
A VHDL Speci�cation of a Shared Memory Parallel
Machine for Babel�

W. Hansy, J.J. Ruzz, F. S�aenzz, S. Winklery

y RWTH Aachen, Lehrstuhl f�ur Informatik II, D-52056 Aachen, Germany,
fhans,winklerg@zeus.informatik.rwth-aachen.de

z Universidad Complutense de Madrid (UCM), Departamento de Inform�atica y
Autom�atica, 28040 Madrid, Spain, ffernan,jjruzg@dia.ucm.es, Fax # : +34-1-3944687,

Tel # : +34-1-3944356

Abstract

We present an abstract machine designed for the parallel execution of functional

logic programs, i. e. Babel. It is accomplished utilizing a shared memory model.

E�ciency is gained by using the same stack mechanisms as the WAM, i.e. the

fast reclamation of memory during backtracking is maintained despite the parallel

extensions.

In addition to the strict behaviour of programs (e.g. in Prolog), Babel o�ers

non-strict functions that do not necessarily demand all of the arguments for the

evaluation. We study the work load behaviour and the introduced restrictions im-

posed by the insistence on the fast stack mechanisms. The speci�cation is carried

out in the hardware description language VHDL o�ering simulation facilities, and

having a temporal model which allows to gain a performance study of the par-

allel system. We present the results obtained from the simulation of the VHDL

speci�cation, showing the speed-ups gained with di�erent numbers of processors.

1 Introduction

Functional programming languages are based on equations and the lambda calculus. They
o�er higher order functions and a strong type system. Their execution model is based on
the reduction principle. The operational semantics can be eager (innermost reduction) or
lazy (outer reduction). Innermost reduction tries to call each function when all of their
arguments are evaluated. Outer reduction only demands argument evaluation when they
are actually needed.

Logic programming languages rely on the �rst order predicate logic; they o�er the
power of logical variables, uni�cation, and nondeterminism. Their (more complex) exe-
cution model is based on resolution. Operational semantics of Prolog (the best known
representative of logic programming languages) is based on SLD-resolution.

Many languages have been proposed for combining the advantages of functional and
logic programming languages [19, 4, 1, 16, 2, 9]. While logic functional programming
extends logic programming with functional features [4], functional logic programming
extends functional programming with �rst order logical variables and nondeterminism [19].

�This work was supported by the Spanish PRONTIC project TIC92-0793-C02-01 and by the German

DFG-grant In 20/6-1.

1

Babel [19] is a functional logic programming language that embodies both the functional
and logical paradigms. Its operational semantics is based on narrowing, a mechanism that
subsumes SLD-resolution and reduction by performing rewriting on terms, and uni�cation.

The extension to a parallel execution model for an innermost reduction mechanism is
feasible because argument evaluation can be achieved in parallel due to the independence
between arguments and the strictness of the functions in all the arguments 1.

One representative parallel model for logic programming is the independent And par-
allel execution model (IAP) [11], which is based on the restricted And parallel execution
model (RAP) [8]. IAP exploits the parallel execution of goals provided that they are
independent. Two goals are independent if they do not share logical variables. This re-
striction is needed to avoid the problems that arise when a logical variable is instantiated
to di�erent values.

Several parallel execution models have been proposed for the combination of both func-
tional and logic programming paradigms [13, 22, 15]. All of them adapt the graph-based
sequential machine [14] to a parallel system. Our approach incorporates a more sophis-
ticated memory management [17] relying on the stack-based mechanism widely used in
other implementations (e.g. in the WAM [23]). Furthermore, we follow the strict parallel
model [21] applying the concepts of And-parallelism embodied in logic programming to
functional logic programming. Moreover, we modify the non-strict parallel model of [21]
in order to develop the suitable semantics.

Di�erent concepts have been proposed for implementing functional logic languages.
Beginning with graph-oriented narrowing in the functional way [14], other more e�cient
approach has been proposed [17]. The advantages of the latter approach rely on the fact
that most of the e�cient techniques present in the Warren abstract machine (WAM) [23]
are retained in the design of the functional logic system.

In this report a parallel stack-based non-strict model for Babel is developed and re�ned
through several stages. We �rstly sketch the parallel model informally and point out
the ideas of the stack-based model. Finally we validate both the speci�cation and the
machine by using the hardware description language VHDL. This language provides a
well suited speci�cation tool that allows the functional validation of the parallel system,
too. Moreover, since VHDL has a temporal model, is is possible to simulate at a very low-
level stage the behaviour of the system. We have designed a basic shared memory system
which allows us to take measurements concerning memory access timings. We compute
the speed-ups of a benchmark program by means of the simulation of the speci�cation,
which yields the absolute timings regarding the execution of the program running on a
given number of processors. Since we obtain timings close to an actual parallel system,
we are able to take relevant design decisions for optimization purposes and even for the
development of special hardware able to run parallel Babel programs.

This paper is organized as follows: Section 2 briey presents an innermost �rst order
version of Babel. In Section 3, the exploited source of parallelism is introduced, giving
a preliminary view of the computational mechanism. Section 4 presents the stack-based
parallelismmodel. The architecture of a parallel machine together with the instruction set
and the compilation scheme is presented in Section 5 which coincides with the proposed
parallelism model. The hardware description language VHDL is used in Section 6 to
specify and validate the parallel machine. Section 7 sketches the �rst preliminary results

1A function f is said to be strict in its i-th argument i� f(a1; : : : ; ai; : : : ; an) is unde�ned whenever

ai is unde�ned.

2

of the parallel system running some selected benchmarks. Finally, Section 8 summarizes
the conclusions and points out the direction future work may take.

2 The Babel Language

Babel is a functional logic language with a constructor discipline 2 and a polymorphic type
system. It has a functional syntax and uses narrowing [20] as its evaluation mechanism.
For the sake of clarity, we will consider the �rst order subset of Babel with the leftmost
innermost narrowing strategy applied 3.

A Babel program consists of a �nite sequence of function de�nitions and can be queried
with a goal expression. Each function f is de�ned by a �nite sequence of rules, where each
rule has the form:

f(t1; : : : ; tn)| {z }
left hand side (lhs)

:= fB !g| {z }
optional guard

M|{z}
body

:

| {z }
right hand side (rhs)

where B is a Boolean expression, andM is an arbitrary expression. The rules must satisfy
the following conditions:

1. Left linear data pattern: ti are data terms, that share no variables, altogether.

2. Restrictions on free variables: any variable that occurs only in the rhs is called free.
Free variables are allowed to occur in the guard, but not in the body.

3. Non ambiguity: Babel functions are (partial) functions in the mathematical sense,
i.e. for each tuple of (ground) arguments, there is at most one result. This is ensured
by special syntactic restrictions (see [19] for details) 4.

A term t is either a (logical) variable (denoted by an identi�er beginning with a capital
letter) or an application of a n-ary data constructor c 2 DCn to n argument terms:

t ::=X % variable
j c(t1 : : : tn) % application of a n-ary data constructor c

An expression M 2 Exp has the form:
M ::=X % variable
j '(M1; : : : ;Mn) % ' is a n-ary function or constructor symbol
j B !M1f2M2g % if B then M1 else unde�ned f else M2g

Several built-ins such as conjunction (^), disjunction (_), and Boolean negation (:) are
also supported. Negation is de�ned by:

:false := true: :true := false:

The language also includes weak equality de�ned by the following rules:

2Constructor discipline means that constructor and function symbol are distinguished although it is

possible to match constructor symbols with uninterpreted function symbols.
3The extension to the higher order version introduces no restrictions.
4We are allowed to remove the condition about left linearity in the eager semantics because there is

no delay of the uni�cation to the lhs, as happens in an uni�cation-by-demand scheme.

3

()
(c(X1; : : : ;Xn) = c(Y1; : : : ; Yn)) :=(X1 = Y1) ^ : : : ^ (Xn = Yn): % c 2 DCn; n > 0
(c(X1; : : : ;Xn) = d(Y1; : : : ; Ym)):=false: % c 2 DCn; d 2 DCm

% c 6= d;_n 6= m
We consider the operational semantics de�ned by the eager narrowing mechanism that
evaluates function and constructor arguments in a leftmost innermost order, except the
built-in non-strict functions (conditional, biconditional, conjunction, and disjunction).

Let M � f(M1; : : : ;Mn) be an expression and let f(t1; : : : ; tn) := M 0 be a variant of
a rule sharing no variables with M . Moreover, let � � � be the most general uni�er of
M and f(t1; : : : ; tn), i.e. the minimal substitution (of variables by expressions) such that
M� is syntactically identical to f(t1; : : : ; tn)�. Then, M can be narrowed (in one step) to
M 00 �M 0� with answer substitution � (denoted by M =)� M

00).
In order to cope with the built-in non-strict functions, the basic narrowing mechanism

is extended with the following narrowing rules:
(false ^ B) =)" false (true _B) =)" true

(true ^ B) =)" B (false _B) =)" B

(true!M) =)" M (true!M12M2) =)" M1 (false!M12M2) =)" M2

Where

" denotes the empty substitution ("(X) = X;8X 2 V ar).
The one step narrowing relation =)�� Exp�Exp where � : V ar ! Exp is canonically

extended to arbitrary expressions:

�
Mi =)� Ni

'(M1; : : : ;Mn) =)� '(M1�; : : : ;Ni; : : : ;Mn�)

�
B =)� B

0

(B !M1f2M2g) =)� (B0!M1�f2M2�g)

The narrowing sequence of an expression M is denoted by the transitive reexive clo-
sure

�
=)� of =)�0 with the composition of substitutions. A sequence of steps M =)�1

: : : =)�m M 0 is called a computation of the goal M with substitution � := �1 � : : : � �m.
The result of the narrowing can yield:

� success: M
�

=)� t, t 2 Term with answer substitution �,

� failure: M
�

=)� N , N 62 Term and =)� cannot be applied to N anymore, or

� non-termination.

In the following we consider only the (sequential) leftmost innermost narrowing strategy.
This means that expressions at leftmost innermost positions are narrowed �rst. When
dealing with conjunctions and disjunctions we call false and true de�nitory values, re-
spectively, because such a result of one operand determines the outcome of the whole
con-/disjunction.

Example 1. A Babel function de�nition for append. The classical procedure
for append is de�ned in Babel:

append([];Xs) := Xs:

append([XjXs]; Y s) := [Xjappend(Xs; Y s)]:

4

It can be used in a Prolog like fashion, because of the use of logical variables.
Therefore, we can use it either to append two lists, to compute list di�erences,
or to test sublists of lists. Moreover, Prolog programs can be straightforwardly
translated into Babel programs. For instance, the following Prolog procedure:

append([];Xs;Xs):
append([XjXs]; Y s; [XjZs]) : � append(Xs; Y s; Zs):
is translated into:
append([];Xs;Xs) := true:

append([XjXs]; Y s; [ZjZs]) := Z = X ^ append(Xs; Y s; Zs)! true:

Prolog notation is allowed in Babel as a syntactic `sugar' of the functional
de�nition.

3 Exploiting And-parallelism

Several sources of parallelism for Babel can be considered: independent And parallelism
[8, 11], Or parallelism [24], Stream parallelism [6], and Uni�cation parallelism [7] for logic
programming. Independent And parallelism consists of the parallel execution of indepen-
dent goals in a clause. Or parallelism consists of the parallel execution of clauses in a
procedure. Stream parallelism exploits the parallelism of goals that share common vari-
ables in a producer-consumer scheme. Uni�cation parallelism performs parallel uni�cation
of the arguments of the literal being solved with the corresponding clause heads. We will
focus our attention on a suitable form of independent And parallelism for the functional
logic programming paradigm. Our aim is the parallel execution of functional arguments
on the right hand side of the rules. The term And parallelism originates from Prolog
and denotes the kind of parallelism which is exploited for the arguments (literals) of the
conjunction that represents the clause body. We adopt this kind of parallelism for Babel
and apply it not only to the conjunction but also to all the other built-ins and user de-
�ned functions. Although another notion, e.g. subexpression parallelism, could be more
adequate, we still call it And-parallelism in order to follow the previous nomenclature
[13, 22, 15].

To start with, we present the topics related to the parallel computational mechanism
surrounding the strict functions. Later, we extend this mechanism in order to cope with
the built-in non-strict functions.

3.1 Parallel Computational Mechanism for Strict Functions

As mentioned above, we are interested in the parallel execution of arguments belonging
to right hand sides of rules. An expression M de�ning the rhs of a rule has, in general,
functional arguments (subexpressions with a function symbol as the root node). The
parallel evaluation consists of the parallel execution of those functional arguments which
meet the following independence conditions:

� the functional arguments are independent, i.e., two arguments are independent if they
do not share any variables at run time.
� one of the functional arguments is not a descendant in the syntactic tree of another
functional argument.

5

The �rst condition avoids the problems that arise when a variable, common to several
expressions, is bound to di�erent values simultaneously. Therefore, if a variable is bound
to a ground term at a given program point, the expressions to which that variable belongs
may become independent. This is the typical condition imposed in the And parallelism
model (see [8, 11]).

The second condition states that a functional argument cannot be executed in parallel
with one of its proper subexpressions. This is imposed in order to avoid the suspension
that occurs when the functional argument requires the outcome of its syntactical son.
Such suspensions imply a run-time management of synchronization between nodes in
the syntax tree, therefore resulting in an extra overhead in the exploitation of parallelism.
With our proposal, this kind of synchronization is restricted to be identi�ed and annotated
at compile-time.

In [13], a machine based on the unrestricted And parallelism is presented which is ca-
pable of evaluating functional arguments and their own subexpressions in parallel. There-
fore, there is no need for both the restrictions. [15] presents a system in which the second
condition is partially removed, a functional argument and its children are allowed to be
executed in parallel. The experimental results of these systems will show whether the
extra overhead is worthwhile.

In the following example we can see how these conditions are applied to a particular
case.

Example 2.

Consider the recursive rule for attening lists:
flatten([HjT]) := append(flatten(H); flatten(T)):

We say that append (strictly) depends on flatten(H) and flatten(T) because
they are functional arguments of append. We say that flatten(T) (condition-
ally) depends on flatten(H) because they can be executed in parallel if H
and T can be proved to share no variables.

The system presented in [21] generates the following parallel rule.
flatten([HjT]) := let cpar(indep(H;T);

A1 := flatten(H), A2 := flatten(T))
in append(A1; A2):

It means that flatten(H) and flatten(T) will be executed in parallel if H and
T are independent (�rst condition), otherwise a sequential execution will be
performed. Anyway, append must wait for their computed results (second
condition).

Next, we will describe briey both the forward and the backward computational mech-
anism.

3.1.1 Forward Computation

Let '(M1; : : : ;Mn) be an expression belonging to the rhs of a rule, assuming the parallel
execution of the arguments Mi(1 � i � n). If successful results are computed for all the
arguments, then we have successfully reached the join point of the parallel call.

6

3.1.2 Backward Computation

Let us suppose that a failure is computed for the i-th argument position in the �rst parallel
call invocation (i.e., inside state [10]). Then we are allowed to discard the current parallel
computation, since there is no option to deliver any successful computation.

If the backtracking course reaches a previously computed parallel call (i. e. outside
state) then we look for the rightmost argument position i with pending alternatives. The
arguments to the right of i are reset and a new solution is requested from i. In the
meantime, arguments to the right of i are spawned in parallel, anticipating subsequent
work.

3.2 Parallel Computational Mechanism for Non-strict Functions

In this section we extend the basic strict parallel model in order to cope with the class
of functions that can yield a de�nitory value, even if some arguments are unde�ned.
The logical conjunction and disjunction, together with the conditional and biconditional
functions belong to that class. For instance, the declarative semantics of the conjunction
when one of the arguments yields false is also false, whatever the results of the remaining
arguments are. The way in which the operational semantics of such non-strict functions
is de�ned determines the operational behaviour of the system. At this point, we may
consider two possible approaches.

In the �rst approach we can think of a scheme such that the (independent) arguments
of the non-strict functions are allowed to be executed in parallel until one of them returns
a de�nitory result. When this is achieved, we discard the outcomes of the remaining
arguments and continue with the next narrowing step. In this way we can obtain solutions
that cannot be achieved in the left-to-right sequential order, since we can consider the
case in which an argument to the left of a de�nitory position is unde�ned (i.e., a failure).
This scheme implies that the evaluation order of arguments is not �xed, and moreover
becomes unpredictable. Although we occasionally obtain more solutions, there is the risk
of running into an unexpected in�nite computation branch, and thus becoming unable to
compute the remaining solutions.

A more conservative approach relies on both getting the same solutions as the sequen-
tial scheme and maintaining the sequential order of solutions. In this way nondeterministic
computations are avoided, allowing sequential-like nondeterminism. To achieve this goal
we must pay attention to the de�nitory argument positions5, selecting the leftmost one
and discarding the results of the arguments to its right. Only the bindings up to the
selected argument are kept in the success substitution and the others are discarded.

We develop the parallel system considering the second approach. and discuss both the
forward and the backward computation.

3.2.1 Forward Computation

Let '(M1; : : : ;Mn) be a non-strict function. As soon as a de�nitory result for the i-th
argument is computed we pay attention to the arguments to the left of Mi. It may be
the case that the arguments have already been computed, or not all of them have been
computed. If the latter case holds, further de�nitory values may be computed. Eventu-
ally when all of the arguments to the left of the leftmost de�nitory argument position j

5The argument positions delivering a de�nitory value.

7

have been computed, we are committed to the bindings of arguments M1; : : : ;Mj, dis
carding those of Mj+1; : : : ;Mn. If there is no de�nitory value at all, we simply wait for
all arguments as in the sequential case.

3.2.2 Backward Computation

Let us consider that a failure is computed for the i-th argument position in inside state.
We must wait for the arguments to the left of i before we backtrack outside of the parallel
call, if some of them return de�nitory values. Then if the arguments to the left of the
de�nitory argument have returned non-failed, non-de�nitory values, we simply continue
with forward execution (out of the parallel call). Otherwise, we backtrack out of the
parallel call.

If the backtracking course reaches an outside state we look for the rightmost argument
position i with pending alternatives. The arguments to the right of i are reset and a new
solution for i is requested. In the meantime, the arguments to the right of i are spawned
in parallel. From this point, the behaviour is as the forward computation. But in the case
of failure we always look for the rightmost argument with alternatives to try a redo.

The previous scheme explores the sequential narrowing path ensuring that all the
sequential solutions are found in the expected order.

4 An E�cient Stack-based Model to Support Paral-

lelism

One of the most important features of the Warren abstract machine (WAM) [23] is the
e�cient management of data structures. For instance, deallocation of frames belonging
to the run-time stack or to the heap is done simply by altering the contents of machine
registers. This behaviour promotes the backtracking mechanism because space recovery is
very fast. During the forward computation, the data necessary to support nondeterminism
are stored in the data areas (choice point frames and trail). In this way, whenever a clause
in a procedure yields failure, another can be tried by restoring the machine registers
previously saved in the corresponding choice point and by resetting the uni�cations due
to the failing clause. In restoring the machine registers, the amount of heap allocated
by the failing clause is automatically recovered because the data allocated on the heap
always accumulate on top of the heap before clause execution. Moreover, environments
and choice points allocated on the run-time stack exhibit the same behaviour. Finally, the
respective bound variables are reset. Their addresses are known because they are pushed
onto the trail whenever an uni�cation a�ects them. The trail is also deallocated in the
same way as the frames in the run-time stack. The resetting of the trail frame allocated
for the failing clause is as straightforward as above, it simply consists of restoring the
content of the trail register to the value stored in the choice point. All of this is possible
because the order of the frames allocated in the stacks is maintained. In fact, if we push
new frames on top of the old ones, we can be sure that only the corresponding frames will
be deallocated on backtracking.

Our aim is to preserve as much as possible the features of the WAM.We will show how
the stack-based model of the WAM can be extended to the parallel model of the functional
logic language Babel. To do this, we will rely on the previous work for the stack-based

8

implementation of (sequential) narrowing [17]. In that work, the same premise is set: only
new frames will be allocated on top of older ones. The time notion of newer and older
frames corresponds to a time order of nodes in the proof tree in the case of Prolog and the
order of nodes in the narrowing tree. The order is therefore based on the resolution order
and on the narrowing strategy. Since we consider the eager narrowing strategy, which
follows a leftmost innermost strategy, a node is older than another whenever it is to the
left or above, in the search path of the narrowing tree. A recursive de�nition of the age
of every node in the narrowing tree can easily be de�ned. The mapping of the narrowing
tree to the structures of the stack-based implementation gives implicit annotations of the
relative age, since each new environment or choice point is always allocated upon older
ones. In this way, the backtracking mechanism will always �nd the newest choice point
to try new alternatives on top of the run-time stack.

To perform the narrowing of a (parallel) expression, the computation of the inde-
pendent subexpressions can be delegated to several narrowing machines. Each parallel
narrowing machine has several data areas available to perform the narrowing: the run-
time stack, the heap, the trail, and the data stack. Whenever a fork point is reached in
the narrowing, other machines are allowed to narrow one of the available parallel siblings.
The result of the computation will be combined, at the join point, with the outcomes
of each machine. On the basis of these considerations, we discuss the extensions of the
sequential stack-based scheme to the parallel one.

Our aim is to keep a safe order of frames (trail entries, heap entries, data stack entries,
environments, choice points and other data structures for parallelism support) inside the
data areas so that only newer frames are allocated on top of older ones. At �rst sight, we
restrict ourselves to consider only choice points, environments, and the data structures
necessary for parallelism support in order to keep the presentation clear.

Let us suppose that up to a given point, the narrowing of an expression is pure
sequential (without any previous parallel call) and therefore, since we retain the sequential
behaviour of the parallel system for sequential constructors, the order of frames in the
run-time stack is from older to newer following its growth. Then, we reach a fork point
in which several parallel siblings are available. Let us also assume that the remaining
machines have empty run-time stacks, and therefore any subexpression of the parallel call
can be safely allocated in their own data areas. Depending on the available resources,
all of the parallel siblings or only a subset may be picked up. The parent machine (in
which the fork point occurred) will spawn the parallel siblings, but in order to remain
busy until the parallel siblings have been computed by the remote machines, the oldest
subexpression is locally narrowed. Now, if there are more available siblings at the fork
point once the oldest one has been locally computed, we are able to continue with the
oldest available sibling, since in this way we will push only newer frames on top of the
local run-time stack. Meanwhile, some remote machines may have �nished their work
and sent the result to the parent. These new idle machines will look for work in such a
way that only a frame newer than the topmost one will be allocated on top of their own
stacks. Note in this point that the time order notion is not the sequential one anymore.
In order to arrange ideas about the time order notion we will present how the parallel
narrowing computation can be represented by means of a suitable scheme.

Each intermediate state of a sequential narrowing computation can be represented by
means of an And-Or tree, in which And and Or nodes alternate (see Figure 1). An And
node represents the head of a rule whose children are the applications of the right hand

9

side of the rule. These applications are the Or nodes whose children are the heads of the
rules that are uni�able with each Or node. The construction of such a tree is guided by
the eager computation mechanism. A partial ordering is de�ned regarding that a frame
a is newer than a frame b whenever b is found �rst in the narrowing tree in a leftmost
innermost order. The position of a node in the tree de�nitively denotes its age.

Furthermore, each intermediate state of a parallel narrowing computation can be repre-
sented by adding to the previous scheme Fork nodes, which represent the parallel schedul-
ing of their child Or nodes, and Join nodes, which represent join points. In this scheme,
Or nodes as well as Fork nodes may be children of a given And node. Of course, we are
able at this point to de�nitely associate a relative age between Or nodes and its children,
as well as between children of Fork nodes. We can also set relative ages between the
children of a given And node, provided they may be Fork or Or nodes. But we are not
able to compare any ancestor node with descendant nodes of a Fork node until the Join
node is reached, because the corresponding subtree con�guration for the Fork node is only
known after the join point. Note that, in general, several subtrees may be tried by the
backtracking mechanism before reaching the successful con�guration.

Parallel TreeSequential Tree

Join

And

Or

And

And

Fork
Or

And

dcbadcba

h h

Figure 1: Sequential and Parallel Execution Trees

The above discussion hints how the proper parallel siblings are determined for the remote
computation. Since we are interested in stealing newer parallel siblings so that the time
order and therefore the safe deallocation of stack frames is preserved, we focus on the
non-complete partial order hinted above. Therefore, when building the parallel narrowing
tree, we know the de�nitely relative ages and the unknown ones, so that we can decide
what parallel siblings are suitable to be processed by a given machine.

This precedence restriction implies that a machine in the parallel system may run out
of work and can not steal work until the corresponding join point is reached. Several
solutions may be taken in this point, the simplest one is to get idle. Another one is the
creation of new machines. Further analysis of the parallel system will yield with suitable
approaches.

Next, we consider in more detail the parallel stack-based model in order to prepare
the detailed formal speci�cation. In this stage we focus on the presentation of the aspects
concerning the management of parallelism and delay the sequential narrowing computa-
tion to the next section. In the following we present some topics covered by the formal
speci�cation which is given at the end of this section. The formal speci�cation contains
detailed comments, too.

10

4.1 Needed Stu� for Forward Computation

Up to a parallel call is reached, the usual run-time stack frames are considered, i.e.
choice points and environments. From this point, another frame must be used to hold
the information due to the fork point, in particular the available parallel siblings and so
on. Following the previous nomenclature, we will call these frames, parcall frames. In
each parcall frame we keep the information needed for each parallel sibling in slots, for
instance, the application name, its state (whether it is already computed, or it is waiting
to be stolen), and the result of the computation (For this frame and the following data
structures see Figure 2).

Slot

result

state

code

...

- Result

- State

- Application

Run-Time

Base of

Stack

...

...

...

...

Run-Time Stack

Input Task Marker

- Slot number

- Father parcall frame

slot #

fpf

...

Parcall Frame

state

...

- Slot number

- Father parcall frame

Local Task Marker

...

slot#

fpf

...

- Corresponding parcall framepf

Waiting Marker

Slot

ITM

PF

LTM

WM

Figure 2: Needed frames to support parallelism

Since we allow the local computation of parallel siblings 6 given in the active parcall

6High workload may lead to circumstances under which there are no available resources to pick up

the newly created task.

11

frame , we provide some mechanisms to isolate pieces of the stack belonging to di�er
ent computations, which are local children of the parent machine. We do it by means
of another frame, the so-called local task marker that keeps information to denote the
parent parcall frame and the corresponding parallel sibling. Moreover, in order to keep
computation in remote machines also isolated we will use a similar frame, the so-called
input task marker, which contains similar information to the local task marker.

Parcall frames, local task markers, and input task markers constitute the new data
structures needed to support parallelism in forward computation in the presented model.
A slight description of what happens when a fork point is reached comes next.

In the local machine, a parcall frame is pushed onto the stack in order to notify
other machines of the new available work. Furthermore, a local task marker is pushed
to denote the local computation of the oldest application at that point. And then, the
local computation is started whereas remote machines can pick up work from the recently
created parcall frame. Processors will look for work among remote data areas in their
own local run-time stacks and if they �nd a suitable sibling, they just pick it up by noting
locally that the sibling is stolen by themselves. When the local computation is �nished,
the local machine informs the local parcall frame about the result. If some work still
remains in the parcall frame, it can be locally picked up by pushing another local task
marker and starting the new computation as before. If there is no more work available
and the machine runs out of work then it simply waits until the completion of the remote
parallel siblings.

In order to start the remote computation, an input task marker is pushed onto the
run-time stack to denote the beginning of the new computation. Once the sibling is
computed, the outcome is noti�ed to the parent machine and the machine searches for
new parallel siblings.

4.2 Extending Frames to Support Backward Computation

When a failure happens we must be able to recognize the point at which the failure occurs
in order to behave correctly. We distinguish three states in which a failure can happen:

� A sequential computation runs out of alternatives provided that the next choice
point is below the topmost join point (outside state). In order to detect this situation
another frame is used: the so-called wait marker that holds among other information
the parcall frame it corresponds to. It is pushed onto the run-time stack whenever a
parallel call has been completed and the forward computation resumed, i. e. , when
the join point has been successfully reached. Since we maintain the sequential order
of delivered solutions, we must �nd the rightmost sibling to be asked for alternatives.
This can be inferred by inspecting the slots in the parcall frame that correspond to
the current topmost wait marker. Following the backtracking criteria presented in
the previous section, a redo is sent to the proper machine. The failed sibling might
be remotely or locally computed. If there are pending alternatives, then the failure
operation is simply done in the same way as in the WAM, by inspecting the topmost
choice point looking for new alternatives. If it has no pending alternatives for the
computation, then the state of the remote machine must be restored.

7The active parcall frame of a given machine is the newer parcall frame with siblings not yet computed.

12

A failure is computed during inside state for a parallel sibling (during forward
computation). If necessary, the machines kills the remote ones and waits for the
kill acknowledgements before switching to backward mode. This is a particular
case of intelligent backtracking [10], since one sibling child is known to de�nitely
deliver only failure. The kill procedure must restore the machine state before the
corresponding input task marker was pushed. The restoration of the previous state
is e�ciently done by restoring the corresponding registers, and by resetting the
variables annotated in the trail, as in sequential systems.

� Finally, we consider the case when a failure is computed for a local (resp. remote)
parallel sibling, provided that the next choice point is below the topmost local (resp.
input) task marker and the state is outside. Unlike inside state, we try a redo for
the rightmost sibling b to the left of the failed one, killing the parallel siblings to the
right of b. The parallel siblings to the right of b are killed. If the sibling b computed
a non failed result, then the parallel forward computation for the siblings to the
right of b is resumed. Otherwise, the failure procedure is applied again.

In all the aforementioned cases, it is necessary to kill remote or local parallel siblings
that have been stolen because their outcomes are not needed anymore. At this point we
reach another e�cient behaviour of our model thanks to the preservation of the order,
because the kill procedure utilizes the fact that the last incoming kill message corresponds
to the topmost input task marker. The formal speci�cation will present in detail how
this behaviour is embodied in our model. But �rstly, the speci�cation language will be
described in the following section.

4.3 The Speci�cation Language

For the abstract formal speci�cation we have chosen an imperative style of presentation
instead of the more common functional style. But this description is comparably com-
prehensive. The functional style sometimes lacks readability, which is caused by its too
compact form.

In our language, indentation determines the statements which belong to a given body,
there is no use of the typical begin-end grouping symbols. Conditionals are expressed as
usual. The operations are assumed to be executed in the sequential manner, although
the parallel progress is applicable. But the sequential behaviour is more adequate due
to its closer relation to the �nal VHDL speci�cation. The description uses sequential
assignments , Pascal like procedure calls, (informal) conditionals, and special primitives
(e.g. =, <). The access to the components of structures or to elements of arrays is denoted
with operators \." and \[]". The di�erence between pointers to objects and the objects
themselves are sometimes neglected because of its small meaning at this abstract level
of description. Parentheses are used to group arguments in function or procedure calls
(e.g., kill(pf, 1, pf.#slots)), and also to refer to objects (e.g., (itm.fpf).#slots refers to the
contents of the �eld #slots in the parcall frame annotated in the �eld fpf of the current
input task marker itm).

Furthermore we extend the semantic with side e�ects, i.e. synchronization, and the
syntax with informally described operations. Since there are some critical regions which
may be updated concurrently (e.g. kill, ack, and lock �elds), accesses to them are supposed
to be managed in a semaphore scheme.

13

The speci�cation merges precise descriptions with informal ones, that are distinguished
by preceding signs + and � for the precise and informal points, respectively. By this
distinction we focus on the more important points and improve the readability of the whole
algorithm. In particular, speci�cations which are not important about the presentation of
the parallel behaviour and which can be consulted in other papers or are straightforwardly
implemented are omitted (e.g. continue with forward running mode).

Together with the title of each piece of speci�cation, its formal name is given in italics.

4.4 Formal Speci�cation

In this section we describe the machine behaviour in terms of its parallel related actions.
Since the topics concerning the narrowing machine are more widely known, we delay the
presentation to the �nal VHDL speci�cation, while we go deep inside the description of the
parallel behaviour through its formal speci�cation. Below, we mention several important
issues of the parallel system.

Among the most representative topics of a parallel system we can �nd the failure
operation, the scheduling policy, and the killing procedure. Nevertheless, topics related
mainly with the forward computation like fork and join point arrangement will also be
covered in this section.

The criteria in all the solutions is that parallelism will not only be exploited in terms
of And parallelism, but also in all the duties related with the machine operation, like
the aforementioned issues. For this purpose, idle machines will take charge of the duties
which are allowed to be performed in parallel. This criteria will be reected, for instance,
in the description of the killing procedure or in the scheduling policy. As usually done in
parallel schemes, some kind of synchronization must be performed between the parallel
machines. In our case this will be done by performing an e�cient lock mechanism of
parcall frames. Let us analyze some representative issues.

� Locking parcall frames.
Parcall frames are locked by the local or remote machines which are analyzing
the information held in the parcall frame searching for de�nitory values that may
conclude a given computation. This exploration is performed when �nishing the
computation of a parallel sibling. The lock of the parcall frame avoids any update
by other machines. This is implemented using a �eld in each parcall frame that
denotes its locked or unlocked state.

� Finishing a given computation.
When a remote or the local machine 8 has �nished its computation yielding a suc-
cessful or a failed result, it tries to update the corresponding parcall frame with
the proper information (the outcome, the presence of alternatives, the failed result,
. . .). If the parcall frame is locked, then the machine must wait until one of the
following happens:

{ a kill noti�cation is received, or

{ the parcall frame becomes unlocked.

8From now on, remote machine stands for the machine which has stolen a parallel sibling, whereas

local machine stands for the machine that has just pick up a sibling from its own `task queue'.

14

These are the two unique events that may happen in this scheme. The �rst one
because a brother or an ancestor deliver a kill noti�cation, and the second one
because the computation of a sibling has �nished with the updating of the parcall
frame. When the parcall frame can be accessed in absence of a kill noti�cation, then
the machine can lock the parcall frame and update the corresponding entries. It is
important to note here that each machine �nishing the computation of a parallel
sibling will explore the parcall frame and take charge of the proper actions, instead
of disturbing the local machine and therefore improving resource handling.

� Sending kill noti�cations.
Kill noti�cations may be generated in presence of failure or a de�nitory result. When
considering inside mode, a failure received for a given sibling implies the killing of
the parallel siblings. In outside mode and in presence of failure, all the parallel
siblings to the right of the rightmost one with alternatives are also killed. When
a de�nitory value has been obtained so that the siblings to the left have returned
non-de�nitory values, then the siblings to the right are killed.

Thanks to the order kept in the system, we are sure that the incoming kill noti�ca-
tions correspond to the topmost input marker in the run-time stack as we mentioned
above. This allows the design of kill and acknowledge procedures to perform the
needed synchronization that can be done by a counter holding the number of re-
ceived kill noti�cations. Since the information regarding the corresponding sibling
is held in the input task marker, no further information has been included in the
kill noti�cation. The target machine will perform the appropriate actions such as
restoring the machine state, the recursively application of the killing procedure, and
maybe the transmission of new kill noti�cations.

� Looking for work.
As stated above, in order to prevent the garbage slot and the trapped goal problems
refereed in [10], we put restrictions on the parallel siblings that a machine can steal
from the network. The key problem is whether the sections can be pushed on top
of the stack so that they will be recovered �rst on backtracking:

{ If the machine is free (i.e., with an empty run-time stack), it is allowed to steal
any available sibling.

{ If the machine has a computed sibling t on top of its stack (i.e. this machine
has reached the join point of the parcall frame corresponding to the topmost
input task marker), then if the parent parallel call is active (there are siblings
not yet computed), then it is allowed to steal sibling to the right of t (i.e., those
siblings belonging to the same parcall frame. See Figure 3-a). Tasks to the left
of t are not allowed to be stolen since they are known to be newer than t in
the backtracking order.

{ Finally, a machine is not allowed to steal any work from another ancestor
machine unless the join point of the ancestor machine has been reached by the
computational path which p belongs to (See Figure 3-c).

We summarize that a machine p is able to steal work from a given fork point if
all the computational paths in which p takes part have reached the corresponding
join points. This means that not only the immediate children of the considered fork

15

Join 2

Fork 2 p

Fork 1

Join 1

b

Fork

Join
p

a

c

...

Join 2

Fork 2 p

Fork 1 Fork 1

Join 1

Fork 2 p

Join 2
...

Allowed

AllowedNot allowed

Not allowed Allowed

Figure 3: Stealable siblings

point, but also any descendant can be stolen (See Figure 3-b). Even when these
restrictions seem to be run-time wasting, we will see in the formal speci�cation how
it can be e�ciently done.

As previously mentioned, the local machine with an active parcall frame is restricted
to steal work only from its active parcall frame. On the other hand, a remote
processor which has �nished its last computation will �rstly look on its parent
parcall frame, known from the topmost input task marker. If all the siblings have
been computed and the parent join point has been reached there is no pending work
in the parent parcall frame. In this case the next ancestor parcall frame is consulted
for available work.

A given parcall frame may de�nitely have available work if there is at least a sibling
ready to the left of the leftmost de�nitory sibling, or it may have work in its children
because there are running parallel siblings.

When the leftmost stealable sibling is a ready sibling, the decision of what sibling
to compute is clear, since this is the oldest available sibling. It is important to note
that we are always looking for oldest siblings because in this way we are able to
steal more work because of the precedence condition. We may consider that if a
machine p steals a sibling to the right of the ready sibling t, then p will not be able
to steal t in the current forward computation anymore. When the leftmost stealable
sibling t is a running sibling and there are other ready siblings to the right of t
the decision is not so clear. At this point we may follow a lazy strategy and steal
the leftmost ready sibling. On the other hand, we may follow an eager strategy
and fetch the leftmost running sibling for available work. In order to be able of
stealing as much work as possible, and also to avoid speculative work for rightmost

16

siblings (some running siblings to the left may deliver de�nitory results) we select
the eager strategy. This strategy implies the suspension of the procedure when a
locked parcall frame pf is fetched. After pf is unlocked, three cases are possible:
the parcall frame becomes closed (non active), it has pending available work, or it
is killed. The �rst two cases pose no problems since the procedure works in the
same way, but the last one, if we consider that incoming kill messages may arrive
when the look for work procedure has been invoked, must be carefully observed.
It is clear that whenever a kill message arrives, this procedure must be stopped.
If the incoming kill message arrives at the fetched stack in other processor, then
we may consider the possibility of following the chain of parcall frames in reverse
order looking for other available sibling. But this is a quiet hard duty because:
�rst, we must prevent the interference of other killing messages when following the
chain, and second, if we decide to store the parcall frames being fetched instead of
following the chain, we must pay the extra overhead in memory consumption and
complexity of the strategy. Both issues may suggest that the simplest solution may
be the best, i.e., to simply start again the look for work procedure from scratch.

� Receiving redo or kill noti�cations.
A redo noti�cation consists only of the setting of a processor register. If a redo
noti�cation arrives, then an alternative computation is looked up by means of the
topmost choice point in top of the stack or the corresponding parallel frames (this
will be discussed in detail when the failure operation will be presented). If a kill
noti�cation arrives, then the computation up to the topmost input task marker
is discarded. In the meantime, more kill noti�cations may arrive and therefore
the previous states of the machine will be restored as often as kill noti�cation are
incoming. This procedure is done in parallel, and besides, there is no need for
waiting for the acknowledges in the sequential order of the remote siblings, so that
the speed of this procedure is also incremented in this way.

We will present a detailed speci�cation in which low-level details have been taken into
account, but before, we will present some features of the intended target machine.

Several decisions can be taken in order to denote and identify the frames in the run-
time stack. We may consider, for instance, an explicit denoting of frames, marking the
top of the stack with a pointer (maybe implemented with a register). In such a scheme,
all the frames can be identi�ed by means of the top of the stack and following a reference
chain linking the frames. However, the price paid in following the chain by the procedures
which need to reach some frame, together with the price paid by the extra memory entry
needed to denote the frame, seem to be not worthwhile if we compare it with a register-
based scheme. We adopt the usual technique of maintaining pointers to topmost or active
frames in the stack, so that the more often needed frames can be quickly reached. Of
course, whenever a frame is pushed onto the stack, the corresponding pointer is updated.
Below, the pointers we use are listed.

� pf: Active parcall frame. It denotes the parcall frame which the current working
task belongs to. In general, it is not the topmost parcall frame in the stack.

� itm: Topmost input task marker.

� ltm: Topmost local task marker.

17

wm: Topmost wait marker.

� b: Topmost choice point.

� bopf: Bottommost parcall frame.

The above pointers are closely related with the parallel actions. We also consider the
WAM-like pointers h (top of the heap), t (top of the trail), e (topmost environment), and
d pointing to the top of the data stack in which arguments and results are held.

There are some registers in the processors which are intended to store needed infor-
mation for parallelism support, for instance:

� #kill: A �eld containing the number of input task markers to be discarded (killed).

� #ack: It contains the number of expected acknowledges in response to kill noti�ca-
tions, added to support the needed synchronization.

These �elds together with the special ag lock in each parcall frame that are handled as
semaphores indicating critical regions.

Next, we will present the formal speci�cation of the parallel-related machine operations
together with comments. We will review the actions taken when a successful outcome has
been computed, the failure operation, the kill and redo noti�cations, the kill procedure,
and the looking for work procedure.

� Successful outcome

Below, the speci�cation for both the locally computed successful outcome and the
remotely computed successful outcome are depicted.
Before trying to update the parent parcall frame, the kill �eld is consulted to see
whether the current computation has not been cancelled. This is accomplished
by the procedure lock parcall frame, which returns a ag indicating whether a kill
noti�cation is present or not (see below its speci�cation). If any kill noti�cation
is present, then the kill procedure (whose speci�cation will be presented later) is
activated. Otherwise, the result is updated in the corresponding slot frame (known
by the �eld slot# in the topmost input task marker or local task marker). If a choice
point has been pushed onto the corresponding run-time stack, then the pointer
b is greater than the pointer ltm for a locally computed sibling, or the pointer
itm for a remotely computed sibling. This means that another solution may be
found for the current computation. The �eld state is updated with alt (standing for
pending alternatives) or with noalt (standing for no pending alternatives). The �eld
de�nitory is also updated with true if the computed result conforms a de�nitory
argument position, and otherwise with false. If a de�nitory value is computed,
then the siblings to the right are killed, waiting for the kill acknowledgement. If the
siblings to the left have been computed, then the active parcall frame is safely closed
(reaching join point) with a wait marker and the forward computation is resumed.
Another possibility is that the current computation does not deliver a de�nitory
value, and it is the last computed one so that a de�nitory argument to its right
has been computed previously. In this case, the parcall frame is also closed. Note
that each processor having delivered the successful result is allowed to perform the
closure operations on the parcall frame and to resume the forward computation.
If the local processor computes a de�nitory value and not all the siblings to its

18

left have been computed, then it remains idle, since the for workload strategy (see
below) ensures that there are no more local siblings to pick up.

Speci�cation for the Locally Computed Successful Outcome

+ lock parcall frame (kill)
+ If kill then

+ turn to kill running mode
+ else

+ pf.slot[ltm.slot#].result (top of the data stack)
+ pf.slot[ltm.slot#].state if(b > ltm, alt, noalt)
+ If de�nitory(pf.function, (top of data stack)) or pf.#slots = ltm.slot# then

+ pf.slot[ltm.slot#].de�nitory true
+ kill(pf, 1+ltm.slot#, pf.#slots)
+ wait
+ If all the siblings to the left of ltm.slot# have state 2 falt, noaltg then

+ push a wait marker
+ pf.bm outside
+ ltm pf.ltm
+ pf pf.fpf
+ unlock parcall frame
� continue with forward running mode

+ else
+ unlock parcall frame
+ get idle

+ else
+ pf.slot[ltm.slot#].de�nitory false
+ If exists a de�nitory sibling td to the right of ltm.slot# so that

the siblings ltm.slot# + 1 . . . td - 1 have been computed then
+ kill(pf, td + 1, pf.#slots)
+ wait
+ push a wait marker
+ pf.bm outside
+ ltm pf.ltm
+ pf pf.fpf
+ unlock parcall frame
� continue with forward running mode

+ else
+ look for local work

Speci�cation for the Remotely Computed Successful Outcome

+ lock parent parcall frame itm.fpf (kill)
+ If kill then

+ turn to kill running mode
+ else

19

+ (itm.fpf).slot[itm.slot#].result (top of the data stack)
+ (itm.fpf).slot[itm.slot#].state if(b > itm, alt, noalt)
+ If de�nitory((itm.fpf).function, (top of data stack)) or (itm.fpf).#slots = itm.slot# then

+ (itm.fpf).slot[itm.slot#].de�nitory true
+ kill(itm.fpf, 1+itm.slot#, (itm.fpf).#slots)
+ wait
+ If all the siblings to the left of itm.slot# have state 2 falt, noaltg then

+ push (top of the data stack) onto parent's data stack
+ push a wait marker onto parent's run-time stack
+ (itm.fpf).bm outside
+ wait
+ (itm.procid).ltm (itm.fpf).ltm
+ (itm.procid).pf (itm.fpf).fpf
+ unlock parent parcall frame itm.fpf
� continue with forward running mode at parent processor
+ look for work
+ else

+ unlock parent parcall frame itm.fpf
+ look for work

+ else
+ (itm.fpf).slot[itm.slot#].de�nitory false
+ If exists a de�nitory sibling td to the right of itm.slot# so that

the siblings itm.slot# + 1 . . . td - 1 have been computed then
+ kill(itm.fpf, td + 1, (itm.fpf).#slots)
+ wait
+ push a wait marker onto parent's run-time stack
+ (itm.fpf).bm outside
+ (itm.procid).ltm (itm.fpf).ltm
+ (itm.procid).pf ((itm.procid).pf).fpf
+ unlock parent parcall frame itm.fpf
� continue with forward running mode at parent processor

+ else
+ unlock parent parcall frame itm.fpf
+ look for work

� Failure
Below, the speci�cation for the �rst step of the failure operation is given. If the
topmost choice point is below the topmost input task marker no more alternatives
for the topmost computation exist on the stack. Therefore, the failure must be
noti�ed to the remote father process. If the topmost choice point is below the
topmost local task marker, the failure corresponds to the local computation, and
the failure must be propagated to the local father. If the topmost choice point is
below the topmost wait marker, we enter the topmost (inactive) parcall frame to
backtrack. Of course, this parcall frame is in outside state.

Speci�cation for the Failure Operation

20

+ If b < itm then
+ remote failure

+ else If b < ltm then
+ local failure

+ else If b < wm then
+ outside failure

+ else
� sequential failure

In both remote and local failure we distinguish both inside and outside states of the
parcall frame.

Speci�cation for the Remote Failure Operation

+ If (itm.procid).(itm.fpf).bm = inside then
+ remote inside failure

+ else
+ remote outside failure

Speci�cation for the Local Failure Operation

+ If procid.bm = inside then
+ local inside failure

+ else
+ local outside failure

When the failure happens in inside state, the �eld state in the corresponding slot
is updated with the label failed. Afterwards, the remaining siblings of the parcall
frame are killed, waiting for their acknowledgements. If the failure refers to a remote
computation the state of the remote machine is restored from the topmost input
task marker, and the machine looks for further work. If the failure refers to a local
computation the (sequential) backward computation is started if all the sibling to
the left are computed (all of them computed with non de�nitory results). If not
all of them have been computed, then the machine becomes idle, since it is not
worthwhile to steal more local siblings. Note that when a kill noti�cation reaches
the remote machine it behaves similar to a computed remote failure. Furthermore
it decreases the number of kill noti�cations, the parent acknowledge �eld, and it
restores the pointer to the input task marker. This also holds for the remote failure
in outside state.

Speci�cation for the Local Failure Operation in Inside Mode. local inside failure

21

+ lock parcall frame (kill)
+ If kill then

+ turn to kill running mode
+ else

+ pf.slot[ltm.slot#].state failed
+ If all the siblings to the left of ltm.slot# have been computed then

+ kill(pf, 1, pf.#slots)
+ wait
+ turn to backward running mode

+ else
+ kill(pf, ltm.slot# + 1, pf.#slots)
+ wait
+ unlock parcall frame
+ get idle

Speci�cation for the Remote Failure Operation in Inside Mode. remote inside failure

+ lock parent parcall frame itm.fpf (kill)
+ If kill then

+ (itm.fpf).slot[itm.slot#].state killed
+ #kill #kill - 1
+ (itm.procid).#ack (itm.procid).#ack - 1
+ restore state itm
+ kill

+ else
+ (itm.fpf).slot[itm.slot#].state failed
+ If all the siblings to the left of itm.slot# have been computed then

+ kill(itm.fpf, 1, (itm.fpf).#slots)
+ wait
+ turn parent to backward running mode

+ else
+ (itm.fpf).slot[itm.slot#].state killed
+ kill(itm.fpf, itm.slot# + 1, (itm.fpf).#slots)
+ wait
+ unlock parent parcall frame (itm.fpf)
+ restore state itm
+ look for work

When the failure a�ects to a parcall frame in outside state, then an appropriate
child is searched to be redone. This child corresponds to the rightmost sibling with
alternatives so that there is no de�nitory siblings to its left. If such a sibling is
not present all the siblings are killed, and the synchronization is necessary before
turning to the backward running mode. If the sibling was locally computed a (se-
quential) local failure operation is performed. Otherwise, the remote machine is
asked for further alternatives. Note that several operations are performed in par-
allel, for instance, the siblings are killed in parallel to the alternative computation

22

on the remote machine. Once the remote machine delivers a result, three cases are
distinguished. The �rst case is when the result is a failure. Then, the local outside
failure procedure is recursively applied. The second case is when a de�nitory value
is computed for the remote parallel sibling. This corresponds to the closing of the
parcall frame, therefore resuming the forward running mode. Finally, the third case
is when a non-failed, non-de�nitory result is computed. Then, the forward running
mode is resumed in the local machine.

When searching for a suitable sibling to be backtracked from the remote machine,
two possible situations may happen. If no sibling is found, then all the siblings must
be killed. The remotely computed is noted as killed, the others are noti�ed to be
killed and a wait is performed. If the sibling is found, then is asked for a redo, and
if it was also computed by the same remote process, then it is turned to backward
mode, otherwise it continues to look for new work.

Speci�cation for the Local Failure Operation in Outside Mode. local outside failure

+ pf wm.pf
+ lock parcall frame (kill)
+ If kill then

+ turn to kill running mode
+ else

+ td leftmost de�nitory sibling(pf, pf.#slots)
+ ta rightmost alternative sibling(pf, td)
+ If ta = 0 then

+ kill(pf, ta + 1, pf.#slots)
+ wm pf.wm
+ wait
+ turn to backward running mode

+ else
+ kill(pf, ta + 1, pf.#slots)
+ If ta was locally computed then

+ wm pf.wm
+ wait
+ turn to backward running mode

+ else
+ pf.slot[ta].state running
+ pf.slot[ta].procid.redo on
+ wait
+ Wait until pf.slot[ta].state 6= running
+ If pf.slot[ta].state = failed then

+ local outside failure
+ else

+ If de�nitory(pf.function, pf.slot[ta].result) then
+ push a wait marker
+ pf.bm outside
+ ltm pf.ltm
+ pf pf.fpf

23

+ unlock parcall frame
� continue with forward running mode

+ else
� continue with forward running mode

Speci�cation for the Remote Failure Operation in Outside Mode. remote outside failure

+ lock parent parcall frame itm.fpf (kill)
+ If kill then

+ (itm.fpf).slot[itm.slot#].state killed
+ #kill #kill - 1
+ (itm.procid).#ack (itm.procid).#ack - 1
+ restore state itm
+ kill

+ else
+ (itm.fpf).slot[itm.slot#].state failed
+ td leftmost de�nitory sibling(itm.fpf, itm.slot# - 1)
+ ta rightmost alternative sibling(itm.fpf, td)
+ If ta = 0 then

+ (itm.fpf).slot[itm.slot#].state killed
+ kill(itm.fpf, 1, (itm.fpf).#slots)
+ wait
+ unlock parent parcall frame itm.fpf
+ turn parent to backward running mode
+ restore state itm
+ look for work

+ else
+ (itm.fpf).slot[itm.slot#].state running
+ kill(itm.fpf, ta + 1, (itm.fpf).#slots)
+ (itm.fpf).slot[ta].procid.redo on
� wait
+ unlock parent parcall frame itm.fpf
+ restore state itm
+ If (itm.fpf).slot[ta].procid = local procid then

+ turn to backward running mode
+ else

+ look for work

Finally, we present a typical speci�cation for the sequential failure. It distinguishes
two cases. The �rst one is when the pointer b points to the bottom address, i.e.,
there are no pending choice points. The other case assumes that a choice point is
allocated on top of the stack and then, a recovery procedure is started. The heap,
data stack, trail and run-time stack are restored, and the trailed variables are reset.

Speci�cation for the Sequential Failure. sequential failure

24

+ If b bottom then
� notify about the general failure computed

+ else
+ d b.d
+ e b.e
+ h e.h
+ unwind(e.t)
+ t e.t
+ ic b.ba

� Kill procedure
The �rst piece of speci�cation related with the kill operation is the turn to kill
mode (kill). In this state, the machine changes its state to kill by setting the �eld
rm (running mode). Afterwards, it performs as many kill operations on the topmost
input task markers as the �eld #kill indicates. Since the kill noti�cation for remote
machines consists only of increasing a �eld, the local kill operation is performed in
parallel on the siblings of the parcall frame. The trailed variables are reset and a
wait for the acknowledge of the kill noti�cations is performed.

Speci�cation for the Kill Procedure. kill

+ rm kill
+ While #kill > 0

+ While pf > itm
+ kill(pf, 1, pf.#slots)
+ pf pf.fpf

+ itm itm.itm
+ #kill #kill - 1

+ unwind(itm.t)
+ wait
+ (itm.procid).#ack (itm.procid).#ack - 1
+ restore state itm
+ rm looking
+ look for work

The kill noti�cation consists of sending the noti�cation �rstly to the remote process-
es and performing a local kill procedure on the local computation. This is depicted
below.

Speci�cation for Sending Kill Noti�cations. kill(p, i, j)

+ kill remote(p, i, j)
+ kill local(p, i, j)

25

A kill remote noti�cation is performed, as already mentioned, by simply increasing
the corresponding counter #kill at the machine containing the sibling to be killed.
A group of noti�cations is sent by providing the range of siblings to be killed,
from the leftmost one to the rightmost one. Only the siblings already computed
(state 2 falt; noaltg) or those being currently computed (state = running) are sent
kill noti�cations. For synchronization purposes, the #ack counter is increased with
respect to the expected number of acknowledgements.

Speci�cation for Sending Remote Kill Noti�cations. kill remote(p, i, j)

+ For s = i to j
+ If p.slot[s].state 2 frunning, alt, noaltg and

p.slot[s].procid 6= local procid then
+ (p.slot[s].procid).#kill (p.slot[s].procid).#kill + 1
+ #ack #ack + 1

The �rst incoming kill noti�cation for a local machine corresponds to the topmost
local task marker, and it is only necessary to reset the variables and restore the
machine state at the local task marker point, instead of performing a recursive
restoration as in the usual backtracking mechanism. A �eld named kill for each
machine is used to identify when a local kill is being performed, in order to perform
the restoration only once at the oldest local task marker point. In the speci�cation
below, a call to kill local is performed. It returns in the last argument the rightmost
local task which has been killed. If no local task is killed, then no restoration is
performed since the siblings being killed are remotely computed. Starting from
the leftmost sibling (sibling number 1), since this is always locally computed, the
restoration would be performed at that point.

Speci�cation for Sending Local Kill Noti�cations. kill local(p, i, j)

+ If kill = on then
+ kill local slots(p, i, j, l)

+ else
+ kill on
+ kill local slots(p, i, j, l)
+ If l > 1 and l < top then

+ unwind((p.slot[l].xtm).t)
+ restore state ltm (p.slot[l].xtm)
+ pf p

+ wait
+ kill o�

Finally, the speci�cation for kill local slots is given below. A kill procedure is re-
cursively started for each child of the corresponding slot. This is accomplished

26

whenever parcall frames are allocated as children (at local or remote processes) of
the corresponding slot. Furthermore, it computes the rightmost sibling which has
been successfully killed. This speci�cation completes the speci�cation of the kill
procedure.

Speci�cation for Killing Local Slots. kill local slots(p, i, j)

+ l top
+ For s = j downto i

+ If p.slot[s].state 2 frunning, alt, noaltg and
p.slot[s].procid = local procid then
+ l s
+ If (p.slot[s].xtm).spf 6= bottom then

+ kill((p.slot[s].xtm).spf, 1, (p.slot[s].xtm).spf.#slots)

� Looking for work procedure

In this procedure we distinguish three cases. The �rst one is when the local machine
looks for work. As stated before, the strategy in this case is quite simple: the local
machine looks on its own active parcall frame for ready siblings, searching from left
to right siblings. If no work is found, then the machine waits for the completion of
remote siblings.

Speci�cation for Look for Local Work. look for local work

+ td leftmost de�nitory sibling
+ For i = ltm.slot# + 1 to td - 1

+ If pf.slot[i].state = ready then
+ push a local task marker
+ ic pf.slot[i].code
+ pf.slot[i].xtm ltm
+ pf.slot[i].procid local machine identi�er
+ pf.slot[i].state running
+ unlock parcall frame
� turn to forward computation

The second one refers to machines which are looking for work from scratch, i.e.,
after the initialization phase, machines with empty stacks start to look for work in
the machine that narrows the query. Finally, the third case stands for a remote
machine which has stolen and computed a sibling t. In this case, the goal is to
explore the parent parcall frame starting from the sibling to the right of t. If a
ready sibling is found, then it is just stolen. If a running sibling is found, then the
next descendant parcall frame is recursively fetched. These two cases are embodied
in the speci�cation below, which corresponds to the look for work procedure for
processes di�erent from the seed process. If the run-time stack is empty then any

27

sibling is stealable, otherwise the precedence condition is applied by looking for work
on the ancestor parcall frame annotated in the input task marker. The pointer bopf
is used to denote the bottommost parcall frame in order to be able of following the
chain of parcall frames.

Speci�cation for Look for Work procedure. look for work

+ If e = bottom then
+ Repeat

+ If 1.bopf 6= bottom then
+ look for work(1, bopf, 1)

+ until 1.rm = stop
+ else

look for work(itm.procid, itm.fpf, itm.slot# + 1)

This last speci�cation uses recursive calls of look for work which is presented below.
As usual, before trying to lock the denoted parcall frame, the possible incoming
messages are tested. If any kill noti�cations are requested, the machine starts the
kill procedure. Otherwise, the parcall frame is locked. The work is searched from
the given slot up to the leftmost de�nitory one (if it exists, else to the rightmost). If
the analyzed slot is in a ready state, it is just fetched, and the forward computation
resumes. If the respective sibling s is running, the descendant parcall frame (if
exists) is searched for more work by inspecting the �eld xtm in s.

Speci�cation for the Look for Work procedure. look for work(id, pf, slot)

+ While #kill = 0 and pf 6= bottom
+ lock parcall frame (kill)
+ If kill then

+ turn to kill running mode
+ else

+ td leftmost de�nitory sibling for id, pf
+ For i = slot to td - 1

+ If pf.slot[i].state = ready then
+ push an input task marker for slot i
+ e id.e
+ ic pf.slot[i].code
+ pf.slot[i].xtm itm
+ pf.slot[i].procid local proc id
+ pf.slot[i].state running
+ unlock parcall frame pf
� turn to forward computation

+ If pf.slot[i].state = running then
+ vpf (slot[i].xtm).spf
+ vid if(id 6= local proc id, (slot[i].xtm).procid,

28

local proc id)
+ If vpf 6= pf then

+ unlock parcall frame pf
+ look for work(vid, vpf, 1)

+ unlock parcall frame pf

� Miscellaneous operations

To �nish the speci�cation, we end with some minor speci�cations about the missing
points above.

For instance, a parcall frame locking is performed by using the primitive wait, which
is intended to handle semaphores. In particular, the semantics of this wait primitive
is extended with the noti�cation of a kill operation, i.e., when a kill is ordered to a
given machine, the second argument of the wait function is set.

Speci�cation for Locking a Parcall Frame. lock parcall frame pf

+ wait(pf.lock, kill)

Unlocking of parcall frames is handled in the same way as a typical signal primitive
operation.

Speci�cation for Unlocking a Parcall Frame. unlock parcall frame pf

+ pf.lock false

Changing the machine state is speci�ed as follows:

Speci�cation for Turn to Forward Running Mode. turn to forward running mode

+ rm forward
+ narrow

Speci�cation for Turn to Backward Running Mode. turn to backward running mode

+ rm backward
+ failure

Speci�cation for Turn to Kill Running Mode. turn to kill running mode

+ rm kill
+ kill

29

Speci�cation for Turn to Idle Running Mode. turn to idle running mode

+ rm idle
+ idle

Several events may happen in an idle state: incoming kill messages, incoming redo
messages, a turn to the forward running mode and a local failure initiated by a
remote machine. This is speci�ed below.

Speci�cation for Idle State. idle

+ Repeat
+ Case

#kill > 0:
+ kill
redo = on:
+ failure
rm = forward:
� narrowing
rm = backward:
+ failure

+ until true

The wait operation is simply performed by inspecting when the �eld #ack becomes
zero, since it holds the expected number of acknowledgements.

Speci�cation for Waiting for Acknowledgements. wait

+ Repeat
+ until #ack = 0

The function that computes whether an argument position is de�nitory is speci�ed
as follows.

Speci�cation for the De�nitory Function. de�nitory(function, value)

+ Case
function = conjunction:
+ return value = false
function = disjunction:
+ return value = true
otherwise:
+ return false

30

Finally, we present the restoration related operations.

Speci�cation for State Restoration up to a LTM. restore state ltm(ltm)

+ t ltm.t
+ h ltm.h
+ b ltm.b
+ d ltm.d
+ e ltm.e
+ ltm ltm.ltm

Speci�cation for State Restoration up to an ITM. restore state itm(itm)

+ t itm.t
+ h itm.h
+ b itm.b
+ d itm.d
+ e itm.e
+ pf itm.pf
+ ltm itm.ltm
+ wm itm.wm
+ itm itm.itm

5 The Parallel System

In this section we give a detailed presentation of the parallel system. We start with the
abstract machine which is described together with the instruction set and the translation
scheme. We end with the description of the shared memory system.

The parallel system consists of a set of abstract machines connected to a shared mem-
ory, which serves all the data requests.

5.1 The Abstract Machine

Even though many of the topics covered in this section have been already introduced
when they were needed, this section groups all of them as a reference in order to get an
overall impression of the machine.

The abstract machine is a parallel narrowing unit which has been designed from the
point of view of the previous work on the sequential abstract machine [17].

Figure 4 depicts the architecture of the parallel system by showing the registers and
memory areas it is composed of.

We distinguish four di�erent kind of registers:

� Usual narrowing registers. They are used in a typical implementation of a sequential
stack-based implementation of a narrowing machine [17]. The register e is used to

31

e b h

t d ic

Registers
Usual Narrowing

Areas

Local Memory

Areas

Shared-Memory

Trail

Heap

Run-Time Stack

Code

Data Stackltm itm wm

Parallelism-Related
Registers

Flags

pf bopf rm

Counters

#ack#kill kill redo

Registers Memory Areas

Figure 4: The Parallel System

denote the topmost environment, b is used for the topmost choice point (backtrack-
ing register), h points to the top of the heap, t points to the top of the trail, d points
to the top of the data stack, and �nally, ic points to the current instruction in the
code area to be executed.

� Parallelism-related registers. They are used to deal with the pointing to the data
frames needed for parallelism support. The register pf is used to denote the active
parcall frame, while bopf points to the bottommost parcall frame. Registers ltm, itm,
and wm are used to point to the topmost local task marker, to the topmost input
task marker, and to the topmost wait marker, respectively. Finally, the register
rm is intended to reect the state of the machine (i.e., running, looking for work,
performing a kill, or idle).

� Counters. We have two counters which are intended to manage the needed synchro-
nization for kill operations. #kill holds the number n of incoming kill noti�cations
corresponding to the n topmost input task markers (i.e., the n last computed com-
putations). It is always increased by a remote machine. The register #ack stores
the number of expected acknowledgements to the sent outcoming kill noti�cations.
It is decreased by the remote machine as soon as the corresponding (remote) com-
putation has been killed.

� Flags. The ag kill is set whenever a local kill procedure is being performed. It
prevents the kill beyond the expected computation. The ag redo is set by a remote
machine whenever a new solution is requested. The given machine is assumed
to be in idle mode, and moreover, because of the precedence condition, the redo
noti�cation always refers to the topmost input task marker.

Figure 4 depicts the data areas placed in the memory, distinguishing those belonging
to local and to shared memory areas. We review several memory data areas (except the
registers), which are depicted together with their possible contents (data frames) in Figure
5. The structure of each data frame is shown in Figure 6.

� Code. It stores the abstract program to be executed. After initialization it becomes
a read-only area.

32

Marker
Input Task

Environment

Point
Choice

Parcall
Frame

Local Task
Marker

Waiting
Marker

list
head
tail

integer

constant

variable

d

Stack address

Heap addresst

Trail

ic

Load 1
Load 2

Jmp 296
Add

Par 2, 247
Wait

e

wm

ltm

pf

b

itm

argument 1h

argument n

constructor
n

Code

Heap address

Data Stack

HeapRuntime Stack

Figure 5: Some Data Areas of the Narrowing Engine

ba

d
e
b

slot#
spf
ltm
t
h
b
d
e

function

slot n

slot 1

spf
fpf

bm
#slots

lock

ltm
wm
cpp

slot i
argument 1

argument n

n

ce
cp
h
t

ltm

b
h
t

pf

d
e

fpf
spf

slot#

procid
pf

ltm
itm
wm
t
h
b
d
e

definitory

procid
code

xtm
state
result

Choice Point

Waiting

MarkerMarker

Local TaskInput Task

Marker

Slot

Frame

Parcall

Frame
Environment

Figure 6: The Data Frames

33

Data Stack. It holds both the call arguments to functions and the results returned
by functions. The data stack of the machine which narrows the query will actually
contain the result of the query. The contents of the data stack are pointers to the
heap.

� Runtime Stack. It holds the control-related data frames to deal with forward and
backward computation in both sequential and parallel execution.

The usual frames in a stack-based machine are the choice points to control the
selection of alternatives, and the environments which are used to control procedure
calls. An environment has several �elds to store the number of call arguments
and the argument themselves (n, argument 1, . . . , argument n), the continuation
environment ce, the continuation point cp (i.e., the return address), and the saved
heap h and trail t registers. h and t are placed at the environment instead of the
choice point in order to take advantage of the dynamic detection of determinism
[18]. The choice point stores the data stack register d, the environment register e,
the choice point register b and the backtrack address ba which represents the next
available rule (alternative) to be tried.

The parcall frame identi�es a fork point. It consists of the following �elds:

{ #slots denotes the number of siblings in the parallel call. There are as many
frames slots in the parcall frame as there are siblings. Each slot contains the
information needed to know the computational state of the sibling, as well as
the information for the machine which picks it up, i.e. the �elds:

� code which points to the piece of code which computes the corresponding
sibling.

� procid which holds the identi�er of the machine computing the sibling.

� xtm which points to the corresponding marker (a local task marker if it is
locally computed, or an input task marker if it is remotely computed).

� state which stores ready when a sibling is ready to be computed by any
machine, running when the sibling is currently being computed, alt when
the sibling is already computed and has pending alternatives which may
be further tried, noalt stands for a computed sibling without pending al-
ternatives, failed when the computation delivers failure, killing when it is
being killed, and killed when the kill procedure actually ends.

� result which points to the result in the heap.

� de�nitory, a ag which denotes whether the sibling has been delivered with
a de�nitory result.

{ spf and fpf are intended to hold the child parcall frame and the parent parcall
frame, respectively. With the �eld spf the chain of parcall frames can be
traversed from ancestors to descendants, which is needed when searching for
available work. The �eld fpf is used in backward running mode when parcall
frames are deallocated and the parent parcall frame is searched.

{ bm stores the backtracking mode: inside when the join point is not already
reached, and outside when the join point has been reached.

{ lock is a ag denoting the locked or unlocked state of the parcall frame.

34

function stores the kind of parallelism (strict or non strict) to which the parcall
frame belongs.

{ ltm and wm store the local task marker and the wait marker previous to the
parallel call. The registers ltm and wm are restored from these �elds when the
parcall frame is deallocated during backtracking.

{ cpp is the continuation point after the join point. When the forward com-
putation after the join point is resumed by updating ic with the content of
cpp.

The local task marker delimits a local computation for a given slot in a parcall
frame. It consists of several �elds:

{ slot# holds the identi�er of the slot the computation belongs to.

{ spf is the child parcall frame, i.e., the next parcall frame in the current com-
putation.

{ ltm is the previous local task marker. During backtracking, the register ltm is
restored from this �eld.

{ t, h, b, d, and e, are �elds storing the respective registers. These registers are
restored from these �elds during backtracking.

The input task marker delimits a remote computation for a given slot in a parcall
frame at the remote machine. It consists of several �elds:

{ slot# holds the identi�er of the slot the computation belongs to.

{ spf and fpf point to the child and to the parent parcall frame. They are used
as before in following the parcall frame chain.

{ ltm, itm, wm, t, h, b, d, and e, are �elds storing the respective registers. The
previous state is recovered during backtracking.

The wait marker indicates the join point. It consists of several �elds:

{ pf points to the parcall frame to which the wait marker belongs.

{ ltm, t, h, b, d, and e store the current state of the machine.

� Heap. The heap contains all the data which are constructed by uni�cation of terms
or reduction of expressions. Entries may be variables, constants, lists9, or data
constructors.

� Trail. In this data area, pointers to the variables in the run-time stack and in the
heap are trailed (i.e., the placement of the variables are annotated in order to be
unwound whenever backward computation demands it).

5.1.1 The Instruction Set

In this section we give a more abstract description of the operational semantics. We
distinguish several classes of machine instructions as follows:

9Due to the importance of lists we have explicitly distinguished them from generic data constructors,

as well as we have also done with constants (arity-0 data constructors).

35

Graph instructions

� Load i loads the i-th local variable of the environment onto the data stack. This
instruction ensures that the loaded address is dereferenced. Dereferencing means
traversing the chain of pointers until either an unbound variable or a data term is
reached.

� StoreConstr c n generates a new constructor node of arity n. The addresses of
the n components are given on the data stack and will be replaced by the address
of the constructor node.

� StoreConst c generates a new constant node.

� StoreApp f n creates an application node. This node contains the address of the
function f as well as the n arguments of the partial application.

� InitGuardVars free ninitializes the local variables free to free+n-1 of the actual
environment. It is used to generate the free variables in the occurring in the guard
of a function rule.

Uni�cation Instructions

� UnifyVar i moves the pointer on top of the data stack to the i-th local variable in
the environment. The instruction is applied whenever the local variable is known
to be unbound at compile-time. This is ensured by the left linearity of Babel rules.

� UnifyConstr c n tries to unify the (dereferenced) top element on the data stack
with the n-ary constructor c. If the uni�cation succeeds, the pointer is replaced by
the components of the constructor term. If the pointer refers to an unbound variable,
the constructor term is generated, the variable bound to it, and the components
initialized with unbound variables. In case of an uni�cation failure backtracking
occurs.

� CheckEq l represents the general uni�cation procedure which recursively performs
uni�cation in case of lists or constructors by jumping to the code address l. Fur-
thermore it generates an environment on the runtime stack in order to control the
recursion.

Forward Control Instructions

� Call f performs a subroutine (sequential) call. A new environment is allocated
on top of the runtime stack with the corresponding arguments taken from the data
stack. Further needed information about the function can be found in the symbol
table denoted by the reference f.

� Proceed f is equivalent to Call, but with the optimized handling of tail recursion.

� Apply n applies an application node to the n arguments above it on the data stack.
If the argument list is complete a new environment is generated and the execution
proceeds with the execution of the referring function, otherwise the argument list
will be inserted into a copy of the application node.

36

Return successfully �nishes a function call by setting the instruction pointer to the
return address and restoring the environment. Furthermore, the old environment is
deleted provided that it is located on top of the stack.

� Jump l, JumpIfTrue l, JumpIfFalse l perform simple and conditional jumps. The
conditional jump instructions request the top of the data stack for the Boolean value
and pop this entry.

Backward Control Instruction The �rst six instructions correspond to the same
commands and the choice point mechanism in the Warren Abstract Machine.

� TryMeElse l records the current state of the machine by creating a choice point on
top of the stack. The choice point contains all the information necessary to recover
this state when backtracking to the next alternative at program address l. The
execution continues with the next instruction.

� RetryMeElse l restores the state from the choice point, resets the backtrack address
of the choice point to l, and continues with the next instruction.

� TrustMe restores the state from the choice point and deallocates the choice point
on top of the stack. The last alternative will be tried subsequently by continuing
with the next instruction.

� Fail immediately leads to backtracking.

� DynamicCut tests whether any global variable bindings have not been done when
executing the code for the current function. If the test is successful, this rule is
the only one which remains applicable according to the non ambiguity restriction
of Babel. Then, newer environments and choice points on top of the stack can be
safely removed.

Process Instructions

� Par n l creates a parallel call frame with n slots and initializes all necessary com-
ponents. Finally, a jump to the wait address l is performed.

� Wait n waits for the termination of the parallel children of the current parallel call
frame. This represents the join point of the parallel computation. If the parallel call
frame still has got available work, then the machine is allowed to steal this work for
local execution.

� WaitTab f dd n denotes a table for each sibling of the parallel call, containing the
address f of the code which narrows the sibling n, and the maximum data stack
usage dd.

� ConjWait and DisjWait take advantage of the Boolean primitives and are adjusted
to the parallel execution of non-strict conjunctions and disjunctions.

� SendResult n �nishes a successful computation of the n-th parallel son. The com-
puted result is located on top of the data stack and will be transferred to the parent
machine.

37

SendFail n noti�es that no successful result has been computed.

� Idle is executed if the machine is in idle mode and forces the machine to demand
further work.

Built-ins

� Add, Subtract, Multiply, Divide, and Modulo are the binary arithmetic primi-
tives, which perform the corresponding operation on the arguments taken from the
data stack.

� GreaterThan, GreaterOrEqual, LessThan, and LessOrEqual are the compara-
tive primitives which operate on two arguments taken from the data stack.

� And, Or, Xor, and Not are the bitwise logical primitives which take their operands
from the data stack.

Other Commands

� More asks the user whether more solutions are to be searched.

� Stop stops the computation.

� InitPrint, Print, PrintChar c, are responsible for the output of the solutions.

� JumpIfEol l, JumpIfList l, and JumpIfData l perform conditional jumps and are
only used for technical reasons in the output procedure.

5.1.2 The Translation Scheme

After having introduced the instruction set, this section is devoted to the translation of
Babel programs into PBAM code (standing for Parallel Babel Abstract Machine) code.
We will use the well-suited functional style for the description of the translation scheme,
unlike the more imperative formal representation of the abstract machine, in which we
need other mechanisms to express concurrency. Italics are used for the identi�ers of
translation schemes, while a normal font is used for machine instructions and arguments).
The symbols %% are used to denote a comment or condition which must be met by the
corresponding rule in which they occur.

This presentation starts with the progtrans scheme, which produces some initial code
for setting the machine into the looking for work state (Idle instruction), to stop the ma-
chine (Stop instruction) and several set of instructions needed to handle output (print prelude)
and some primitives (through the schemes equality prelude, and ho prelude). Next, the
translation of the functions is generated by the functrans scheme for each function in the
program. The entry point in the code before starting the narrowing of the query is Init-
Bam. The translation of the expression to be narrowed is given by the exprtrans scheme.
Finally, a jump to the print section is given. The entry point to the print section (LPrint)
is located in the print prelude scheme.

38

progtrans:(Rule) !Expr!PBAMCode

progtrans(<<fj tji;1. . . t
j

i;nj
:= eji j 1 � i � rj >j 1 � j � p >,e) ::=

Idle
LStop: Stop

print prelude

equality prelude

ho prelude

functrans(<f1 t1i;1. . . t
1
i;n1:= e1i j 1 � i � r1 >)

...
functrans(<fp tpi;1. . . t

p
i;np:= epi j 1 � i � rp >)

LStart: InitBam lve n dd LPrint LStop

exprtrans(e, 0)
Jump LPrint

Below, the exprtrans scheme is shown. Several rules for exprtrans de�ne the code
generated for each kind of expression: variables, constructors, applications, higher or-
der functions, guarded expressions (if then, and if then else), primitives (conjunction,
disjunction, equality, disequality, arithmetic operations (OP�), and negation), the let-in
constructor, and �nally the parallelism-related functions (letpar-in, the parallel conjunc-
tion, and the parallel disjunction).

The translation of a variable leads to the generation of the Load instruction. In
case of a constructor or function application, the arguments are translated �rst. For
the constructor, the constructor node is generated in the heap and its address pushed
onto the data stack. In the case of a function a Call or Proceed instruction is generated
depending on whether tail recursion can be applied. If not all the arguments are applied,
an application node is generated by StoreApp, instead.

The translation of a higher order application is done by translating the expression and
its arguments and �nally generating an Apply instruction.

Guarded expressions are translated by generating the code for the guard, and then a
conditional jump examining the value which is on top of the data stack after the evaluation
of the guard. The translation of conditional expressions is similar. The same is valid for
the sequential Boolean functions. The �rst argument of the function is translated, and
the resulting value of the evaluation which is placed on top of the data stack is consulted
in order to see whether the evaluation of the second argument can be skipped (i.e., when
the value is de�nitory).

The equality expression is processed similar to the function application. Note that the
equality prelude is called. The disequality is reduced to the equality expression by simply
appending the negation instruction Not. The other primitive operations are handled by
tranlating their arguments and performing the corresponding operation on it.

The let-in constructor which de�nes an environment for local variables is translated by
generating each translation of the right hand side of the assignments, and next, if the left
hand side is a variable, the UnifyVar instruction, which simply makes the local variable
point to the value in the data stack. Finally, the translation scheme for the expression
outside of the local environment is applied.

The parallel constructor letpar-in, which de�nes an environment for the local execution
of the right hand side of each assignment, is translated as follows. The �rst instruction

39

is a jump to the fork point. After that, the scheme strictpartrans is applied for each
assignment. Next, the sequential version let-in of the letpar-in is found, which is accessed
whenever the work load balancing strategy decides to transfer the control to the sequential
part. The instruction Jump to the uni�cation section comes next. The Par instruction
denotes the fork point of n siblings, which is followed by the Wait instruction which waits
until the completion of all the siblings. For each parallel sibling a WaitTab instructions
is generated denoting the respective entry points LFi to the code. What follows is the
uni�cation code for the results. Finally, the rightmost expression is translated.

The translation schemes for the non-strict Boolean functions conjunction and disjunc-
tion are similar to the scheme for the let-par. The uni�cation part and the last exprtrans
occurrence are superuous since DisjWait and ConjWait instructions take care of these
duties.

exprtrans:Expr!N !PBAMCode
exprtrans(Xi, tl) ::=

Load i
exprtrans(c e1. . . en, tl) ::=

exptrans(e1,0)
...
exptrans(en,0)
StoreConstr c n

exprtrans(f e1. . . en, tl) ::=
exptrans(e1,0)
...
exptrans(en,0)8><
>:

Proceed Lf n %% arityf = n; tl = 1
Call Lf n %% arityf = n; tl = 0
StoreApp Lf n %% arityf > n

exprtrans(e e1. . . en, tl) ::=
exprtrans(e, 0)
exptrans(e1,0)
...
exptrans(en,0)
Apply n tl

exprtrans(if e1 then e2, tl) ::=
exprtrans(e1, 0)
JumpIfFalse LFail

exptrans(e2, tl)
exprtrans(if e1 then e2 else e3, tl) ::=

exprtrans(e1, 0)
JumpIfFalse lfalse
exptrans(e2, tl)
Jump lcont

lfalse: exptrans(e3, tl)
lcont: . . .
exprtrans(e1,e2, tl) ::=

exprtrans(e1, 0)

40

JumpIfFalse lfalse
exprtrans(e2, tl)
Jump lcont

lfalse : StoreConst false
lcont: . . .
exprtrans(e1;e2,tl) ::=

exprtrans(e1, 0)
JumpIfTrue ltrue
exprtrans(e2, tl)
Jump lcont

ltrue: StoreConst true
lcont: . . .
exprtrans(e1=e2, tl) ::=

exprtrans(e1, 0)
exprtrans(e2, 0)(
Proceed LEq 2 %% tl = 1
Call LEq 2 %% tl = 0

exprtrans(e1 �=e2,tl) ::=
exprtrans(�(e1=e2),tl)

exprtrans(e1�e2, tl) ::= (� 2 f+;�; �; =;%; >;<;�;�g)
exprtrans(e1, 0)
exprtrans(e2, 0)
OP�

exprtrans(�e, tl) ::=
exprtrans(e, 0)
Not

exprtrans(let t1=e1,. . . ,tn=en in e, tl) ::=
exptrans(e1,0)(
UnifyVar i %% t1 2Var
unifytrans(t1; ") %% otherwise

...
exprtrans(en,0)(
UnifyVar i %% if tn 2Var
unifytrans(tn; ") %% otherwise

exprtrans(e,1)
exprtrans(letpar t1=e1,. . . ,tn=en in e, tl) ::=

Jump lfork
l1: strictpartrans(e1, t1, 1, i1)

...%% ik=minf0; j j Xj 2 var(tk)g(1 � k � n)
ln: strictpartrans(en, tn, n, in)
lsequential: exprtrans(let t1=e1,. . . ,tn=en in e, tl)

Jump lcont
lfork: Par n lsequential

Wait n
WaitTab l1 1
...

41

WaitTab ln n
unifytrans(t1, Load i1) %% i1 > 0
...
unifytrans(tn, Load in) %% in > 0
exprtrans(e,1)

lcont: . . .
exprtrans(e1 && . . .&& en, tl) ::=

Jump lfork
l1: partrans(e1, 1)

...
ln: partrans(en, n)
lsequential :exprtrans(e1, . . . , en, tl)

Jump lcont
lfork: Par n lsequential

ConjWait n
WaitTab l1 1
...
WaitTab ln n

lcont: . . .
exprtrans(e1 jj . . . jj en, tl) ::=

Jump lfork
l1: partrans(e1, 1)

...
ln: partrans(en, n)
lsequential: exprtrans(e1; . . . ; en, tl)

Jump lcont
lfork: Par n lsequential

DisjWait n
WaitTab l1 1
...
WaitTab ln n

lcont: . . .

The translation scheme unifytrans which is applies to terms. In case of a variable,
the given loadinstr instruction on the i-th variable is the unique instruction. In case of a
constructor, the loadinstr instruction comes �rst, then the UnifyConstr instruction, and
the unifytrans scheme is recursively applied for each argument of the constructor.

unifytrans:Term!(fLoadg�N [")!PBAMCode
unifytrans(Xi, loadinstr) ::=

. . .
unifytrans(c t1. . . tn, loadinstr) ::=

loadinstr
UnifyConstr c n nlv
unifytrans(t1, Load nlv)

42

.
unifytrans(tn, Load nlv+n-1)

Below, the partrans and strictpartrans schemes are given. The �rst one consists of the
TryMeElse instruction pointing to the fail label, next the translation exprtrans and the
SendResult instruction, which sends the computed result for the n-th child to the parent.

partrans:Expr!N !PBAMCode
partrans(e, n) ::=

TryMeElse lfail
exprtrans(e, 0)
SendResult n

lfail: SendFail n
strictpartrans:Expr!Term!N 2 !PBAMCode
strictpartrans(e, t, n, i) ::=

TryMeElse lfail
exprtrans(e, 0)
unifytrans(t, ")
StoreConst true

)
%% i=0

SendResult n
lfail: SendFail n

The guardtrans scheme for an expression e with and without dynamic cut optimization
10 is given below. Firstly, the InitGuardVars or the DynamicCut instructions are generated
for the optimized and non optimized cases, respectively, followed by the translation of the
expression given by exprtrans.

guardtrans:Expr!PBAMCode
guardtrans(e) ::=

InitGuardVars gv n %% Without dynamic cut optimization
exprtrans(e, 1)

guardtrans(e) ::=
DynamicCut %% With dynamic cut optimization
exprtrans(e,1)

guardtrans(if e1 then e2) ::=
InitGuardVars gv n
exprtrans(e1, 0)
JumpIfFalse LFail

DynamicCut
exprtrans(e2, 1)

The translation of a rule is guided by the ruletrans scheme, which starts with the
unifytrans scheme for each argument of the left hand side of the rule. It continues with
the translation of the right hand side of the rule through the above scheme guardtrans
and ends with the Return instruction.

10See [18] for details.

43

ruletrans:Rule!PBAMCode
ruletrans(f t1. . . tn := e) ::=

unifytrans(t1, Load 1+lvf)
...
unifytrans(tn, Load n+lvf)
guardtrans(e)
Return

Below, the functrans scheme which is applied to a (�nite) set of rules is given. The
�rst rule shows the translation for only one rule, while the second one deals with more
than one rule. The �rst instruction Tab stores the symbolic information of each function
and is used by the instructions StoreApp, Call, Proceed, and Apply.

functrans:Rule�!PBAMCode
functrans(<f t1;1. . . t1;n := e1 >) ::=
Lf : Tab lvf arityf

ruletrans(f t1;1. . . t1;n := e1)
functrans(<f ti;1. . . ti;n:= ei j 1 � i � r >)::=
Lf : Tab lvf arityf

TryMeElse l2
ruletrans(f t1;1. . . t1;n := e1)

l2: RetryMeElse l3
ruletrans(f t2;1. . . t2;n := e2)
...

lr: TrustMe
ruletrans(f tr;1. . . tr;n := er)

The print prelude scheme deals with the translation needed to support output when
printing constructors and lists.

print prelude ::=
lploop: PrintChar 44 %% ','
lpconstr: Print lpconstr lplist lpccont

JumpIfFalse LStop

lpccont: JumpIfData lploop 1
PrintChar 41 %% ')'
StoreConst true
Return

lplloop: PrintChar 44 %% ','
lplist: Print lpconstr lplist lplcont1

JumpIfFalse LStop

lplcont1: Load 1
JumpIfEoL lplcont2
JumpIfList lplloop
PrintChar 124 %% 'j'
Print lpconstr lplist lplcont2

44

JumpIfFalse LStop

lplcont2: PrintChar 93 %% ']'
StoreConst true
Return

LPrint: InitPrint
Print lpconstr lplist lploopvar
JumpIfFalse LStop

lploopvar: PrintVar lpexit
Print lpconstr lplist lploopvar
JumpIfTrue lploopvar

lpexit: More
JumpIfFalse LStop

LFail: Fail

The equality prelude scheme which is applied to data constructors is given below.

equality prelude ::=
LEq: Load 1

Load 2
CheckEq leqconstr
Return

leqconstr: UnifyVar 1
Load 1
CheckEq leqconstr
JumpIfFalse leqfail
JumpIfData leqconstr 2
StoreConst true
Return

leqfail: StoreConst false
Return

Finally, the ho prelude which shows the translation regarding the primitives in �
is given. Firstly, the arguments are loaded onto the stack and then the corresponding
operation is applied.

ho prelude ::=
l�: Load 1 (� 2 f+;�; �; =;%; >;<;�;�g)

Load 2
OP�

Return

Finally, we will show the code obtained by translating the following example program,
the parallel version of the �bonacci program.

The following Babel program:

45

�b X : if
(X>1)

then
letpar Y1 = �b (X-1),

Y2 = �b (X-2)
in Y1+Y2

else 1.

with the query �b(10), is translated as shown below, where italics are used for labels.

Idle
Stop Stop
PLoop PrintChar 44
PConstr Print PConstr PList PCCont

JumpIfFalse Stop

PCCont JumpIfData PLoop

PrintChar 41
StoreConst true
Return

PLLoop PrintChar 44
PList Print PConstr PList PLCont1

JumpIfFalse Stop

PLCont1 JumpIfEoL PLCont2

JumpIfList PLLoop

PrintChar 124
Print PConstr PList PLCont2

JumpIfFalse Stop

PLCont2 PrintChar 93
StoreConst true
Return

Print InitPrint
Print PConstr PList PLoopVar

JumpIfFalse Stop

PLoopVar PrintVar PExit

Print PConstr PList PLoopVar

JumpIfTrue PLoopVar

PExit More
JumpIfFalse Stop

Fail Fail
Eq Load 1

Load 2
CheckEq EqStruct

Return
EqStruct InitGuardVars 1 1

UnifyVar 1
Load 1
CheckEq EqStruct

JumpIfFalse EqFail

46

JumpIfData EqStruct

StoreConst true
Return

EqFail StoreConst false
Return

Add Load 1
Load 2
Add
Return

Subtract Load 1
Load 2
Subtract
Return

Multiply Load 1
Load 2
Multiply
Return

Divide Load 1
Load 2
Divide
Return

Module Load 1
Load 2
Module
Return

GreaterThan Load 1
Load 2
GreaterThan
Return

GreaterOrEqual Load 1
Load 2
GreaterOrEqual
Return

LessThan Load 1
Load 2
LessThan
Return

LessOrEqual Load 1
Load 2
LessOrEqual
Return

And Load 1
Load 2
And
Return

Or Load 1
Load 2

47

Or
Return

Xor Load 1
Load 2
Xor
Return

Not Load 1
Not
Return

�b InitGuardVars 1 2
Load 3
StoreNum 1
GreaterThan
JumpIfFalse Label.1

Jump Label.2

Label.6 TryMeElse Label.5

Load 3
StoreNum 1
Subtract
Call �b

SendResult 1
Label.5 SendFail 1
Label.8 TryMeElse Label.7

Load 3
StoreNum 2
Subtract
Call �b

SendResult 2
Label.7 SendFail 2
Label.3 Load 3

StoreNum 1
Subtract
Call �b

UnifyVar 1
Load 3
StoreNum 2
Subtract
Call �b

UnifyVar 2
Load 1
Load 2
Add
Jump Label.4

Label.2 Par 2 Label.3

Wait 2 3
WaitTab Label.6 2 1
WaitTab Label.8 2 2

48

Label.4 Load 1
Load 2
Add
Return 3

Label.1 StoreNum 1
Label.0 Return 3
Start InitBam 0 1 5 Print Stop

StoreNum 10
Call �b

Jump Print

5.2 The Memory

Several memory models can be considered in designing a parallel model. The most repre-
sentative ones are the shared and the distributed memory systems. In the shared memory
model, the memory is shared by the processors in the network. The processors have direct
access to the memory, but they must wait until the usage of the memory bus is allowed.
In order to control the memory access, some bus protocol is needed. The access frequency
is limited by the bandwidth of the memory. In these systems, the bottle-neck problem
occurs when the number of processors in the network signi�cantly grows. In the distrib-
uted memory model, each processor with local memory is typically connected to others
through links according to some topology. There is no need for a bus protocol, but instead
for a message passing mechanism which drives the messages through the links. In this
case, the e�ciency is bound by the maximum message ow which depends eventually on
the topology considered and the message bandwidth. Systems like the Sequent machines
are representatives of the shared memory model, while Transputer systems are examples
of the distributed memory model.

Both memory models have some advantages and drawbacks that make them more
suitable for di�erent applications. When some processors in the network have to access
common memory areas, the shared memory model seems to be more adequate, because
the expensive message passing mechanism is avoided. If the memory areas are assigned to
di�erent processors the distributed memory system is more adequate, because the shared
memory access protocol is not needed. If a small number of processors is considered, the
shared memory model seems to be also worthwhile.

In the sequel we will focus our attention on a shared memory model in which several
processors are connected to a common memory through the system bus which will be
controlled by an access protocol. Nevertheless, some improvements can be embodied in
this model. For instance, data areas that are known to be only locally accessed will be
kept in local memory. Therefore, we propose a system in which common data areas are
located in the shared memory, while the strictly local data areas are located in a memory
which is local to each processor. In such a way, local memory access will be faster than
shared memory access. The code area is read-only and strictly local so it can be placed
in the local memory. Since the data stack is used to pass arguments to functions and
to return the result, we will also consider it as a local data area. This will speed up
the function calls, but note that the result placed on top of the stack will be needed by
remote processors. To manage this situation, the result is copied to the shared memory

49

when another processor requests it. A similar solution is taken when machine registers
are consulted by other processors. Machine register are fast local memory areas which
are typically accessed by the local processor, but which can also be accessed by remote
processors. We already noticed that remote processors can take charge of the control of a
local parallel computation by accessing local registers. Therefore, a mechanism to access
remote registers is also considered. Of course, local access to the code, data stack, or
register data areas is faster than access to the data areas placed in shared memory. The
point that must be analyzed is the overall time spent considering remote accesses to local
data areas.

Figure 7 depicts the basic shared memory system in which n processors with local
memory are connected to the shared memory through several lines and buses. The paths,
common to typical shared memory systems, are:

� the data bus, which drives data to and from the shared memory,
� the address bus, in which each processor deposits the address to be read or written,
� the mode line, indicating the read, write, or wait mode 11 ,
� the request line, which is activated by the corresponding processor that wants to access
the memory, and
� the acknowledge line, which is activated by the memory system to allow access to the
corresponding processor.

nnn n n

Processor 1

Local

Memory

Local

Processor i Processor n

Local

Memory

Shared Memory

Acknowledge Lines

Request Lines

Address Bus

Mode Lines

Data Bus

Memory

Figure 7: Shared Memory System

We have designed a First-Come-First-Served protocol that grants the access control
to the �rst processor requesting the usage of the data bus. If several processors request

11Read and write modes are used to denote respectively a read or write request, while the wait mode

is used to denote a wait on a critical section.

50

access at the same time, then this protocol behaves in a round robin way. With this
protocol we ensure that all the processors have the same priority in accessing the data
bus.

Mutual exclusion management for critical sections is handled explicitly in our model.
The usual semantics of semaphores has been speci�ed, providing a wait statement on
critical sections (i.e., a parcall frames) and a signal statement. We have extended the
semantics in order to cope with kill interrupts, so that whenever a kill noti�cation is
received by a given processor, the execution of this processor is resumed in order to
attend the kill interrupt.

6 VHDL Speci�cation

In this section we present the VHDL speci�cation of the parallel system. Firstly, we
will briey introduce the VHDL speci�cation language. Then, we will present the shared
memory system showing and its components, how they are connected, and how they are
speci�ed.

6.1 The VHDL Language

VHDL (VHSIC Hardware Description Language, where VHSIC is an abbreviation of Very
High Speed Integrated Circuits) is a hardware description language, developed with the
support of the US Department of Defence in order to gain uniformity in the description
of design speci�cations [12, 3]. It has now become IEEE standard 1076-1987, revised in
1992.

VHDL was designed to ful�ll a number of needs in the design process. Firstly, it
allows the behavioural speci�cation of the design using familiar programming language
platforms. Secondly, it allows the structural description of a design, i.e. the decomposition
into sub-designs and their interconnection. Thirdly, as a result, it allows a design to be
simulated before being implemented, so that designers can quickly compare alternatives
and test for correctness without the delay and expense of hardware prototyping.

A VHDL program is a set of concurrent processes communicating by means of signals,
following an event-driven model. The behaviour of processes is described by means of a
sequential algorithm making use of common imperative constructions. To handle process
communication, the language provides the WAIT and the signal assignment (<=) state-
ments. The signal assignment statement projects future values for signals. The general
syntax is:

signal <= expression AFTER time expression;

The expression is evaluated and the result is scheduled to become the current value of
the signal after the delay indicated by time expression. The WAIT statement allows
to suspend the execution of a process, and to express the conditions for its resumption.
The general syntax for a wait statement is:

WAIT ON sensitivity list UNTIL condition FOR time expression;

The logical condition is evaluated whenever an event happens in a signal which is in
the sensitivity list. If the result is false, the process remains suspended, otherwise
it is resumed after the time-out interval denoted by time expression. The time is only
increased when a WAIT statement is executed.

The general syntax of a process is:

51

BEGIN sequential statements

END PROCESS;

It has a declarative region delimited by the reserved words IS and BEGIN where a set of
data types, subprograms, and variables can be declared. A VHDL program is a set of
processes concurrently executed following an event-drivenmodel. Each process in a VHDL
program represents a component or subsystem of the simulated hardware system. The
simulation starts with an initialization phase, and then proceeds by repeating a simulation
cycle. In the initialization phase, all signals are given initial values, the simulation time is
set to zero, and the sequential algorithm of each process is executed until a wait statement
is found. During the execution of a process, future values can be projected for some of the
output signals of the corresponding part of the design by means of the signal assignment
statement. In a simulation cycle the time is advanced to the next value when a signal
changes or a process resumes. Each resumed process is executed from the next statement
after the wait that caused its suspension until the next wait statement is found. If there
are no more scheduled changes, the whole simulation is completed. Figure 8 shows a
system consisting of a central processing unit (CPU) and a memory. The two sub-systems
are connected by two data buses (DataIn, DataOut), an address bus (Address) and a
control bus (Read, Write, Ready). The corresponding VHDL description is shown below.

DataIn

DataOut

Address

MemoryCPU

Read

Write

Ready

Figure 8: Processor system

Memory : PROCESS

BEGIN

...

DataIn <= ... ;

...

Ready <= ... ;

...

WAIT ON Read, Write, DataOut, Address;

END PROCESS Memory;

52

CPU : PROCESS

BEGIN

...

Read <= ... ;

...

Write <= ... ;

...

DataOut <= ... ;

...

Address <= ... ;

...

WAIT ON DataIn, Ready;

END PROCESS CPU;

The program consists of two processes, one for each component of the system, con-
nected by signals. Each process is sensitive to the input signals and schedule transactions
on its output signals. In VHDL it is possible to represent hardware components in which
several outputs are connected forming buses. To achieve this, the language has special
signals named resolved signals. These signals can be assigned from several processes at a
time. A resolution function to resolve the way the signal changes must be supplied. Each
time a process gives a new value to a resolved signal, the resolution function is called with
the values that each process gives to that signal. The result of the resolution function is
the e�ective value of the signal in that simulation time.

It is also possible to use a previously described digital circuit as a part of another by
means of the component statement.

6.2 The Shared Memory System

We are interested in a low-level speci�cation that allows to measure timings regarding
the behaviour of the parallel system. This is why we have speci�ed the system in such
a way that, thanks to the VHDL's temporal model, we were able to specify the access
memory times and evaluate the system in a re�nement level so that the time granularity
is in terms of register access time level. This re�nement level allows us to evaluate the
system at a really low level, where we can try out several design decisions such as dif-
ferent memory models (shared, interleaved, distributed, . . .), cached systems, scheduling
strategies, and so on. The aim is to get results as close to the actual system as possi-
ble in order to have close-to-real measurements before implementing the actual hardware
system. Following this guideline, we have de�ned the memory access times for each
data area (local access, shared memory access, and local data area remotely accessed)
and have imposed the delays in the memory system by means of the VHDL statement
WAIT FOR memory access time;. The simulation of such a speci�cation provides the
computation time of the parallel system, that can be compared with the computation
time of the sequential system, which has been also speci�ed in a similar way.

As stated in Section 5 we are interested in a system with a memory shared by a set
of processors, forming a network. We map a machine to a processor, and the memory to
the shared memory. We have designed the shared memory system as an asynchronous
system in which the memory and each processor component are synchronized by means
of the Request and Acknowledge lines. We consider three main categories in the shared

53

memory system: the processor component, the memory component, and the paths linking
them (i.e., the data and address bus, and the control lines). The processor and the
memory are declared as VHDL components which allows easily us to declare as many
processors connected to the memory as a constant indicates. The system can therefore be
tested easily for di�erent numbers of processors. Such processors perform communication
through the data paths, that are naturally speci�ed as VHDL signals.

The data paths are speci�ed with the following VHDL signal declarations:

SIGNAL AddressBus: t_AddressBus;

SIGNAL MemProcDataBus: t_DataBus;

SIGNAL ProcMemDataBus: t_DataBus;

SIGNAL ModeLines: t_Modes;

SIGNAL RequestLines: t_Requests := (OTHERS => FALSE);

SIGNAL AcknowledgeLines: t_Acknowledges := (OTHERS => FALSE);

AddressBus stands for the address bus. For simplifying purposes, the data bus de-
picted in Figure 7 has been split into two data paths, namely MemProcDataBus and
ProcMemDataBus, which stand for the outgoing data from the memory and the outgoing
data from the processor, respectively. ModeLines represents the set of mode lines con-
necting each processor with the memory. RequestLines represents the set of request lines
which are enabled by each processor requesting access to the memory. AcknowledgeLines
represents the set of acknowledge lines connecting the memory with each processor. Only
one acknowledge line is enabled at a time by the memory, therefore allowing access to the
corresponding processor.

The identi�ers above starting with t_ stand for the type associated with the corre-
sponding signal (typically, high level enumerated data types regarding possible values).
The expression := (OTHERS => FALSE) stands for the initialization phase of the corre-
sponding signal. In our case, the intended meaning is the resetting of the requesting lines,
as well as those acknowledging ones.

The interface parts of both processor and memory are considered next. Below, the
VHDL ports that represent the sockets to which buses and lines (speci�ed as signals) are
connected, are shown.

COMPONENT processor

GENERIC(Id : t_ProcId);

PORT(InData: IN t_Data;

OutData: OUT t_Data;

Address: OUT t_Address;

Mode: OUT t_Mode;

Request: OUT t_Request;

Acknowledge: IN t_Acknowledge);

END COMPONENT;

The GENERIC port is intended to provide an identi�er to each processor, and the Reset
socket is intended to initialize the processor at start-up.

In a similar way, the memory component is de�ned in VHDL as:

COMPONENT memory

54

PORT(InDatas: IN t_DataBus;

OutDatas: OUT t_DataBus;

Addresses: IN t_AddressBus;

Modes: IN t_Modes;

Requests: IN t_Requests;

Acknowledges: OUT t_Acknowledges);

END COMPONENT;

In the speci�cation of the memory component, each socket is assumed to be connected
to as many lines or buses as there are processors in the network. This approach simpli�es
the connections of data paths.

The speci�cation of the components connection by means of the data paths is de-
clared in the structural VHDL architecture shown below which links the sockets with the
corresponding data paths.

BEGIN

shmemo: memory PORT MAP(InDatas => ProcMemDataBus,

OutDatas => MemProcDataBus,

Addresses => AddressBus,

Modes => ModeLines,

Requests => RequestLines,

Acknowledges => AcknowledgeLines);

processors: FOR i IN 1 TO c_numberofprocessors GENERATE

proc_i: processor

GENERIC MAP(Id => c_Ids(i))

PORT MAP(InData => MemProcDataBus(i),

OutData => ProcMemDataBus(i),

Address => AddressBus(i),

Mode => ModeLines(i),

Request => RequestLines(i),

Acknowledge => AcknowledgeLines(i);

END GENERATE processors;

END structural;

The memory component embodies not only the data management (by serving read or
write requests) but also the access protocol. Although Figure 7 depicts the local memory
embodied in each processor (as well as the machine registers), in the speci�cation we have
embodied it in the memory. The reason is the following: since the data stack and register
local data areas are to be remotely accessed, we have abstracted this mechanism in such
a way that the memory system will be responsible for the management of those siblings,
keeping the processor system free of it. Therefore, the memory system will serve all the
data requests, but retains the conceptual behaviour of the local data areas, so that the
access to them will not interfere with the access to the global data areas. We show below
the body of the memory process that implements the intended behaviour.

55

BEGIN

WAIT ON requests;

attend_local_requests;

l_memory:

LOOP

IF no_pending_requests THEN

EXIT l_memory;

END IF;

select_asker(v_PriorityArray, v_Target);

attend_request(v_Target);

END LOOP l_memory;

END PROCESS;

The �rst statement implies a wait on the change of the requests signal. Whenever
any processor sets its own request line, the change is noticed by the memory. After such a
change is noticed, the memory �rst attends the local requests (attend_local_requests),
which do not need to be refereed by the access protocol, because they are per se local
requests. Afterwards, the memory system scans the active requests deciding which request
to serve (select_asker), �nally serving it (attend_request). With the use of the LOOP
statement, all the eligible requests at a given time are attended, and the information
needed by the access protocol is held in v_PriorityArray. The process delimiter BEGIN
and END PROCESS de�ne an overall loop, i.e., when all the request have been served, the
process continues with the �rst statements and waits for further requests.

The extended behaviour of semaphores is speci�ed in the select_asker procedure.
Whenever the memory component detects a kill noti�cation for the processor requesting
a wait statement, the memory component serves the request returning a kill noti�cation
to the processor, respecting the protocol policy.

Below, we present the VHDL speci�cation corresponding to the read operation per-
formed by a processor.

Mode <= readMode;

Address <= ... ;

Request <= TRUE;

WAIT UNTIL Acknowledge = TRUE;

v_Data := InData;

Request <= FALSE;

WAIT UNTIL Acknowledge = FALSE;

When a read operation is requested by any processor, the Mode and Address lines are
set with the corresponding values. Then, the Request line is set. The processor will wait
until the memory decides to serve such a request. The (shortened) synchronization part
of the memory is as follows.

outdatas(v_Target) <= ... ;

acknowledges(v_Target) <= TRUE;

WAIT UNTIL requests(v_Target) = FALSE;

WAIT FOR v_Delay;

acknowledges(v_Target) <= FALSE;

56

Once the acknowledge has been noticed by the processor, it can pick up the requested
data from the socket InData, and then it resets the Request line. The memory, in turn,
is synchronized again by the resetting of such line, and then, the corresponding delay is
taken into account through the WAIT FOR v_Delay; sentence. Finally, the processor can
resume its computation when the Acknowledge line is reset by the memory. From this
point, the memory can attend to other requests.

This scheme forms the basics for controlling the access to shared data areas. It has
been upgraded in order to serve the local memory accesses as well. The key to such an
upgrade is to prevent the time constraint which occurs at the memory being transferred
to the processor component so that it only a�ects the processor. It is speci�ed by:

� avoiding time delays for local data areas in the memory, and

� imposing time delays for local data areas in the processor after any read or write
operation.

The narrowing unit is speci�ed in the processor speci�cation. The body of the process
speci�cation is outlined below.

BEGIN

printTraceStart;

initProcessor;

l_control_loop:

LOOP

read(RM, v_Data);

IF v_Data.value = cod(stop) THEN

EXIT l_control_loop;

END IF;

printDebugInfo;

fetch(v_OpCode);

CASE v_OpCode IS

WHEN InitBam =>

.

.

.

END CASE;

END LOOP l_control_loop;

printTraceStop;

WAIT;

END PROCESS;

After an initialization phase, the label l_control_loop denotes the beginning of the
main control loop, which consists of:

� the exit condition based on the running mode register rm,

� fetching the current instruction, and

� a case selection for identifying and starting the execution of the current instruction.
All the machine instructions are implemented at the case branches.

57

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1 2 3 4 5 6

Sp
ee

d-
up

Number of Processors

a) Speed-up
b) Slow-down

Figure 9: Speed-up vs. Number of Processors

After the main loop, the WAIT instruction ensures that the VHDL process stops.
The current version of the speci�cation deals with debugging as well as post mortem

analysis which has been provided through the procedures printDebugInfo for debugging
and printTraceStart, printTraceStop, printTraceFork, printTraceJoin, printTraceStartTask,
and printTraceFinishTaskwhich supply the needed information for post mortem analy-
sis using the visualizing tool VisAndOr [5].

7 Preliminary Results

In this section we give some preliminary results of the current VHDL implementation.
Figure 9 depicts the performance of the system in terms of speed-up obtained running

the �bonacci program on di�erent number of processors. We have noted that programs
with not enough granularity show no speed-up, but slow-down, as one would expect (see
Figure 9-b). This is clear due to the extra cost induced by the parallelism management.

Further improvements of the pro�ling procedure will deal with more re�ned statistics.
For instance, we may consider the dead times for accessing the memory, the processors
that remain idle due to the precedence condition, the time spent in the parallel related
operations, and other factors which will help us to tune the system for further e�ciency.

8 Conclusions and Future Work

We have presented a computational model for the parallel execution of Babel that relies
on a more e�cient memory management than in previous approaches. Another impor-
tant extension is the optimized handling of the parallel execution of non-strict functions, a
very essential concept of functional programming. All these ideas have been incorporated

58

in an abstract model, assuming a shared memory multiprocessor system. Further re�ne
ments have delivered a low level speci�cation in VHDL and a prototype implementation.
Currently we are studying its behaviour and re�ning the time measurement to obtain
results closer to an actual parallel system. We have tested the system with a small set
of benchmarks that shows the applicability of our procedure in the design of the parallel
system.

Further investigation will deal with several topics. For instance, the study of inter-
leaved, distributed, and cached memory models. An interesting topic is the integration of
the distributed and the shared memory model, together with the combined exploitation
of And-parallelism and Or-parallelism, since And-parallelism is well suited to exploitation
with shared memory clusters, while Or-parallelism can be better exploited on a distrib-
uted network. Another topic is the extension of the non-strict parallel model to deal with
lazy narrowing.

References

[1] M. Alpuente and M.J. Ram��rez. The Logic + Equational Europa Environment and
its Application to the Rapid Prototyping of Database Applications. In Workshop on

the Integration of Functional and Logic Programming, Granada, Spain, September
1990.

[2] M. Bellia and G. Levi. The relation between Logic and Functional Languages: A
Survey. The Journal of Logic Programming 3:, pages 217{236, 1986.

[3] J. M. Berg�e, A. Fonkoua, S. Maginot, and J. Rouillard. VHDL Designer's Reference.
Kluwer Academic Publisher, 1992.

[4] P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A Complete
Characterization of K-LEAF, a Logic Language with Partial Functions. In Proceed-

ings of the 1987 Symposium on Logic Programming, pages 318{327. IEEE Comp.
Society Press, 1987.

[5] M. Carro, L. G�omez, and M. Hermenegildo. Some Paradigms for Visualizing Parallel
Execution of Logic Programs. In 1993 International Conference on Logic Program-

ming (ICLP), 1993.

[6] C. Codognet and Philippe Codognet. Non-deterministic Stream AND-Parallelism
based on intelligent backtracking. Proceedings of the International Conference of

Fifth Generation Computer Systems, ICOT, 1984.

[7] J. Conery. Parallel Execution of Logic Programs. Kluwer Academic Publisher, 1987.

[8] D. DeGroot. Restricted And-parallelism. Proceedings of the International Conference
of Fifth Generation Computer Systems, ICOT, 1984.

[9] D. DeGroot and G. Lindstrom. Logic Programming: Functions, Relations and Equa-

tions. Prentice Hall, 1986.

59

[10] M.V. Hermenegildo. An Abstract Machine Based Execution Model for Computer

Architecture Design and E�cient Implementation of Logic Programs in Parallel. PhD
thesis, Dept. of Electrical and Computer Engineering (Dept. of Computer Science
TR-86-20), University of Texas at Austin, Austin, Texas 78712, August 1986.

[11] M.V. Hermenegildo and F. Rossi. On the Correctness and E�ciency of Independent
And-Parallelism in Logic Programs. In 1989 North American Conference on Logic

Programming, pages 369{390. MIT Press, October 1989.

[12] Institute of Electrical and Electronic Engineers, Inc. IEEE Standard VHDL Language

Reference Manual, March 1988.

[13] H. Kuchen and W. Hans. An AND-Parallel Implementation of the Functional Logic
Language BABEL. In Workshop on the Integration of Functional and Logic Pro-

gramming, Granada, Spain, September 1990.

[14] H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph
Narrowing to Implement a Functional Logic Language. Technical Report DIA 92/4,
Departamento de Inform�atica y Autom�atica, UCM, 28040 Madrid, Spain, 1991.

[15] H. Kuchen, J.J. Moreno-Navarro, and M.V. Hermenegildo. Independent AND-
Parallel Implementation of Narrowing. In Book, 1992.

[16] G. Lindstrom. Functional Programming and the Logical Variable. In Proc. Symp.

on Princ. of Programming Languages, pages 266{280, New Orleans, 1985. ACM.

[17] R. Loogen. Stack-based Implementation of Narrowing. In CCPSD, Tapsoft, LNCS

494. Springer-Verlag, 1991.

[18] R. Loogen and St. Winkler. Dynamic Detection of Determinism in Functional Logic
Languages. Lecture Notes in Computer Science, 1991.

[19] J.J. Moreno and M. Rodr��guez-Artalejo. BABEL: a Functional and Logic Program-
ming Language Based on a Constructor Discipline and Narrowing. In Conference on

Algebraic and Logic Programming, LNCS 343, pages 223{232. Springer-Verlag, 1988.

[20] U.S. Reddy. Narrowing as the Operational Semantics of Functional Programs. In
Proceedings of the IEEE International Symposium on Logic Programming, pages 138{
151. IEEE Computer Society Press, July 1985.

[21] F. S�aenz and J. J. Ruz. Parallelism Identi�cation in BABEL Functional Logic Pro-
grams. In 7th Conference on Logic Programming (GULP'92), Milan, Italy, June
1992.

[22] M. Sassin. Design of an Abstract Shared Memory Machine for AND-Parallel BABEL
with Dependency Information. In Workshop on the Integration of Functional and

Logic Programming, Granada, Spain, September 1990.

[23] D. H. D. Warren. An Abstract Prolog Instruction set. 309 Technical Note, SRI
International, 1983.

[24] D. H. D. Warren. Or-Parallel Execution Models of Prolog. Datsoft'87, pages 243{257,
1987.

60

