
Formal Veri�cation of a PowerPCTM Microprocessor

David P. Appenzeller

IBM Microelectronic Burlington

Essex Junction, VT, U.S.A.

Andreas Kuehlmann

IBM Thomas J. Watson Research Center

Yorktown Heights, NY, U.S.A.

Abstract

This paper presents the use of formal methods in
the design of a PowerPC microprocessor. The cho-
sen methodology employs two independently devel-
oped design views, a register-transfer level speci�ca-
tion for e�cient system simulation and a transistor-
level implementation geared toward maximal proces-
sor performance. A BDD-based veri�cation tool is
used to functionally compare the two views which es-
sentially validates the transistor-level implementation
with respect to any functional simulation/veri�cation
performed at the register-transfer level. We show that
a tight integration of the veri�cation approach into the
overall design methodology allows the formal veri�ca-
tion of complex microprocessor implementations with-
out compromising the design process or performance
of the resulting system.

1 Introduction

Formalmethods have successfully been used on var-
ious levels of abstraction ranging from high-level prop-
erty checking to Boolean comparison of two combina-
torial circuits. Basically, the application area of for-
mal veri�cation for practical designs is characterized
by three main factors: (1) The size of the design un-
der examination, (2) the abstraction level of the prop-
erties to be veri�ed, and (3) the degree of automation
provided by the veri�er. Due to the exponential com-
plexity of the general veri�cation problem current ap-
proaches cannot explore all three factors at the same
time. Therefore, various methods have been devel-
oped that are tuned to di�erent areas in this complex-
ity/abstraction/automation domain.

As an example, symbolic model checking [1] is capa-
ble of verifying high-level design properties expressed
as formulas of temporal logic. For testing complex
sequential system characteristics, these formulas are
very powerful and can identify serious design errors,
such as dead lock situations of communicating proto-
col machines. However, unless speci�c properties of
the circuit structure can be exploited, the application
of model checking is limited to designs with a few hun-
dred state registers. Even though model checking is
not practical for full scale microprocessor veri�cation,
it can successfully complement an existing veri�cation
methodology for speci�c subsystems, such as bus con-
trollers.

1This paper is published as Report RC (19971), IBM T. J. Wat-
son Research Center, Yorktown Heights, NY 10598, March 1995

As compared to high-level model checking, less ab-
straction of the properties to be proven can signi�-
cantly increase the size of the designs which can be
formally veri�ed. For example, an exhaustive func-
tional comparison of di�erent design views implicitly
validates properties con�rmed on one (preferably ab-
stract) view for all other (typically more detailed) rep-
resentations. As an example, in [2] the application of
SFG-tracing is presented to formally compare circuits
synthesized by the Cathedral system with the original
input speci�cation.

In this paper, we discuss the application of formal
veri�cation in the design process of a PowerPC mi-
croprocessor. The methodology employed two inde-
pendently developed design views. The �rst view, a
register-transfer level (RTL) speci�cation, was highly
tuned for maximum simulation performance and ex-
posed to extensive simulation for con�rming the com-
pliance with the PowerPC architecture. The second
view was a system implementation and was primarily
custom designed on the transistor-level to achieve op-
timal system performance. The veri�cation program,
Verity [3], was applied to exhaustively prove the func-
tional equivalence of these two design representations.

An industrial design environment necessitates the
following challenges for formal veri�cation, which need
to be addressed in the chosen design methodology:

� The veri�cation approach must be suited for a
distributed design environment in terms of time
and space. It is not acceptable to always wait
for a complete design point before veri�cation can
be applied. Verifying partial circuits must be a
continual part of the development process which
might last for several years. Further, typical de-
velopment teams for microprocessors consist of 50
to 100 designers. The veri�cation method must
consider a corresponding division of the develop-
ment work, di�erent design styles and skill levels,
and varying progress in completing the individual
pieces.

� The veri�cation tool must be both reliable and
predictable. Due to the algorithmic complexity,
our approach for verifying large systems is based
on an equivalent partitioning of the two design
views being compared. It is crucial to con�rm
as early as possible that a given partitioning is
feasible for the veri�er. Late changes of either
design model might have a signi�cant impact on
the overall design schedule.

1



� The veri�cation tool must handle various design
and circuit styles. In the given case, manual
circuit design in conjunction with logic synthe-
sis and PLA generators were used. The resulting
system implementation consists of static and dy-
namic CMOS circuits mixed with gate-level logic.

� To maximize its application during manual cir-
cuit design, the veri�er needs to work interactively
with a fast response for the majority of the de-
signs. Further, a strong debugging assistance for
e�cient error location and correction is as impor-
tant as uncovering functional miscompares.

The rest of the paper is organized as follows: Sec-
tion 2 summarizes the basic concepts of the veri�ca-
tion tool, Verity. Section 3 describes the overall design
methodology with respect to the veri�cation approach.
Section 4 elaborates on the circuit design style using
formal veri�cation. Section 5 presents various statis-
tics about the tool usage over the project duration.

2 Verity

In this section we discuss those concepts of the ver-
i�cation tool Verity that are signi�cant for the pre-
sented PowerPC veri�cation methodology. A detailed
description of the applied algorithms and methods can
be found in [3].

Verity was designed for functional veri�cation of
large transistor and gate-level circuits. It uses Reduced
Ordered Binary Decision Diagrams (ROBDD) [4] for
a canonical representation of logical functions and em-
ployes various heuristic ordering algorithms including
dynamic variable ordering [5]. The following tech-
niques have proven to be a prerequisite for the practi-
cal veri�cation of large systems:

Programmable mixed-mode extractor:

The extraction of the logical system function is based
on a mixed switch/gate-level circuit representation.
This general scheme allows the veri�cation of circuits
at various design stages and abstraction levels. The
actual extraction rules are programmable and can be
adapted to a wide variety of circuit styles such as static
or multi-phase dynamic circuit techniques. Further, a
set of programmable consistency checks validates the
extraction model and is used to uncover unwanted cir-
cuit situations such as collisions at nets that are simul-
taneously driven by both logical values.

Combinatorial veri�cation model:

Verity does not address the general sequential veri�-
cation problem. It is based on a veri�cation model in
which corresponding registers of both design views are
to be identi�ed. This restriction can impact the com-
position of the RTL speci�cation. However, the limita-
tion to combinatorial equivalence enables the veri�ca-
tion of more complex systems. Further, it signi�cantly
improves the ability to predict whether a given circuit
partition can be handled by the tool. In many prac-
tical cases registers/latches used in the circuit imple-
mentation have modi�ed interfaces with respect to the
original speci�cation. Verity uses a general method for

matching such di�erences by supporting user-de�ned
glue logic.

Hierarchical veri�cation methodology:

The veri�cation of large systems is based on an iden-
tical partitioning of the two design views being com-
pared. Typically, the top part of the given design hi-
erarchy is taken as the veri�cation partitioning. Its
granularity must guarantee that each piece can suc-
cessfully pass Verity. Depending on the functional-
ity, circuit pieces containing up to 25,000 transistors
can be handled. Design parts that have been veri�ed
are excluded on the next higher veri�cation level by
a black-boxing scheme. Black-box inputs are treated
as veri�cation outputs and the incoming functions of
the two views are compared. Similarly, black-box out-
puts are converted into veri�cation inputs and driven
by independent variables.

Logical boundary assertions:

A partitioned veri�cation approach requires a general
mechanism to specify and validate logical boundary as-
sertions. Such assertions describe the set of valid sig-
nal patterns at circuit boundaries that occur in normal
chip operation. In conjunction with the hierarchical
veri�cation approach, Verity uses boundary assertions
to restrict the veri�cation space. For each circuit to be
veri�ed, the user speci�es input constraints and output
tests that are used accordingly while applying Verity.
When the circuit is black-boxed at the next higher
veri�cation level, the output tests are converted into
constraints, e�ectively restricting the set of possible
patterns of the output variables. Similarly, the input
constraints are converted into tests that are validated
for the arriving signal values.

Error diagnosis:

In case of logical miscompares, failing boundary asser-
tions or consistency checks, Verity produces counter
example patterns that exercise the unwanted situa-
tion. Multiple veri�cation problems are grouped to-
gether if they can share the same counter example.
This reduces the debugging information and helps the
designer to focus on common design problems. Fur-
ther, Verity applies an e�cient error diagnosis algo-
rithm which classi�es circuit nets according to their
probability of causing the error(s) [6].

3 Design Process of the PowerPC Chip

In order to fully understand the practical implica-
tions of applying formal veri�cation to a large design,
it is �rst necessary to describe the framework in which
the veri�cation tool operates. For this project, due
to tight schedule demands, many design tasks were
commenced in parallel. Similarly, the overall design
methodology was constantly updated and improved to
reect the current state of the design process.

3.1 Parallel Design Practice

In a practical microprocessor development project,
it cannot be assumed that all previous design steps are
completed before the next step begins. For example,

2



1

��������� �����������������

����������������

���� ���
�������������

��!� �


�
�

�
��
�
 
��

�
�
�
��
�

�
�
!
�
 
�

�
�
�
��
�

�
�
�
��
�

�
��������������������

��	���

����������������������

�	������ ������


�
�
��
!
�
��
�
�
��

�
��
�
!
��
�
�
�
��
��
�
�

���������

�������������������
������!�

���� ������ ������

Figure 1: General design ow used for the PowerPC
microprocessor from a functional veri�cation point of
view.

in order to build and verify a circuit, the RTL spec-
i�cation describing its function might not necessarily
be completed, nor fully tested. In the given project,
a parallel development strategy was implemented that
spanned all design activities from the RTL speci�ca-
tion to the layout implementation.

In order to regularly synchronize the design activ-
ities, a snapshot methodology was applied. A snap-
shot was de�ned as a consistent and structurally intact
design point which did not necessarily implement the
complete or correct function. For example, once the
RTL speci�cation for a speci�c instruction had been
coded, a snapshot was taken and delivered to the cir-
cuit and physical design team for schematic and lay-
out implementation. The snapshot technique was also
used for the �ne tuning of the overall design methodol-
ogy as new tools or methods could be exposed to stable
data before they were released for general application.

The general design ow of the PowerPC develop-
ment is shown in Figure 1. The primary input to the
design process was the PowerPC micro-architecture
speci�cation, a plain English description of the func-
tional details for each machine instruction, register,
and other details of the microprocessor. Starting from
this speci�cation, �ve distinct and parallel processes
were undertaken which included: (1) RTL design, (2)
circuit design, (3) functional veri�cation, (4) timing
analysis and correction, and (5) layout design, oor-
planning, placement and wiring. For the purposes of
this paper, only the �rst three items are of particular
interest and are explained below.

3.2 RTL Design

This initial design step included the development
of the RTL speci�cation from the architectural speci-
�cation. The resulting VHDL source represented the

�rst formal and complete model of the microprocessor.
The RTL hierarchy was structured into three distinct
layers, each comprising one or more hierarchy levels:

Chip layer: This level represents the entire PowerPC
description.

Functional unit layer: This layer represented the
�rst order partitioning of the processor into func-
tional blocks such as integer, branch, and dispatch
units. The typical unit size was about 25,000 ex-
ecutable lines of VHDL representing about 200K
transistors.

Component layer: Each functional unit was com-
posed of multiple components. Depending on
the component size and functionality, several hi-
erarchy levels were used for their VHDL models.
The average component source contained 7000 ex-
ecutable lines of VHDL which corresponded to
about 60,000 transistors.

The speci�c structure of these hierarchy layers was de-
signed based on three factors: (1) Designers ability
to e�ectively manage a particular hierarchy node, (2)
complexity limitations of the physical design tools, and
(3) complexity constraints imposed by Verity for hier-
archical formal veri�cation.

3.3 Circuit Design

Given the hierarchical RTL speci�cation as de-
scribed above, the circuit implementation started at
the component level. For each RTL component a cor-
responding circuit implementation was designed, while
the hierarchy information for the chip and functional
unit layers was directly adopted from the RTL model.

Due to performance requirements, the majority
of the circuit components were custom designed at
the transistor-level. A signi�cant portion of these
designs utilized static CMOS techniques, including
pass-transistor and transmission-gate circuits. Perfor-
mance critical components, such as Content Address-
able Memory (CAM) cells and ROM designs were im-
plemented by precharge logic. In a few cases, logic
synthesis in conjunction with standard cell layout tech-
niques and array generators for PLAs and ROMs were
applied to automatically generate circuit components
from the VHDL source.

3.4 Functional Veri�cation

The veri�cation methodology used in this PowerPC
project employed a variety of techniques and tools to
implement RTL simulation, circuit simulation, timing
analysis, and formal veri�cation. For the purposes
of this paper, both RTL and circuit functional veri�-
cation is described covering pattern-based simulation,
and formal veri�cation.

Pattern-based simulation: A variety of test cases
were simulated on the VHDL and circuit-level
models, and the response was compared with the
nominal behavior. The set of test cases for VHDL
simulation included manually designed test pro-
grams and randomly generated test sequences

3



which could be biased toward speci�c targets.
Similarly, stimuli for circuit simulation included:
(1) Manual stimulus patterns, (2) input stimuli
generated by fault model pattern generators and
(3) simulation sequences captured during system
simulation for a particular component. Functional
simulation was applied on individual components
and on the system level containing the entire mi-
croprocessor. Overall, to verify the correctness of
the RTL and circuit-level speci�cations, extensive
simulation on a large cluster of workstations was
performed.

Formal Veri�cation: Verity was applied throughout
the design process to check the consistency be-
tween the RTL speci�cation and the transistor-
level circuit implementation. This formal com-
parison step was based on the hierarchical system
partitioning and was tightly incorporated into the
snapshot methodology. Therefore, is was possible
to apply the tool continuously at all stages of the
design cycle.

4 Practical Circuit Design with Verity

Verity was fully integrated into the circuit design
environment, allowing the user to invoke the tool au-
tomatically from the schematic entry system. Ad-
ditional design information such as logical boundary
conditions, speci�c functional tests, and veri�cation
options were entered once for each design and then
reused in successive veri�cation runs. In addition to
the interactive application of Verity, batch submission
and version control mechanisms automatically veri�ed
updated parts of entire subtrees of the design hierar-
chy.

With respect to the hierarchy partitioning described
above, the application of Verity was distinguished be-
tween the component layer and the chip/functional
unit layer. For the components, the circuit and RTL
models were functionally compared and the logical
boundary conditions were validated. Since the struc-
tural interconnection of the circuit components were
adopted from the RTL model, a functional comparison
for the chip and functional unit layers was redundant.
For full chip veri�cation, it was su�cient to validate
the consistency of the logical boundary conditions on
these levels.

Depending on the complexity, the component veri-
�cation was performed either at or hierarchically. In
the at case no restriction were implied on the descrip-
tions of the components. For hierarchical veri�cation,
the top part of the circuit and RTL hierarchy had to
match and, if necessary, consistent logical boundary
conditions had to be speci�ed for the inputs and out-
puts of the subcomponents.

Advantages of Designing with Verity:

Because of its tight integration into the schematic de-
sign process, Verity was essentially a push button tool
quickly reporting functional correctness of the current
design state. The initial setup of the veri�cation data

for a particular design required some e�ort for spec-
ifying the boundary conditions and the appropriate
veri�cation options (typically 10 to 15 minutes). How-
ever, since the data was reused for subsequent veri�-
cation runs, the repeated application of Verity was far
more productive (3 to 4 minutes for an average circuit).
The e�ciency of formal veri�cation shifted the overall
circuit design paradigm from a design-then-test style
more towards a trial-and-error mode in which Verity
was used as a design engine testing iterative design
attempts.

Disadvantages of Designing with Verity:

Although Verity could handle large circuits, compo-
nents often needed to be veri�ed hierarchically, with
the restrictions described above. In a few cases where
circuit and RTL designs were started before formal
veri�cation was introduced, a signi�cant amount of
repartitioning was needed to make the component pass
formal veri�cation. In general, this could have been
avoided by a close collaboration between the RTL and
circuit designer. However, due to tight schedule de-
mands, this could not always be achieved.

5 Veri�cation Statistics

The entire PowerPC chip was implemented in 139
custom designed components, 38 random logic macros
(RLM) and 65 PLA's. Overall, Verity was applied to
113 custom components and to all RLM's and PLA's,
totalling 89 % of the chip components. 26 compo-
nents were not formally veri�ed because 18 of them
contained large storage arrays (ROM's, cash-arrays)
and the remaining 8 components were too complex and
could not be repartitioned due to schedule constraints.
These circuits were veri�ed by extensive simulation. In
total, 39 circuit designers invoked Verity 7920 times,
totalling 746 CPU hours.

In the following, various veri�cation statistics are
discussed which were collected over the duration of the
project. We use circuit to denote a design part which
was veri�ed as a single entity. The reported numbers
correspond to the at circuit structure excluding the
black-boxed components. Figures 2 and 3 detail the
computing resource required for verifying all circuits.
For the veri�cation, a pool of remote RS/6000, model
580/590 workstations was used for job submission in-
cluding a dedicated machine loaded with 2 GBytes of
real memory. It is notable that 95 % of the circuits
could be veri�ed within 800 CPU seconds using less
than 30 MBytes of memory. This attests to the push-
button characteristic of the veri�cation approach for
the majority of applications. For the remaining few
cases, it was acceptable to invest additional comput-
ing resources or to have a dedicated veri�cation engi-
neer investigate alternative tool options to successfully
verify the circuit.

The following three �gures are used to illustrate the
continuous application of formal veri�cation during the
project. Figure 4 shows the number of Verity runs per
circuit and Figure 5 displays their distribution over
the project duration. It is evident, that instead of
applying Verity at the end of the design cycle only,
formal veri�cation was a constant part of the entire

4



10
0

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
5

10
6

Circuit Size (Number of Transistors)

M
em

or
y 

in
 K

B
yt

es

95 % of all Circuits

Figure 2: Memory usage versus design complexity for
all veri�ed circuits.

development process. To demonstrate the trial-and-
errormode in using Verity as a design engine, Figure 6
reports the application success rate over the project
duration. Here, veri�cation success is referred to as
con�rmed functional equivalence including successful
tests of boundary assertions.

In order to illustrate the hierarchical veri�cation ap-
proach, Figure 7 shows histograms of the black-box
usage and the corresponding application of boundary
conditions. It is notable that about 80 % of the bound-
ary assertions could be validated by applying hierarchi-
cal veri�cation. The remaining assertions were either
of a sequential nature or they span large portions of
the design that could not be handled at. RTL sim-
ulation was used to validate the remaining assertions
based on the given set of test cases.

10
0

10
1

10
2

10
3

10
4

10
5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

95 % of all Circuits

Circuit Size (Number of Transistors)

C
P

U
 T

im
e 

in
 S

ec
on

ds

Figure 3: Runtime versus design complexity for all
veri�ed circuits.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

Project Duration in Weeks

N
um

be
r 

of
 V

er
ity

 R
un

s

Total Number of Runs: 7920

Figure 4: Application of Verity during the project.

6 Conclusions

In this paper we presented the application of for-
mal veri�cation to the development of a PowerPC
microprocessor. The design methodology employed
a RTL speci�cation and a transistor-level implemen-
tation which were formally compared for functional
equivalence. The chosen approach applied a combi-
natorial veri�cation model, where corresponding reg-
isters of the two design views had to be identi�ed. It
was shown that, using this model in conjunction with a
hierarchical veri�cation scheme, complex microproces-
sor systems can be formally veri�ed.

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

160

180

200

Circuits

N
um

be
r 

of
 V

er
ity

 R
un

s

Figure 5: Number of Verity runs per circuit.

A veri�cation approach based on an equivalent sys-
tem partitioning required the users to specify logical
boundary assertions which need to be validated during
hierarchical veri�cation. Although most of the asser-
tions could be validated, sequential boundary asser-
tions and those spanning large portions of the system

5



could not be handled. For the complete veri�cation
of large systems this remains an open problem which
needs to be addressed in future research activities.

A tight integration of the veri�cation tool into
the design environment allowed users to continuously
prove the correctness of the circuit implementation
throughout the design process. Due to e�cient tool
usage, a shift of the application from a design-then-
verify style to a trial-and-error design style could be
observed.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Project Duration in Weeks

S
uc

ce
ed

in
g 

R
un

s 
in

 P
er

ce
nt

Figure 6: Success rate of Verity runs during the
project.

 1 20 40 60 80 100 120
0

20

40

60

Number of Assertions

N
um

be
r 

of
 C

irc
ui

ts

(b)

 1 200 400 600 800 1000 1200
0

5

10

15

Number of Black-Boxes

N
um

be
r 

of
 C

irc
ui

ts

(a)

Figure 7: (a) Histogram of using black-boxes, (b) His-
togram of using logical boundary assertions for all cir-
cuits.

7 Acknowledgements

The authors would like to thank Kurt Carpen-
ter, Elizabeth Bouldin, and Greg Rodgers from IBM

Burlington for their sign�cant support to incorpo-
rate formal veri�cation into the PowerPC veri�cation
methodology. They also wish to thank David LaPotin,
Florian Krohm, Arjen Mets, and Mark Williams from
IBM, Arvind Srinivasan, currently at Mentor Graph-
ics, and Geert Janssen from the Technical University
Eindhoven for their invaluable contributions to �ne
tune Verity for the PowerPC project.

References

[1] K. L. McMillan, Symbolic Model Checking. Boston,
MA: Kluwer Academic Publishers, 1993.

[2] M. Genoe, L. Claesen, E. Verlind, F. Proesmans,
and H. D. Man, \Automatic formal veri�cation of
Cathedral-II circuits from transistor switch level
implementations up to high level behavioral speci-
�cations by the SFG-tracing methodology," in Pro-
ceedings of The European Conference on Design
Automation, (Brussels, Belgium), pp. 54{58, IEEE,
February 1992.

[3] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin,
\Verity - a formal veri�cation program for custom
CMOS circuits," IBM Journal of Research and De-
velopment, vol. 39, pp. 149{166, January/March
1995.

[4] R. E. Bryant, \Graph-based algorithms for
Boolean function manipulation," IEEE Transac-
tions on Computers, vol. 35, pp. 677{691, August
1986.

[5] R. Rudell, \Dynamic variable ordering for ordered
binary decision diagrams," in Digest of Techni-
cal Papers of the IEEE International Conference
on Computer-Aided Design, (Santa Clara, CA),
pp. 42{47, IEEE, November 1993.

[6] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and
D. P. LaPotin, \Error diagnosis for transistor-
level veri�cation," in Proceedings of the 31th
ACM/IEEE Design Automation Conference, (San
Diego, CA), pp. 218{224, IEEE, June 1994.

PowerPC is a trademark of International Business Machines,

Incorporated.

6


