162/98/$10.00 © 1998 IEEE24 Computer

A
bersquare

A New Direction for
Computer
Architecture Research

dvances in integrated circuit technology will soon
allow the integration of one billion transistors on a
single chip. This is an exciting opportunity for com-
puter architects and designers; their challenge will be
to propose microprocessor designs that use this huge
transistor budget efficiently and meet the requirements
of future applications.

The real question is, just what are these future appli-
cations? We contend that current computer architec-
ture research continues to have a bias for the past in
that it focuses on desktop and server applications. In
our view, a different computing domain—personal
mobile computing—will play a significant role in dri-
ving technology in the next decade. In this paradigm,
the basic personal computing and communicating
devices will be portable and battery operated, and will
support multimedia tasks like speech recognition.

These devices will pose a different set of requirements
for microprocessors and could redirect the emphasis
of computer architecture research.

BILLION-TRANSISTOR PROCESSORS
Computer recently produced a special issue on

“Billion-Transistor Architectures.”1 The first three arti-
cles discussed problems and trends that will affect future
processor design. Seven articles from academic research
groups proposed microprocessor architectures and
implementations for billion-transistor chips. These pro-
posals covered a wide architecture space, ranging from
out-of-order designs to reconfigurable systems. At about
the same time, Intel and Hewlett-Packard presented the
basic characteristics of their next-generation IA-64 archi-
tecture, which is expected to dominate the high-perfor-
mance processor market within a few years.2

Cy
be

rs
qu

ar
e

Current computer architecture research 

continues to have a bias for the past in that it

focuses on desktop and server applications. In

our view, a different computing domain—personal

mobile computing—will play a significant role in

driving technology in the next decade. This

domain will pose a different set of requirements

for microprocessors and could redirect the

emphasis of computer architecture research.

Christoforos E. Kozyrakis
David A. Patterson
University of California, Berkeley

.



November 1998 25

It is no surprise that most of these proposals focus
on the computing domains that have shaped proces-
sor architecture for the past decade:

• The uniprocessor desktop running technical and
scientific applications, and

• the multiprocessor server used for transaction
processing and file-system workloads.

Table 1 summarizes the basic features of the pro-
posed architectures presented in the Computer special
issue. We also include two other processor implemen-
tations not in the special issue, the Trace and IA-64.
Developers of these processors have not presented
implementation details. Hence we assume that they will
have billion-transistor implementations and speculate
on the number of transistors they devote to on-chip
memory or caches. (For descriptions of these proces-
sors, see the “Using a Billion Transistors” sidebar.)

Table 1 reports the number of transistors used for
caches and main memory in each billion-transistor
processor. The amount varies from almost half the
transistor budget to 90 percent. Interestingly, only one
design, Raw, uses that budget as part of the main sys-
tem memory. The majority use 50 to 90 percent of their
transistor budget on caches, which help mitigate the
high latency and low bandwidth of external memory.

In other words, the conventional vision of future
computers spends most of the billion-transistor bud-

Table 1. Number of memory transistors in the billion-transistor micro-
processors.

No. of memory 
Architecture Key idea transistors (millions)

Advanced superscalar Wide-issue superscalar 910
processor with speculative 
execution; multilevel on-chip 
caches

Superspeculative Wide-issue superscalar 820
processor with aggressive data 
and control speculation; multilevel, 
on-chip caches

Trace Multiple distinct cores that 600
speculatively execute program 
traces; multilevel on-chip caches

Simultaneous Wide superscalar with support 810
multithreading for aggressive sharing among 

multiple threads; multilevel on-chip 
caches

Chip multiprocessor Symmetric multiprocessor; 450
system shared second-level cache

IA-64 VLIW architecture with support 600
for predicated execution and long-
instruction bundling

Raw Multiple processing tiles with 670
reconfigurable logic and memory 
interconnected through a 
reconfigurable network

Using a Billion Transistors
The first two architectures in Computer’s

survey—the advanced superscalar and
superspeculative—have very similar char-
acteristics. The basic idea is a wide super-
scalar organization with multiple execution
units or functional cores. These architectures
use multilevel caching and aggressive pre-
diction of data, control, and even sequences
of instructions (traces) to use all the avail-
able instruction level parallelism (ILP). Due
to their similarity, we group them together
and call them wide superscalar processors.

The trace processor consists of multiple
superscalar processing cores, each execut-
ing a trace issued by a shared instruction
issue unit. It also employs trace and data
prediction, and shared caches.

The simultaneous multithreading (SMT)
processor uses multithreading at the gran-
ularity of instruction issue slot to maximize
the use of a wide-issue, out-of-order super-
scalar processor. It does so at the cost of

additional complexity in the issue and con-
trol logic.

The chip multiprocessor (CMP) uses the
transistor budget by placing a symmetric
multiprocessor on a single die. There will
be eight uniprocessors on the chip, all sim-
ilar to current out-of-order processors.
Each uniprocessor will have separate first-
level caches but share a large second-level
cache and the main memory interface.

IA-64 can be considered a recent com-
mercial reincarnation of architectures
based on the very long instruction word
(VLIW), now renamed explicitly parallel
instruction computing. Based on the infor-
mation announced thus far, its major inno-
vations are the instruction dependence
information attached to each long instruc-
tion and the support for bundling multiple
long instructions. These changes attack the
problem of scaling and low code density
that often accompanied older VLIW
machines. IA-64 also includes hardware

checks for hazards and interlocks, which
helps to maintain binary compatibility
across chip generations. Finally, it supports
predicated execution through general-
purpose predication registers, which
reduces control hazards.

The Raw machine is probably the most
revolutionary architecture proposed, as it
incorporates reconfigurable logic for gen-
eral-purpose computing. The processor
consists of 128 tiles, each of which has a
processing core, small first-level caches
backed by a larger amount of dynamic
memory (128 Kbytes) used as main mem-
ory, and a reconfigurable functional unit.
The tiles interconnect in a matrix fashion
via a reconfigurable network. This design
emphasizes the software infrastructure,
compiler, and dynamic event support. This
infrastructure handles the partitioning and
mapping of programs on the tiles, as well
as the configuration selection, data rout-
ing, and scheduling.

get on redundant, local copies of data normally found
elsewhere in the system. For applications of the future,
is this really our best use of a half-billion transistors?

.



26 Computer

THE DESKTOP/SERVER DOMAIN
In optimizing processors and computer systems for

the desktop and server domain, architects often use the
popular SPECint95, SPECfp95, and TPC-C/D bench-
marks. Since this computing domain will likely remain
significant as billion-transistor chips become available,
architects will continue to use similar benchmark
suites. We playfully call such future benchmark suites
“SPECint04’’ and “SPECfp04’’ for technical/scientific
applications, and “TPC-F’’ for database workloads.

Table 2 presents our prediction of how these proces-
sors will perform on these benchmarks. We use a grad-
ing system of + for strength, 0 for neutrality, and − for
weakness.

Desktop
For the desktop environment, the wide superscalar,

trace, and simultaneous multithreading processors
should deliver the highest performance on SPECint04.
These architectures use out-of-order and advanced pre-
diction techniques to exploit most of the available
instruction level parallelism (ILP) in a single sequen-
tial program. IA-64 will perform slightly worse because
very long instruction word (VLIW) compilers are not
mature enough to outperform the most advanced hard-
ware ILP techniques—those which exploit runtime
information. The chip multiprocessor (CMP) and Raw
will have inferior performance since research has
shown that desktop applications are not highly paral-
lelizable. CMP will still benefit from the out-of-order
features of its cores.

For floating-point applications, on the other hand,
parallelism and high memory bandwidth are more
important than out-of-order execution; hence the
simultaneous multithreading (SMT) processor and
CMP will have some additional advantage.

Server
In the server domain, CMP and SMT will provide

the best performance, due to their ability to use coarse-
grained parallelism even with a single chip. Wide
superscalar, trace, or IA-64 systems will perform
worse, because current evidence indicates that out-of-

order execution provides only a small benefit to online
transaction processing (OLTP) applications.3 For the
Raw architecture, it is difficult to predict any poten-
tial success of its software to map the parallelism of
databases on reconfigurable logic and software-
controlled caches.

Software effort
For any new architecture to gain wide acceptance,

it must run a significant body of software.4 Thus the
effort needed to port existing software or develop new
software is very important. In this regard, the wide
superscalar, trace, and SMT processors have the edge,
since they can run existing executables. The same
holds for CMP, but this architecture can deliver the
highest performance only if applications are rewrit-
ten in a multithreaded or parallel fashion. As the past
decade has taught us, parallel programming for high
performance is neither easy nor automated.

In the same vein, IA-64 will supposedly run exist-
ing executables, but significant performance increases
will require enhanced VLIW compilers. The Raw
machine relies on the most challenging software devel-
opment. Apart from the requirements for sophisti-
cated routing, mapping, and runtime-scheduling tools,
the Raw processor will need new compilers or libraries
to make this reconfigurable design usable.

Complexity
One last issue is physical design complexity, which

includes the effort devoted to the design, verification,
and testing of an integrated circuit.

Currently, advanced microprocessor development
takes almost four years and a few hundred engi-
neers.1,5 Testing complexity as well as functional and
electrical verification efforts have grown steadily, so
that these tasks now account for the majority of the
processor development effort.5 Wide superscalar and
multithreading processors exacerbate both problems
by using complex techniques—like aggressive
data/control prediction, out-of-order execution, and
multithreading—and nonmodular designs (that is,
they use many individually designed multiple blocks).

Table 2. Evaluation of billion-transistor processors for the desktop/server domain. “Wide superscalar” includes the advanced 
superscalar and superspeculative processors.

Characteristic Wide superscalar Trace Simultaneous multithreading Chip multiprocessor IA-64 Raw

SPECint04 performance + + + 0 +/0 0
SPECfp04 performance + + + + + 0
TPC-F performance 0 0 + + 0 −
Software effort + + 0 0 0 −
Physical-design complexity − 0 − 0 0 +

.



November 1998 27

With the IA-64 architecture, the basic challenge is the
design and verification of the forwarding logic among
the multiple functional units on the chip.

Designs for the CMP, trace processor, and Raw
machine alleviate the problems of physical-design
complexity by being more modular. CMP includes
multiple copies of the same uniprocessor. Yet, it car-
ries on the complexity of current out-of-order designs
with support for cache coherency and multiprocessor
communication. The trace processor uses replicated
processing elements to reduce complexity. Still, trace
prediction and issue involve intratrace dependence
checking, register remapping, and intraelement for-
warding. Such features account for a significant por-
tion of the complexity in wide superscalar designs.

Similarly, the Raw design requires the design and
replication of a single processing tile and network
switch. Verification of a reconfigurable organization is
trivial in terms of the circuits, but verification of the
mapping software is also required, which is often not
trivial.

The conclusion we can draw from Table 2 is that
the proposed billion-transistor processors have been
optimized for such a computing environment, and that
most of them promise impressive performance. The
only concern for the future is the design complexity
of these architectures.

A NEW TARGET: PERSONAL MOBILE COMPUTING
In the past few years, technology drivers changed

significantly. High-end systems alone used to direct
the evolution of computing. Now, low-end systems
drive technology, due to their large volume and atten-
dant profits. Within this environment, two important
trends have evolved that could change the shape of
computing.

The first new trend is that of multimedia applica-
tions. Recent improvements in circuit technology and
innovations in software development have enabled the
use of real-time data types like video, speech, anima-
tion, and music. These dynamic data types greatly
improve the usability, quality, productivity, and enjoy-
ment of PCs.6 Functions like 3D graphics, video, and
visual imaging are already included in the most pop-
ular applications, and it is common knowledge that
their influence on computing will only increase:

• 90 percent of desktop cycles will be spent on
“media” applications by 2000;7

• multimedia workloads will continue to increase
in importance;1 and

• image, handwriting, and speech recognition will
pose other major challenges.5

The second trend is the growing popularity of
portable computing and communication devices.

Inexpensive gadgets that are small enough to fit in a
pocket—personal digital assistants (PDA), palmtop
computers, Web phones, and digital cameras—are
joining the ranks of notebook computers, cellular
phones, pagers, and video games.8 Such devices now
support a constantly expanding range of functions,
and multiple devices are converging into a single unit.

This naturally leads to greater demand for comput-
ing power, but at the same time, the size, weight, and
power consumption of these devices must remain con-
stant. For example, a typical PDA is five to eight inches
by three inches, weighs six to twelve ounces, has two to
eight Mbytes of memory (ROM/RAM), and is expected
to run on the same set of batteries for a few days to a
few weeks.8 Developers have provided a large software,
operating system, and networking infrastructure (wire-
less modems, infrared communications, and so forth)
for such devices. Windows CE and the PalmPilot devel-
opment environment are prime examples.8

A new application domain
These two trends—multimedia applications and

portable electronics—will lead to a new application
domain and market in the near future.9 In the personal
mobile-computing environment, there will be a single
personal computation and communication device,
small enough to carry all the time. This device will
incorporate the functions of the pager, cellular phone,
laptop computer, PDA, digital camera, video game,
calculator, and remote shown in Figure 1.

Its most important feature will be the interface and
interaction with the user: Voice and image input and

Figure 1. Future 
personal mobile-
computing devices 
will incorporate the
functionality of several
current portable
devices.

.



28 Computer

output (speech and pattern recognition) will be
key functions. Consumers will use these devices
to take notes, scan documents, and check the
surroundings for specific objects.9 A wireless
infrastructure for sporadic connectivity will
support services like networking (to the Web
and for e-mail), telephony, and global posi-
tioning system (GPS) information. The device
will be fully functional even in the absence of
network connectivity.

Potentially, such devices would be all a per-
son needs to perform tasks ranging from note

taking to making an online presentation, and from
Web browsing to VCR programming. The numerous
uses of such devices and the potentially large volume
lead many to expect that this computing domain will
soon become at least as significant as desktop com-
puting is today.

A different type of microprocessor
The microprocessor needed for these personal

mobile-computing devices is actually a merged gen-
eral-purpose processor and digital-signal processor
(DSP) with the power budget of the latter. Such micro-
processors must meet four major requirements:

• high performance for multimedia functions,
• energy and power efficiency,
• small size, and
• low design complexity.

The basic characteristics of media-centric applica-
tions that a processor needs to support were specified
by Keith Diefendorff and Pradeep Dubey:6

• Real-time response. Instead of maximum peak
performance, processors must provide worst case
guaranteed performance that is sufficient for real-
time qualitative perception in applications like
video.

• Continuous-media data types. Media functions
typically involve processing a continuous stream
of input (which is discarded once it is too old)
and continuously sending the results to a display
or speaker. Thus, temporal locality in data mem-
ory accesses—the assumption behind 15 years of
innovation in conventional memory systems—no
longer holds. Remarkably, data caches may well
be an obstacle to high performance for continu-
ous-media data types. This data is typically nar-
row (pixel images and sound samples are 8 to 16
bits wide, rather than the 32- or 64-bit data of
desktop machines). The capability to perform
multiple operations on such data types in a sin-
gle wide data path is desirable.

• Fine-grained parallelism. Functions like image,

voice, and signal processing require performing
the same operation across sequences of data in a
vector or SIMD (single-instruction, multiple-data)
fashion.

• Coarse-grained parallelism. In many media appli-
cations, a pipeline of functions process a single
stream of data to produce the end result.

• High instruction reference locality. Media func-
tions usually have small kernels or loops that dom-
inate the processing time and demonstrate high
temporal and spatial locality for instructions.

• High memory bandwidth. Applications like 3D
graphics require huge memory bandwidth for
large data sets that have limited locality.

• High network bandwidth. Streaming data—like
video or images from external sources—requires
high network and I/O bandwidth.

With a budget of much less than two watts for the
whole device, the processor must be designed with a
power target of less than one watt. Yet, it must still
provide high performance for functions like speech
recognition. Power budgets close to those of current
high-performance microprocessors (tens of watts) are
unacceptable for portable, battery-operated devices.
Such devices should be able to execute functions at the
minimum possible energy cost.

After energy efficiency and multimedia support, the
third main requirement for personal mobile comput-
ers is small size and weight. The desktop assumption
of several chips for external cache and many more for
main memory is infeasible for PDAs; integrated solu-
tions that reduce chip count are highly desirable. A
related matter is code size, because PDAs will have
limited memory to minimize cost and size. The size of
executables is therefore important.

A final concern is design complexity—a concern in
the desktop domain as well—and scalability. An archi-
tecture should scale efficiently not only in terms of per-
formance but also in terms of physical design. Many
designers consider long interconnects for on-chip com-
munication to be a limiting factor for future proces-
sors. Long interconnects should therefore be avoided,
since only a small region of the chip will be accessible
in a single clock cycle.10

Processor evaluation
Table 3 summarizes our evaluation of the billion-

transistor architectures with respect to personal mobile
computing.

As the table shows, most of these architectures offer
only limited support for personal mobile computing.

Real-time response. Because they use out-of-order
techniques and caches, these processors deliver quite
unpredictable performance, which makes it difficult to
guarantee real-time response.

Most of the billion-
transistor 

architectures offer
only limited support
for personal mobile

computing.

.



November 1998 29

Continuous-media data types. Hardware-controlled
caches complicate support for continuous-media data
types.

Parallelism. The billion-transistor architectures
exploit fine-grained parallelism by using MMX-like
multimedia extensions or reconfigurable execution
units. Multimedia extensions expose data alignment
issues to the software and restrict the number of vec-
tor or SIMD elements operated on by each instruc-
tion. These two factors limit the usability and
scalability of multimedia extensions. Coarse-grained
parallelism, on the other hand, is best on the simul-
taneous multithreading, CMP, and Raw architectures.

Code size. Instruction reference locality has tradi-
tionally been exploited through large instruction

caches. Yet designers of portable systems would pre-
fer reduced code size, as suggested by the 16-bit
instruction sets of Mips and ARM. Code size is a
weakness for IA-64 and any other architecture that
relies heavily on loop unrolling for performance, as
such code will surely be larger than that of 32-bit
RISC machines. Raw may also have code size prob-
lems, as programmers must “program’’ the reconfig-
urable portion of each data path. The code size
penalty of the other designs will likely depend on how
much they exploit loop unrolling and in-line proce-
dures to achieve high performance.

Memory bandwidth. Cache-based architectures have
limited memory bandwidth. Limited bandwidth
becomes a more acute problem in the presence of multi-

Table 3. Evaluation of billion-transistor processors for the personal mobile-computing domain. “Wide superscalar” includes the advanced
superscalar and superspeculative processors.

Wide Simultaneous Chip 
Characteristic superscalar Trace multithreading multiprocessor IA-64 Raw Comments

Real-time − − 0 0 0 0 Out-of-order execution, branch
response prediction, and/or caching 

techniques make execution 
unpredictable. 

Continuous 0 0 0 0 0 0 Caches do not efficiently 
data types support data streams with 

little locality.
Fine-grained 0 0 0 0 0 + MMX-like extensions are 

parallelism less efficient than full vector 
support. Reconfigurable logic 
can use fine-grained parallelism.

Coarse-grained 0 0 + + 0 +
parallelism

Code size 0 0 0 0 − 0 For the first four architectures, 
the use of loop unrolling and 
software pipelining may 
increase code size. IA-64’s 
VLIW instructions and Raw’s 
hardware configuration bits 
lead to larger code sizes.

Memory 0 0 0 0 0 0 Cache-based designs interfere 
bandwidth with high memory bandwidth 

for streaming data.
Energy/power − − − 0 0 − Out-of-order execution 

efficiency schemes, complex issue logic, 
forwarding, and reconfigurable 
logic have power penalties.

Physical-design − 0 − 0 0 +
complexity

Design scalability − 0 − 0 0 0 Long wires—for forwarding 
data or for reconfigurable inter-
connects—limit scalability.

.



30 Computer

ple data sequences (with little locality) streaming through
a system—exactly the case with most multimedia data.

The potential use of streaming buffers and cache
bypassing would help sequential bandwidth, but such
techniques fail to address the bandwidth requirements
of indexed or random accesses. In addition, it would
be embarrassing to rely on cache bypassing for per-
formance when a design dedicates 50 to 90 percent of
the transistor budget to caches.

Energy/power efficiency. Despite the importance to
both portable and desktop domains,1 most designs
do not address the energy/power efficiency issue.
Several characteristics of the billion-transistor proces-
sors increase the energy consumption of a single task
and the power the processor requires. 

These characteristics include redundant computa-
tion for out-of-order models, complex issue and
dependence analysis logic, fetching a large number of
instructions for a single loop, forwarding across long
wires, and the use of typically power-hungry recon-
figurable logic.

Design scalability. As for physical design scalability,
forwarding results across large chips or communica-
tion among multiple cores or tiles is the main prob-
lem of most billion-transistor designs. Such com-
munication already requires multiple cycles in several
high-performance, out-of-order designs. Simple
pipelining of long interconnects is not a sufficient
solution as it exposes the timing of forwarding or
communication to the scheduling logic or software. It
also increases complexity.

The conclusion to draw from Table 3 is that the pro-
posed processors fail to meet many of the require-
ments of the new computing model. Which begs the
question, what design will?

VECTOR IRAM
Vector IRAM,1 the architecture proposed by our

research group, is our first attempt to design an archi-
tecture and implementation that match the require-
ments of the mobile personal environment.

We base vector IRAM on two main ideas: vector
processing and the integration of logic and DRAM on
a single chip. The former addresses many demands of
multimedia processing, and the latter addresses the
energy efficiency, size, and weight demands of portable
devices. Vector IRAM is not the last word on com-
puter architecture research for mobile multimedia
applications, but we hope it proves a promising ini-
tial step.

The vector IRAM processor consists of an in-order,
dual-issue superscalar processor with first-level caches,
tightly integrated with a vector execution unit that
contains eight pipelines. Each pipeline can support
parallel operations on multiple media types and DSP
functions. The memory system consists of 96 Mbytes
of DRAM used as main memory. It is organized in a
hierarchical fashion with 16 banks and eight sub-
banks per bank, connected to the scalar and vector
unit through a crossbar. This memory system provides
sufficient sequential and random bandwidth even for
demanding applications.

External I/O is brought directly to the on-chip mem-
ory through high-speed serial lines (instead of paral-
lel buses), operating in the Gbit/s range.

From a programming point of view, vector IRAM
is comparable to a vector or SIMD microprocessor.

Comparison with billion-transistor architectures
We asked reviewers—a group that included most of

the architects of the billion-transistor architectures—
to grade vector IRAM. Table 4 presents the median
grades they gave vector IRAM for the two computing
domains—desktop/server and mobile personal com-
puting. We requested reviews, comments, and grades
from all the architects of the processors in Computer’s
September 1997 special issue, and although some were
too busy, most were kind enough to respond.

Obviously, vector IRAM is not competitive within
the desktop/server domain. Indeed, this weakness in
the conventional computing domain is probably the
main reason some are skeptical of the importance of
merged logic-DRAM technology. As measured by
SPECint04, we do not expect vector processing to ben-
efit integer applications. Floating-point intensive appli-
cations, on the other hand, are highly vectorizable. All
applications would still benefit from the low memory
latency and high memory bandwidth.

In the server domain, we expect vector IRAM to per-
form poorly due to its limited on-chip memory. A poten-
tially different evaluation for the server domain could
arise if we examine workloads for decision support

Table 4. Evaluation of vector IRAM for two computing domains.

Domain Characteristics Rating

Desktop/server computing SPECint04 −
SPECfp04 +
TPC-F 0
Software effort 0
Physical-design complexity 0

Personal mobile computing Real-time response +
Continuous data types +
Fine-grained parallelism +
Coarse-grained parallelism 0
Code size +
Memory bandwidth +
Energy/power efficiency +
Design scalability 0

.



instead of online transaction processing.11 In decision
support, small code loops with highly data-parallel oper-
ations dominate execution time. Architectures like vec-
tor IRAM and Raw should thus perform significantly
better on decision support than on OLTP workloads.

In terms of software effort, vectorizing compilers
have been developed and used in commercial envi-
ronments for decades. Additional work is required to
tune such compilers for multimedia workloads and
make DSP features and data types accessible through
high-level languages. In this case, compiler-delivered
MIPS/ watt is the proper figure of merit.

As for design complexity, vector IRAM is a highly
modular design. The necessary building blocks are the
in-order scalar core, the vector pipeline (which is repli-
cated eight times), and the basic memory array tile.
The lack of dependencies within a vector instruction
and the in-order paradigm should also reduce the ver-
ification effort for vector IRAM.

The open questions are what complications arise
from merging high-speed logic with DRAM, and what
is the resulting impact on cost, yield, and testing.
Many DRAM companies are investing in merged
logic-DRAM fabrication lines, and many companies
are exploring products in this area. Also, our project
sent a nine-million-transistor test chip to fabrication
this fall. It will contain several key circuits of vector
IRAM in a merged logic-DRAM process. We expect
the answer to these questions to be clearer in the next
year. Unlike the other billion-transistor proposals, vec-
tor IRAM’s challenge is the implementation technol-
ogy rather than the microarchitectural design.

Support for personal mobile computing
As mentioned earlier, vector IRAM is a good match

to the personal mobile-computing model. The design
is in-order and does not rely on data caches, making
the delivered performance highly predictable—a key
quality in supporting real-time applications. The vec-
tor model is superior to limited, MMX-like, SIMD
extensions for several reasons:

• It provides explicit control of the number of ele-
ments each instruction operates on.

• It allows scaling of the number of elements each
instruction operates on without changing the
instruction set architecture.

• It does not expose data packing and alignment
to software, thereby reducing code size and
increasing performance.

• A single design database can produce chips of
varying cost-performance ratios.

Since most media-processing functions are based on
algorithms working on vectors of pixels or samples,
it’s not surprising that a vector unit can deliver the

highest performance. The presence of short
vectors in some applications does not pose a
performance problem if the start-up time of
each vector instruction is pipelined and chain-
ing (the equivalent of forwarding in vector
processors) is supported, as we intend.

The code size of programs written for vec-
tor processors is small compared to that of
other architectures. This compactness is possi-
ble because a single vector instruction can spec-
ify whole loops.

Memory bandwidth, both sequential and random,
is available from the on-chip hierarchical DRAM.

Vector IRAM includes a number of critical DSP fea-
tures like high-speed multiply accumulates, which it
achieves through instruction chaining. Vector IRAM
also provides auto-increment addressing (a special
addressing mode often found in DSP chips) through
strided vector memory accesses.

We designed vector IRAM to be programmed in
high-level languages, unlike most DSP architectures.
We did this by avoiding features like circular or bit-
reversed addressing and complex instructions that
make DSP processors poor compiler targets.12 Like all
general-purpose processors, vector IRAM provides
virtual memory support, which DSP processors do not
offer.

We expect vector IRAM to have high energy effi-
ciency as well. Each vector instruction specifies a large
number of independent operations. Hence, no energy
needs to be wasted for fetching and decoding multiple
instructions or checking dependencies and making
various predictions. In addition, the execution model
is strictly in order. Vector processors need only lim-
ited forwarding within each pipeline (for chaining)
and do not require chaining to occur within a single
clock cycle. Hence, designers can keep the control
logic simple and power efficient, and eliminate most
long wires for forwarding.

Performance comes from multiple vector pipelines
working in parallel on the same vector operation, as
well as from high-frequency operation. This allows
the same performance at lower clock rates—and lower
voltages—as long as we add more functional units. In
CMOS logic, energy increases with the square of the
voltage, so such trade-offs can dramatically improve
energy efficiency. DRAM has been traditionally opti-
mized for low power, and the hierarchical structure
provides the ability to activate just the sub-banks con-
taining the necessary data.

As for physical-design scalability, the processor-mem-
ory crossbar is the only place were vector IRAM uses
long wires. Still, the vector model can tolerate latency
if sufficient fine-grained parallelism is available. So deep
pipelining is a viable solution without any hardware or
software complications in this environment.

November 1998 31

Vector IRAM’s
challenge is in the

implementation 
technology rather

than the microarchi-
tectural design.

.



32 Computer

For almost two decades, architecture research
has focused on desktop or server machines. As
a result, today’s microprocessors are 1,000

times faster for desktop applications. Nevertheless,
in doing so, we are designing processors of the future
with a heavy bias toward the past. To design suc-
cessful processor architectures for the future, we first
need to explore future applications and match their
requirements in a scalable, cost-effective way.

Personal mobile computing offers a vision of the
future with a much richer and more exciting set of
architecture research challenges than extrapolations
of the current desktop architectures and benchmarks.
Vector IRAM is an initial approach in this direction.

Put another way, which problem would you rather
work on: improving performance of PCs running
FPPPP—a 1982 Fortran benchmark used in
SPECfp95—or making speech input practical for
PDAs? It is time for some of us in the very successful
computer architecture community to investigate archi-
tectures with a heavy bias for the future. ❖

Acknowledgments
The ideas and opinions presented here are from dis-

cussions within the IRAM group at UC Berkeley. In
addition, we thank the following for their useful feed-
back, comments, and criticism on earlier drafts, as
well as the grades for vector IRAM: Anant Agarwal,
Jean-Loup Baer, Gordon Bell, Pradeep Dubey, Lance
Hammond, Wang Wen-Hann, John Hennessy, Mark
Hill, John Kubiatowicz, Corinna Lee, Henry Levy,
Doug Matzke, Kunle Olukotun, Jim Smith, and
Gurindar Sohi.

This research is supported by DARPA (DABT63-
C-0056), the California State MICRO program, NSF
(CDA-9401156), and by research grants from LG
Semicon, Hitachi, Intel, Microsoft, Sandcraft,
SGI/Cray, Sun Microsystems, Texas Instruments, and
TSMC.

References
1. D. Burger and J. Goodman, “Billion-Transistor Archi-

tectures,” Computer, Sept. 1997, pp. 46-47.
2. J. Crawford and J. Huck, “Motivations and Design

Approach for the IA-64 64-bit Instruction Set Architec-
ture,” Microprocessor Forum, Micro Design Resources,
1997.

3. K. Keeton et al., “Performance Characterization of the
Quad Pentium Pro SMP Using OLTP Workloads,” Proc.
1998 Int’l Symp. Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., 1998, pp. 15-26.

4. J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, 2nd ed., Morgan Kaufmann,

San Francisco, 1996.
5. J. Wilson et al., “Challenges and Trends in Processor

Design,” Computer, Jan. 1998, pp. 39-50.
6. K. Diefendorff and P. Dubey, “How Multimedia Work-

loads Will Change Processor Design,” Computer, Sept.
1997, pp. 43-45.

7. W. Dally, “Tomorrow’s Computing Engines,” keynote
speech, Fourth Int’l Symp. High-Performance Computer
Architecture, Feb. 1998.

8. T. Lewis, “Information Appliances: Gadget Netopia,”
Computer, Jan. 1998, pp. 59-66.

9. G. Bell and J. Gray, Beyond Calculation: The Next 50
Years of Computing, Springer-Verlag, Feb. 1997.

10. D. Matzke, “Will Physical Scalability Sabotage Perfor-
mance Gains?” Computer, Sept. 1997, pp. 37-39.

11. P. Trancoso et al., “The Memory Performance of DSS
Commercial Workloads in Shared-Memory Multi-
processors,” Proc. Third Int’l Symp. High-Performance
Computer Architecture, IEEE CS Press, Los Alamitos,
Calif., 1997, pp. 250-260.

12. J. Eyre and J. Bier, “DSP Processors Hit the Main-
stream,” Computer, Aug. 1998, pp. 51-59.

Christoforos E. Kozyrakis is currently pursuing a PhD
degree in computer science at the University of Cali-
fornia, Berkeley. Prior to that, he was with ICS-
FORTH, Greece, working on the design of single-chip
high-speed network routers. His research interests
include microprocessor architecture and design, mem-
ory hierarchies, and digital VLSI systems. Kozyrakis
received a BSc degree in computer science from the
University of Crete, Greece. He is a member of the
IEEE and the ACM.

David A. Patterson teaches computer architecture at
the University of California, Berkeley, and holds the
Pardee Chair of Computer Science. At Berkeley, he
led the design and implementation of RISC I, likely
the first VLSI reduced instruction set computer. He
was also a leader of the Redundant Arrays of Inex-
pensive Disks (RAID) project, which led to the high-
performance storage systems produced by many
companies. Patterson received a PhD in computer sci-
ence from the University of California, Los Angeles.
He is a fellow of the IEEE Computer Society and the
ACM, and is a member of the National Academy of
Engineering.

Contact the authors at the Computer Science Divi-
sion, University of California, Berkeley, CA 94720-
1776; {kozyraki, patterson}@cs.berkeley.edu.

.


