
Abstract
This paper describes the development on RASSP Bench-

mark 1 and 2 of the synthetic aperture radar (SAR) image
processor using the RASSP design environment. The over-
all process flow developed by Lockheed Martin’s Advanced
Technology Laboratories, as applied on the SAR processor,
is illustrated. Results from using executable specifications;
parametric cost estimating tools and VHDL-based perfor-
mance modeling for architecture tradeoffs; hardware/soft-
ware codesign; virtual prototyping for architecture verifi-
cation; software generated by autocode; and VHDL-based,
top-down hardware development are shown. This paper dis-
cusses the implementation strategy and lessons learned on
the RASSP benchmark activities.

1: Introduction

Lockheed Martin Advanced Technology Laboratories
(ATL) designed, fabricated, and tested a real-time synthetic
aperture radar (SAR) signal processor under the RASSP
Benchmark Program. Lincoln Laboratory defined the func-
tional, performance, physical constraints, and interface re-
quirements for the SAR processor [1]. The SAR processor
is to form images of the Earth surface in real time from an
airborne platform (Amber UAV). The airborne usage places
maximum size (10.5” by 20.5” by 17.5”), weight (60
pounds), and power (500 watts at 28 volts DC) requirements
on the SAR processor hardware. The continuous formation
of images for up to three polarizations while maintaining
processor accuracy (error less than -103 dB relative to maxi-
mum output signal power) requires approximately 750
MFOPS of processing power and 80 MBytes of memory.
The exact processing power and memory requirements are
dependent upon the hardware/software implementation.

2: Architecture Design
The architecture design process was started by capturing

RASSP Technology Insertion into the Synthetic
Aperture Radar Image Processor Application

Junius Pridgen, Richard Jaffe, William Kline
Lockheed Martin Advanced Technology Laboratories

Camden, NJ 08102
jpridgen@atl.ge.com, rjaffe@atl.ge.com, wkline@atl.ge.com

and analyzing the requirements of the SAR signal proces-
sor. The SAR signal processor processes radar-pulse data
from up to three of four polarizations (HH, HV, VH, and
VV) to produce the output images. The computational op-
erations performed by the SAR signal processor are:

• PRI detection - detection of the start of pulse data and
the extraction of ancillary navigation and radar data

• Video-to-baseband I/Q Conversion - modulation of in-
put samples by (-1)n followed by finite impulse response
(FIR) filtering

• Range compression - vector multiplication, Discrete Fou-
rier Transform (DFT), and vector multiplication

• Azimuth compression - DFT, vector multiplication, and
inverse DFT.

The Ascent Logic RDD-100 tool was used to decom-
pose the SAR processor requirements, assign the require-
ments, and create specifications to document the hardware,
software, and firmware. Several candidate architectures were
evaluated with respect to meeting current requirements, al-
lowing for future upgrades, and minimization of cost and
risk. The candidate architectures represent different combi-
nations of COTS and custom components and are based upon
several different processors, including the Intel i860, the
Analog Devices ADSP 21060-2, and the Sharp LH9124.
An architecture trade-off matrix was created comparing eight
architectural candidates and served as the basis for making
the architectural selection. Performance simulations were
used to determine processor and interconnect utilization in
each candidate architecture. Matlab was used to evaluate
processing accuracy for different combinations of fixed-
point and floating-point number representation. The
Lockheed Martin PRICE Systems’ parametric cost estimat-
ing tools were used to compute development, production,
and life-cycle costs of the SAR processor. The selected SAR
signal processor architecture, shown in Figure 1, contains
four major architectural elements:

DD32
(Polarization
Program)

CE1
(Control
Program)

MCV6

VMEbus

RACEway

Host Interface Board
(Command Program)

Data I/O Board

SAR Signal Processor

Sun Worstation
(GUI Program)

Data
Source/Sink

RS232 Fiber Optic Link

DD32
(Polarization
Program)

MCV6

DD32
(Polarization
Program)

MCV6

Figure 1. SAR architecture.

• Mercury Computer Systems MCV6 Processor Boards
(VME 6U format) will perform the bulk of the signal
processing. Each MCV6 can have up to two
daughtercards. The SAR signal processor design uses a
single daughtercard containing four Analog Devices
ADSP21062 SHARC processor chips with 32 MBytes
of DRAM for the processing of each polarization.

• A 68040 based single board computer (SBC), the
Motorola MVME162, serves as the host interface and
controls the SAR signal processor operation. When the
SAR signal processor is in stand-alone mode, the 68040
boots the SAR signal processor and controls its opera-
tion.

• A custom designed Data I/O Board interfaces the SAR
signal processor to the radar data source and sink, and
performs front end signal processing functions. This in-
cludes synchronizing operation based upon the preamble
sent with each pulse, performing video-to-baseband I/Q

conversion, FIR filtering, and keeping track of pulse, po-
larization, and frame boundaries.

• An interconnect network consisting of Mercury Com-
puter Systems Raceway acts as a high-bandwidth, point-
to-point network for data transfer, and the VMEbus per-
forms control operations.

The main risk with the chosen architecture was that the
ADSP21062 SHARC processors were not yet available
when the choice was made. Therefore, a risk mitigation plan
was established to use dual i860 daughtercards for the sig-
nal processing if the SHARC based daughtercards were not
available at the time of system integration. A single polar-
ization design requires two i860 boards, each with two
daughtercards, and a three polarization design requires five
i860 boards, each with two daughtercards.

The above sizing estimates assume that the computa-
tional-intensive FIR filter operation is being performed in

dedicated FIR hardware on the Data I/O Board. The deci-
sion to include FIR filtering hardware on the Data I/O Board
was made during the architecture tradeoff analysis phase of
the design process. The FIR hardware reduces the compu-
tational requirements on the signal processors to the point
where a single cluster of four SHARCs can be used per po-
larization being processed. Without modifications to any
hardware, the number of FIR taps can be increased from the
required 8 up to 64, which will more than meet the possible
required future enhancement of 48 taps.

3: Virtual Prototype

The network performance of candidate architectures was
modeled at the data-packet level to evaluate system sizing
(number of processors), software mapping to processors
alternatives, and performance of the interprocessor commu-
nication network. Five seconds of SAR time was simulated
in 18 to 28 minutes, depending upon architecture and soft-
ware mapping.

It is essential to select an appropriate abstraction level to
achieve accurate, yet efficient, performance simulations that
permits rapid exploration of a large number of alternative
software mappings and hardware architectures. Simulation
times of less than a half-hour allow investigation of mul-
tiple design options per day.

The next level of virtual prototype effort built upon the
performance models by adding function to time and space.
A data field added to the network token allowed actual data
passing between the models, and the high level pseudo-code
modeling of the software running on the processors used in
the performance simulation was replaced with processors
working at the DSP math library calls. The data I/O board
and host I/F board were described in behavioral level VHDL
code to model the function and interface to the MIT Lin-
coln Laboratory executable requirement testbench.
Testbench models were created using scaled data sets for
efficient debugging of the VHDL code. The generation of a
full three-image data set took 14 hours of simulation time
running Mentor’s QuickVHDL on a Sun SPARC 10 with
256 MBytes of RAM. Images from the virtual prototype
showed a processor accuracy of -127 dB. Over 4,600 lines
of executable VHDL code were written to implement the
virtual prototype.

The next level of VHDL modeling for the custom Data
I/O board described the COTS components at the behav-
ioral level with emphasis on interface behavior rather than
internal chip structure, and the two new FPGAs in
synthesizeable VHDL at the RTL level. Functional opera-
tion of the FPGAs and the Data I/O board was first debugged

by using a VHDL test bench to exercised the Data I/O board
and FPGAs through their various operation modes. Then
final system level verification of the Data I/O board design
was confirmed by operation of the detailed Data I/O board
VHDL model in the virtual prototype of the SAR system.
The model for the Data I/O board includes 2800 lines of
executable VHDL code.

4: Software Design

Figure 1 identifies the software programs running on the
processing elements and the major hardware elements.

• A graphical user interface (GUI) running on the Sun
workstation accepts commands and displays status and
data as requested by the user.

• A command program (CP) running on the Motorola host
interface board performs initialization, BIT, and state con-
trol of the SAR signal processor.

• Polarization program running on the Mercury signal pro-
cessor boards performs the image processing algorithms.

• Control program running on the Mercury signal proces-
sor board controls the operation of the polarization pro-
gram and data movement to and from the Data I/O board.

The software layout on the processors was first prototyped
using Processing Graph Method (PGM). The PGM graphs
that correspond to the SAR application were developed, and
the PGM graphs partitioned to correspond to the functions of
the Data I/O board, control program, polarization program,
and the command program. The interface data between all
these functions that correspond to the software data dictio-
nary was mapped to PGM graph variables (GV) and graph
instantiation parameters (GIP) and queues.

Prior to integration with hardware, all of the software
functionality was simulated in the Processing Graph Simu-
lation Environment (PGSE). The Command Program was
designed using Object-Oriented Analysis and Design Meth-
odology (OOA/OOD). In this methodology the graphs, GVs,
GIPs, and queues were handled as objects. Associated with
each object was an action or state diagram that shows the
interaction of these objects. Automatic code generation was
used to create the Ada software using the OOA/OOD tool.

The interface between the CP and the polarization pro-
grams was developed using the PGM CP_Callable library
as a guideline. This formally defined set of library func-
tions was used to functionally decompose the interface soft-
ware functional requirements among the software architec-
tural elements. By using the same function specifications
as the CP_Callable library for the application the CP pro-
gram could be verified by simulation.

In order to control the polarization program, a control/
graph manager program was developed to direct the data
transfers between the Data I/O Board and the polarization
processors using the RACEway. The VME interface is used
to connect to the host processor, which sends messages to
the graph manager as it executes the CP_Callable library
functions. The VxWorks and Mercury Computer operating
systems are used to obtain all the system functions needed
to implement the message-passing and shared-memory func-
tions required by the control and graph manager.

The polarization programs are executed on the parallel
polarization processors. These programs consist of a set of
tasks or threads that are supported by the Mercury Com-
puter operating system. The tasks are range, corner turn-
ing, and Azimuth, which are implemented as software threads
with different execution priorities. The coordination with
the control program is handled by the status and command
threads which have been integrated with the Azimuth com-
putation thread.

5: Hardware Development

The hardware design for the SAR signal processor con-
sisted of the mechanical design of the chassis and the de-
sign of the data I/O Board. All other boards in the SAR
signal processor are COTS components which required no
new hardware design. Hence, the hardware design discus-

sion focuses on design of the Data I/O Board shown in block
diagram form in Figure 2.

The Hot Rod module (HRC-500FS Fiber Optic Inter-
face Card) provides separate fiber optic interfaces for the
input radar data and output image data. The Hot Rod
daughtercard interfaces to the rest of the Data I/O Board
through two 40-bit wide buses — one for transmit and one
for receive. The input data rate of 4.56 Megawords and out-
put data rate of 6.83 Megawords are both within the 11.25
Megawords maximum of the Hot Rod. The Hot Rod has an
internal loopback mode that connects the transmit side back
to the receive side. The loopback mode is used during Data
I/O Board test.

The Hot Rod Interface FPGA performs a number of op-
erations on the radar data in addition to controlling the Hot
Rod. The Hot Rod Interface FPGA contains logic that looks
for the preamble that defines the beginning of a radar pulse.
Once the start of a pulse is detected, the odd and even data
samples are extracted along with bit serial data defining
polarization and auxiliary radar data. The 12-bit odd and
even pulse samples are modulated by (-1)n before being
written into the Input FIFO. The auxiliary radar data is writ-
ten to the AUX FIFO. The number of words, pulses, and
image frames in both the receive and transmit channels are
counted as part of the I/O control.

Hot

Rod

Module

Hot
Rod

Interface
FPGA

Output
 FIFO

Input
FIFO

FIR

Filter

Module

FIR
FIFO

RACE
PORT

Control
FPGA

F
i
b
e
r

O
p
t
i
c

AUX
FIFO

RACEway

VME
Address 12

Data 16

24 32

3232

24

Figure 2. Data I/O board block diagram.

and modify the VHDL description to meet timing and speed
specifications. A typical modification was the introduction
of pipelining on paths not meeting speed. Once the FPGA
design was completed, the logic and timing was back-an-
notated into the board level VHDL model and functionality
was reverified.

Detailed schematics of the Data I/O Board design were
captured using Mentor Graphics Design Architect. The sche-
matics could not be finished until the FPGA design was
completed with all pin assignments finalized. Once the sche-
matics were finalized, placement and routing using Mentor
Boardstation were performed for the Data I/O motherboard
and FIR filter daughterboard. The board layout parasitics
were back-annotated into the VHDL model to confirm that
functional and timing specifications are met.

6: Integration and Test

When this paper was written, the Data I/O Board was
just released to fabrication and the COTS hardware will be
delivered shortly. The testing of the hardware and integra-
tion of hardware and software will be reported on at the
conference.

7: Conclusion

The RASSP team has defined and demonstrated an ap-
proach for applying VHDL to model full computing sys-
tems that contain upwards of hundreds of processor ele-
ments. A central theme is the promotion of true hardware/
software codesign through the independent specification of
the software and the hardware, so as to support the rapid
exploration of various software applications and mappings
upon many architectural candidates. Reduction of virtual
prototype simulation time to less than a half-hour for rela-
tively complex applications, such as the SAR, allows in-
vestigation of multiple design options per day.

The team also demonstrated VHDL-based hierarchical
design, with simulation and testbench data from higher lev-
els of the virtual prototype used to verify RTL level de-
scriptions of custom boards and FPGAs.

References

1. Zuerndorfer, B and G. A. Shaw, “SAR Processing for RASSP
Application”, Proceedings of 1st Annual RASSP Conference,
Arlington, VA, 15-18 August 1994, pp 253 - 268.

The FIR filter daughtercard is capable of simultaneously
processing I and Q channel data at a 5 MHz input rate. The
input data is 12-bit twos complement, the filter coefficients
are 23-bit twos complement, and the output is 32-bit twos
complement in both I and Q. Each channel uses two Plessey
PDSP16256 Programmable FIR Filter chips configurable
with up to 64 taps, with one FIR chip processing the most
significant portion of the filter coefficients, and the other
processing the less significant portion of the filter coeffi-
cients. The 16K deep FIR FIFO buffers received data until
it is sent out of the RACE interface.

The RACE port interface contains two ASICs designed
by Mercury Computer Systems, Inc. The RACE interface
sends the received radar data to the appropriate signal pro-
cessor, and receives output image data from the signal pro-
cessors. The 4k-deep output FIFO provides data buffering
between the RACE interface and the Hot Rod transmit port.

The Control FPGA controls the operation of the FIR fil-
ter and the FIFOs, keeps track of the status of all FIFOs,
and implements the VMEbus interface.

Test considerations played an important part in the de-
sign of the Data I/O Board and associated FPGAs. One test-
ability issue is the lack of JTAG scan on a majority of the
COTS components. The design approach taken was to add
JTAG scan bus transceivers to signal paths between non-
JTAG devices. A second testability issue is the presence of
asynchronous interfaces. The approach taken is to design
these interfaces so that they can be tested synchronously,
and to add test modes that force synchronous operation. Test
modes included in the FPGA design enable bypass of either
the PRI detection logic or the FIR Filter. FIR bypass is sig-
nificant in that it allows testing of the Data I/O motherboard
without the FIR Filter daughterboard in place. FPGA test
modes reduce the cycle time of high modulo counters, al-
lowing testing of higher order counter bits. The various test
modes, which are part of the VHDL model, are included in
the data I/O functional simulations.

Synopsys was used to synthesize logic for the two FPGAs
using the AT&T ORCA cell library. NeoCAD was then used
to map these cells to the ATT2C15 FPGA programmable
logic cells (PLCs), place the cells, and route the intercon-
nect between the cells. Static timing analysis (using
NeoCAD) after mapping, placement, and routing was per-
formed to identify any nets not meeting timing and speed
specifications. In some cases, it was necessary to go back

