
Model Checking in Industrial Hardware Design �

J�org Bormann, J�org Lohse, Michael Payer and Gerd Venzl

Siemens Corporate R&D
D-81730 Munich

Germany
Joerg.Bormann@zfe.siemens.de

Abstract|This paper describes how model
checking has been integrated into an industrial
hardware design process. We present an appli-
cation oriented speci�cation language for assump-
tion/commitment style properties and an abstrac-
tion algorithm that generates an intuitive and
e�cient representation of synchronous circuits.
These approaches are embedded in our Circuit Ve-
ri�cation Environment CVE. They are demonstra-
ted on two industrial applications.

I. Introduction

In todays' hardware design processes the validation
phase requires such a large e�ort that fast alternatives
to simulation have a great potential to shorten the overall
time for the development of a circuit. One such promi-
sing alternative is the use of formal methods [15]. Among
these we favour BDD [4] based symbolic model checking,
i.e., tools that automatically prove properties about �nite
state systems such as absence of deadlocks, lifeness proper-
ties ("something good will eventually happen"), or safety
properties ("something bad will never happen"), and pro-
duce input sequences that contradict a property if a proof
fails.

The main advantage of these algorithms is that they
work automatically and are often capable to examine cir-
cuits of industrially relevant sizes within minutes. The
user only needs to specify the properties to be checked
whereas other formal methods such as theorem proving
[3, 5] require a deep knowledge of the circuit internals.

The ease of use allows the integration of a model
checker into the traditional hardware design process as
a supplementary tool for the various validation phases. It
can be used, e.g., to check with some suitable properties
whether a circuit indeed meets a designer's intentions, to
verify the synthesis step, or to validate post synthesis mo-
di�cations such as retiming and engineering changes.

�This work has been supported by JESSI AC-8 and ESPRIT
project FORMAT

To use a supplementary model checker the designers
must only spend a reasonable speci�c e�ort. It pays o�
substantially if the model checker terminates successfully
because it can replace many simulation runs. On the other
hand the designer knows that almost no e�ort is wasted if
the model checker encounters prohibitive complexity pro-
blems. He then proceeds with simulation as usual.

Besides a powerful model checker, this requires appro-
priate interfaces from and to the traditional hardware de-
sign process and a user interface that can quickly be ma-
stered by the designers. To our knowledge the Circuit
Veri�cation Environment CVE [2] is the �rst tool that sa-
tis�es these requirements. CVE supports EDIF [16] and
VHDL [11, 12] and generates VHDL test benches for coun-
ter examples if it detects a design error. CVE is operated
from a graphical menu driven user interface.

The designer has to specify the properties to be mo-
del checked which forces him to think about whole sets
of behaviors. This is uncommon to the current validation
practice where the designer concentrates on one simulation
run after the other. The necessary familiarization can be
considerably facilitated with an application oriented lan-
guage for the speci�cation of properties. For this purpose
we developed CVE's Interval Language (CIL). Another
important help is provided by an algorithm that auto-
matically generates a special �nite state machine (FSM)
representation for synchronous circuits (the synchronous
machine) which captures restrictions of the input behavior
common in a synchronous setting. Consequently these re-
strictions need not be explicitly stated in a model checking
property.

This paper presents CIL (Section II) and the automatic
extraction mechanism for synchronous machines (Section
III). The relation to other research is discussed in Sec-
tion IV. Applications of CVE are presented in Section V.
Section VI concludes this paper.

II. CVE's Interval Language CIL

Model checking requires the speci�cation of a property in
a formal language. To be used in industrial hardware de-
sign, the language must be application oriented, compre-
hensible for designers and e�ciently treated by the model
checker. This goal is met by CVE's Interval Language CIL
which is optimized for the use with synchronous designs
as this is the implementation method for most hardware
functionality. Synchronous circuits have a special inter-
nal representation that performs one state transition per

clock cycle. It is generated with the algorithm of Sec-
tion III. CIL introduces an explicit notion of time which
counts the state transitions of the underlying FSM. This
establishes a close relation between the real timing of a
synchronous circuit and the state transitions of its special
internal representation.

CIL is an extension of Boolean VHDL expressions by
some constructs for temporal speci�cations. Since VHDL
is the base of CIL, de�nitions from the circuit design phase
(such as type or function declarations) can be used to spe-
cify the properties. The language is employed to specify
commitments containing the proof goal as well as assump-
tions which describe the behavior of the environment.

The development of CIL was motivated by expressions
such as

requestjt) acknowledgejx>t

It speci�es that every request will be acknowledged. Ex-
pressions like this are informally used in data sheets or in
discussions among designers. Like these expressions, CIL
formulae are built up from timed predicates which consist
of a state predicate and a temporal speci�cation. The
temporal speci�cation describes when the machine should
be in a state that satis�es the state predicate.

The state predicate is given in the subset of Boolean
expressions in VHDL. The temporal speci�cation refers
either to a particular point of time, or to a whole period.
A point of time is speci�ed behind the keyword at. A
period is speci�ed by an interval, which is a uniform re-
presentation of three di�erent types (T, T1, and T2 are
points of time):

[T1, T2], refers to the time between T1 and T2 inclusi-
vely.

[T, infinite], refers to T and every point after T.

[T, p], refers to the time between T and the last point
of time before the state predicate p is satis�ed for
the next time.

An interval is preceded by during or within to specify
whether the state predicate holds during the whole period
or at least once in the interval.

Times are either integer constants or de�ned relative to
a variable t which is universally or existentially quanti�ed
by always or finally.

In commitments, timed predicates with temporal spe-
ci�cations relative to t may be preceded by the keyword
possibly to denote that for every state of the FSM at an
arbitrary point of time t there must be at least one exe-
cution path that satis�es the state predicate at the given
time.

Some examples for CIL-expressions are:

acknowledge = true at 5 speci�es that the signal ack-
nowledge is true after the 5th state transition follo-
wing the initial state of the underlying FSM.

reset = '0' during [0, infinite] is true, i� the re-
set signal is always '0'.

always((request = '1' at t) implies
(acknowledge = '1' within [t+1, infinite]))

speci�es, that every request must be answered by an
acknowledge that occurs at least one state transition
after the request.

finally(initialized = '1' during [t, infinite])
requires the signal initialized to remain '1' after
some point of time.

always(write = '1' within [t, infinite]) and
always((write = '1' at t) implies (write =
'0' during [t+1, t+3])) requires that the write
signal is in�nitely often '1' but with at least three
state transitions with write = '0' in between.

always((resetCntr = '1' at t) implies
(resetCntr = '0' during [t+1, counter=5]))
speci�es that after the signal resetCntr was active,
it must remain deactivated until the counter reaches
the value 5.

A property to be model checked is speci�ed in a theo-
rem which consists of a CIL formula for the assumption
(preceded by assume:) and a CIL formula for the com-
mitment (preceded by prove:).

CIL is supported by a parser and a translator to the
temporal logics CTL and LTL for commitments and as-
sumptions, respectively, which are the input language of
SVE, the model checker that underlies CVE. CIL expres-
sions are separated into the VHDL expressions and the
dynamic structure given by the temporal speci�cations.
The latter is compiled into temporal logic while the VHDL
expressions are translated by the VHDL frontend of CVE
[11]. This ensures, that user de�ned VHDL packages can
be consistently used in CIL.

III. Synchronous Machines

CIL is generally applicable and provides a comprehen-
sible language for the speci�cation of the properties of any
circuit. However, CIL is most intuitive when used in con-
junction with a synchronous machine, i.e., an FSM for
which the ith entry in the input sequence represents the
input of the corresponding synchronous circuit read at the
ith clock edge and the ith entry in the output sequence
represents the output that is generated after the ith clock
edge.

The algorithm presented in this section extracts a syn-
chronous machine from the macro machine that is gene-
rated by the CVE frontends [11] from almost arbitrary
asynchronous designs. Macro machines are FSMs that
perform one state transition at every input change. To
build a macro machine, the CVE frontends assemble all
computations that are invoked in the zero delay model by
an input change into one state transition. Consequently a
macro machine transits several times within a clock cycle.
Our algorithm combines all transitions in a clock cycle and
then removes the clock input. See Fig. 2 for a comparison
of the macro machine representation of a ip op and the
corresponding synchronous machine.

The advantage of synchronous machines is that the
relation between the temporal speci�cations in CIL and
the timing of the circuit is obvious. Moreover, a synchro-
nous machine captures restrictions of the input behavior

program synchronize
Inputs: (�, �, (Is, Ip)) (* macro machine *), Clock

identify old clock bit p (* transition function equals clock *)
if p cannot be identi�ed then report error; stop
F1(s; i0) := (�(1; i0; 0) � �(0; i0; 1) � �(1; i0; 1))(s)
F2(s; i0; i1) := (�(1; i1; 1) � �(1; i0; 0) � �(0; i0; 1) � �(1; i0; 1))(s)
F3(s; i0; i1) := (�(0; i1; 1) � �(1; i1; 1) � �(1; i0; 0) � �(0; i0; 1) � �(1; i0; 1))(s)
if not F1 = F2 = F3 (* synchronization criterion *) then report error; stop
�(s; i) := F1(s; i)
�(s; i) := (�(1; i; 0) � �(0; i; 1) � �(1; i; 1))(s) (and eliminate old clock bit)
if not Ip = 1 then (Ip; Is) := �(1; i0; Ip; Is) with an appropriate input i0.
I := Is
return (�;�; I) (* synchronous machine *)

Figure 1: Abstraction Algorithm for Synchronous Machines

common in a synchronous setting as e.g., the toggling of
the clock and the temporal relation between changes of
clock and data inputs. Consequently, these restrictions
need not be formalized for model checking of synchronous
machines whereas they lead to bulky assumptions if the
corresponding macro machine is examined.

Fig. 1 presents the abstraction algorithm for the case
of circuits that are sensitive to the rising clock edge. A
similar algorithm applies, if a circuit is sensitive to the
falling clock edge. The algorithm assumes that the state
of the macro machine contains one particular bit, the old
clock bit, which stores the last value of the clock input.
This assumption is reasonable because the old clock value
is necessary to detect clock edges. The old clock bit can be
automatically identi�ed since its state transition function
always returns the value of the clock input.

To make the old clock bit and the clock input ex-
plicit the state transition function and the output func-
tion of the macro machine are denoted by �(c; i; p; s) and
�(c; i; p; s), respectively, where c is the clock, p the old
clock bit, i all other inputs, and s all other state variables.
(Is; Ip) denotes the initial state of s and p in the macro
machine. For simplicity we write (F (a; b; c)�G(u; v; w))(z)
instead of F (a; b; c;G(u; v; w; z)).

s=1
p=1

s=0
p=1

s=1
p=0

s=0
p=0

clk=1
d=1

d=0
clk=1

clk=1
d=1

clk=1
d=0

clk=0

clk=0

clk=1

clk=1

clk=0

clk=0

s=1

s=0

d=1d=0

d=1

d=0

Figure 2: State Graph of the Macro Machine (left) and Syn-
chronous Machine (right) of a Flipop. (s, p and d denote
state, old clock bit and data input, respectively)

The algorithm eliminates the clock input and the old
clock bit. It assumes that the circuit is part of a larger
synchronous system and receives the input timing given
in Fig. 3 where the data inputs change simultaneously
when the clock is high. These changes divide a clock cycle
into the three intervals I, II, and III. The macro machine
computes state and output for each interval by a separate
state transition. The main idea of the algorithm is to de-
termine the state transition function � of the synchronous
machine, such that it computes the state of the macro ma-
chine in interval II of every clock cycle. To obtain � the
state transitions of the macro machine between successive
intervals II must be combined. Due to the given clock be-
havior the clock input and the old clock bit are known in
advance. Moreover, the data inputs must be kept stable
during these state transitions. This gives the expression
that is assigned to � in the algorithm.

The algorithm checks whether the corresponding cir-
cuit is synchronous and sensitive to the rising clock edge
with a synchronization criterion. It is satis�ed i� under
the timing of Fig. 3 the outputs of the zero delay model
of the circuit are stable between two rising clock edges.
The output of the macro machine in every interval of the
clock cycle is determined by the functions F1, F2, and F3
in the same way as described for �. The functions must
be equal to satisfy the synchronization criterion.

(1,i ,0,s)(0,i ,1,s)

i i

F F F

time

clock

other
inputs

outputs

I II III I II III

0 1

1 2 3

s s s2 3 4

(1,i ,1,s)0 2 3 40 0

states

λ(1,i ,0,s)40

δ δ δ

Figure 3: Relation between Input and Output Timing

The algorithm is well adopted to the internal repre-
sentation of FSMs in CVE, where the state transition and
output functions are represented by BDDs [4]. First the
concrete values for the clock input and the old clock bit
are applied which reduces most of the BDDs considerably.
Then the substitutions are performed on these BDDs. The
execution time of this algorithm was negligible for all ex-
amples we tried so far.

Examples show that synchronous machines have consi-
derably smaller BDD representations than the correspon-
ding macro machines and that often several state bits of
the synchronous machine are redundant such that they
are eliminated in a post processing step. Additionally,
the number of iterations of the model checker is cut in
half. As a consequence the execution time of the model
checker is reduced to at least one half and for some examp-
les even one thirtieth of the time spent for a veri�cation
of the corresponding macro machine. Results are given in
Section V.

IV. Comparison to Related Work

How model checking can be applied in hardware design
has been studied in academia using tools like HSIS [1]
and SMV [14]. HSIS supports extensions of BLIF and
Verilog, whereas SMV has an own textual representation
of the models under examination. Both tools check pro-
perties by model checking of CTL formulae. HSIS addi-
tionally provides language containment algorithms for L-
Automata. The circuit environment is described by auto-
mata and fairness constraints that exclude certain in�nite
behaviors. Research with these tools examined at which
stages of the hardware design process model checking can
be used most bene�cially [13, 15] and how the complexity
of model checking problems can be reduced [7]. Conse-
quently, the user interfaces are made for expert users and
are exible rather than comprehensible.

CTL, the speci�cation language for properties in both
tools, is far more expressive than CIL. However, to our
experience the expressiveness of CIL is su�cient for ty-
pical veri�cation tasks in hardware design. On the other
hand, CIL formulae are more comprehensible than the cor-
responding mixture of automata, fairness constraints, and
CTL commitments which are needed to specify properties
for HSIS or SMV.

It is an advantage of CIL that it introduces an ex-
plicit quantitative notion of time. The Symbolic Timing
Diagrams (STD) [8] introduce time in a qualitative sense.
The clock signal must be explicitly included. STDs can
express properties that cannot be speci�ed in CIL, e.g.,
a sequence of events leading to some other event. Howe-
ver, such properties can be expressed in CVE if the model
is complemented by a test bench that detects these se-
quences of events. While it is an open issue whether STDs
are more useful for designs than a language like CIL, we
expect the model checking of a property speci�ed in STDs
to be considerably more complex than model checking of
the corresponding CIL formulae.

In [9] a VHDL subset is described from which an FSM
representation similar to our synchronous machines is di-
rectly extracted. This subset is more restrictive than the
subset supported by CVE [11]. Our two step approach
allows to examine synchronous VHDL descriptions with

Control 1

Control 2

Control 3

Control 4

Bank 1

Bank 2

Bank 3

Bank 4

read write data_in

data_outfifo_full

Control 5 Bank 5

Figure 4: Implementation of 4x5 FIFO

small asynchronous portions that do not inuence the ge-
nuine functionality (e.g., asynchronous resets). Most of
our industrial examples are of that form. These descrip-
tions are translated with the CVE frontend into macro
machines and, after deactivating the asynchronous porti-
ons, the synchronous machine is extracted.

V. Two Industrial Applications

This section presents applications of CVE to two selec-
ted industrial hardware designs. One is a generic �rst{in{
�rst{out memory (FIFO) for which model checking was
applied during the design validation phase. CVE quickly
spotted a design error. We examine di�erent instances of
the FIFO and present the execution times of the model
checker and the debugging facility of CVE both for macro
machines and the corresponding synchronous machines.

The second example describes the veri�cation of a to-
ken ring controller, a real world example of signi�cant
complexity. This example illustrates how properties which
are easy to specify can check designs to an extent far
beyond the capabilities of simulation.

A. FIFO memory

The FIFO is a generic VHDL description that shall be
used in di�erent designs. It is scalable in size and opti-
mized to reduce the area consumption of the synthesized
circuits. It is implemented by banks of latches (cf. Fig.
4). Data move from the �rst bank to the last. A control
mechanism is associated with each bank and determines
whether the bank contains valid data. If the bank is em-
pty and the previous bank contains valid data, the data
is moved down one bank.

Instances of the generic description were compiled into
macro machines. These did not satisfy the synchroniza-
tion criterion (cf. Section III) because under some opera-
tion conditions the latch banks can be transparent simul-
taneously, so that changes at the data input are imme-
diately observable at the outputs. However, it was easy
to obtain a synchronous machine with a test bench where
the inputs of the FIFO are bu�ered by registers and, in
addition, the asynchronous reset is deactivated.

The synchronous machine representations of, e.g., the
4x5 FIFO was checked by the CIL property

depth
5 10 15

width mc debug mc debug mc debug
4 macro 69.3 17.6 323.9 44.4 602.6 69.0

synch 3.8 3.6 12.3 9.4 55.5 23.1
8 macro 37.4 17.0 852.5 104.3 1336.7 142.1

synch 4.2 5.5 25.3 20.2 133.9 49.9
12 macro 373.3 66.3 711.0 98.0 6908.5 618.3

synch 27.7 14.6 49.7 34.0 226.1 82.3
16 macro 208.0 49.8 2953.0 315.0 11436.6 986.3

synch 15.9 14.9 83.3 49.8 379.8 130.4

Figure 5: Execution times for FIFO memory (in seconds on a SPARC 10 with 128 MB, mc: Time to detect the error, debug:
Time to construct the counter example)

theorem noLostData;

assume:
always((write = '1' at t) implies

(write = '0' during [t+1, t+2])) and
always((fifo_full = '1' at t) implies

(write = '0' at t + 1)) and
always((read = '1' at t) implies

(read = '0' during [t+1, t+2])) and
always (read = '1' within [t, infinite]);

prove:
always(
(write = '1' and data_in = "1010" and

fifo_full = '0' at t) implies
(data_out = "1010" within [t, infinite])

);

end theorem;

This property speci�es that if the data "1010" was read
in at some point of time t, it will eventually show up at the
output port. The assumption describes the environment
of the FIFO which assures, that

� consecutive write pulses are separated by 2 clock
cycles,

� no writes will occur, if the FIFO is full,

� consecutive read pulses are separated by 2 clock cy-
cles, and

� in�nitely many reads will happen.

This property is natural for a FIFO. It is a specialized
form of the general property that no data is lost and it
tests the control of the FIFO which is its critical part.
The veri�cation of this property, indeed, exhibited a subtle
design error that occurs, if a full FIFO receives a read
pulse that is immediately followed by a write pulse. The
input sequence that exhibits the faulty behavior consists
of 26 steps, where the last 10 steps have to be repeated
in�nitely often.

Fig. 5 presents the execution times for the veri�ca-
tion and the debugging of the above property based on
synchronous machines and compares them with the ve-
ri�cation of an equivalent property about the macro ma-
chine representation. A comparison of the execution times
shows that model checking of synchronous machines can

be 30 times more e�cient than model checking of equiva-
lent problems of macro machines.

This example shows how CVE can be used successfully.
Since it requires almost no e�ort to start the model
checker, parts of a design can be checked at very early
stages where a bug is quickly located and �xed. Note that
usually small scale instances of designs are su�cient to
detect the most subtle errors in the control.

B. Token Ring Controller TC

In one of the most complex veri�cation tasks performed
with CVE a token ring controller (TC) was examined
which is part of the clients in a particular industrial bus
system. The TCs at the bus organize the bus access by a
token ring protocol. This protocol is automatically con-
�gured in the startup phase and recon�gured in inconsi-
stent situations. The timing for the TC is provided by
one timing generator (BT) for each TC. All BTs in the
bus system are synchronized.

Both blocks were described in synthesizable VHDL.
The designers of the TC had to cope with the problems
that arise from the complexity of distributed control. Mo-
reover, the TC is connected to the bus via an interface
unit that delays data sent and received by some clock cy-
cles. This additionally increases the logical complexity.
Therefore, the validation by simulation took three times
as much as the development of the blocks.

Since we used the existing VHDL descriptions the cir-
cuits were described in great detail so that we had to ex-
amine a minimal con�guration (Fig. 6) where the bus has
only one client. The corresponding model consists of one
TC, one BT, an abstraction of the bus interface unit in the
form of a delay block, and a multiplexor to model bus er-
rors. This con�guration was considered to be su�cient by
the designers because important functionality can be veri-
�ed with it. It was also used during extensive simulation.
For the treatment with CVE the model was transformed
into a synchronous machine.

The veri�cation of the TC requires the computation of
the set of reachable states to optimize the model checking.
For this reachability analysis a hierarchical approach [6]
and redundancy elimination [10] were employed. Even
then, the reachability analysis took 4 days on a SPARC
10 with 128 MByte memory. After this e�ort important
properties could quickly be veri�ed. Among them were
lifeness properties about correct execution of the con�-
guration procedure and token passing. These properties
could be speci�ed in single lines of CIL code and veri�ed

BT TC

Delay

intro
Error

CLK, RESET, BM_COMMONREC,
configuration signals

BD_RDATFAIL

erroneous data

TC_DATASEND

Figure 6: Minimal Con�guration of a Bus System with TC

within 1 to 2 hours. The most impressive property descri-
bed the bus access: If data should be sent to the bus (i.e.,
signal BM COMMONREC active) the TC will allow the
bus access (i.e., signal TC DATASEND active), provided
that there is a point of time after which no more bus errors
occur. The CIL notation of this commitment is

prove: always((BM_COMMONREC = '1' at t) implies
(TC_DATASEND = '1' within [t, infinite]));

CVE veri�ed the property within 4.5 hours. This short
property examines the following operations:

� Detection that no token is present,

� Con�guration procedure,

� Detection, that no partner TC is in the bus system,

� Creation of the token,

� Passing of the token,

with the guarantee that bus errors occuring at arbitrary
points of time cannot drive the TC into a deadlock situa-
tion. This single veri�cation therefore greatly increased
the con�dence in the design. This example shows that
CVE can handle complex industrial designs that are des-
cribed in the level of detail that is common in the valida-
tion phase.

VI. Results and Future Work

The applications presented show that CVE is ready for the
use in industrial hardware design. It reduces the interac-
tion with the designer to a minimum since all algorithms
execute automatically thus minimizing the learning e�ort.
CVE o�ers interfaces which allow a seamless integration
with the established design ow as a powerful supplement
to simulation. Properties to be model checked by CVE
are described using VHDL test benches and the applica-
tion oriented, comprehensible language CIL. CIL has less
expressive power than other property languages but our
examples show this to be su�cient.

CIL can be used for the speci�cation of properties of
any circuit but it is most useful for the application to
synchronous designs. They are represented in CVE by

synchronous machines which provide an appropriate level
of detail. The abstraction mechanism that generates this
representation was presented. Experimental results sho-
wed that synchronous machines are up to 30 times more
e�ciently model checked than the more general macro ma-
chines generated by the CVE frontends.

Future work will extend CIL to reduce the need for
test benches. These test benches often introduce shift
registers to store aspects about the past of the circuit.
CIL can naturally be extended to specify these additional
shift registers without additional VHDL code.

Acknowledgments

The authors would like to thank D. Werth, T. St. Pierre,
A. Rademacher, D. Emmer, V. Weyl, and in particular
T. Filkorn and P.Warkentin for their support of this work.

References

[1] A. Aziz, F. Balarin, S.-T. Cheng, R. Hoyati, T. Kam, S.C. Krishnan,
R.K. Ranjan, T.R. Shiple, V. Singhal, S. Tasiran, H.-Y. Wang, R.K.
Brayton, and A.L. Sangiovanni-Vincentelli. HSIS: A BDD-based
environment for formal veri�cation. In 31st ACM/IEEE Design
Automation Conference, pages 454{459, June 1994.

[2] J. Bormann, T. Filkorn, J. Lohse, M. Payer, G. Venzl, and P. War-
kentin. CVE: An industrial formal veri�cation environment. Inter-
nal report, 1994.

[3] J. Bormann, H. Nusser-Wehlan, and G. Venzl. Formal design in
an industrial research laboratory: lessons and perspectives. In De-
signing Correct Circuits. 2nd IFIP WG10.2/WG10.5 Workshop,
pages 193 { 213, 1992.

[4] R.E. Bryant. Graph-based algorithms for Boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677{691,
August 1986.

[5] H. Busch and G. Venzl. Proof{aided design of veri�ed hardware.
In 28th ACM/IEEE Design Automation Conference, pages 391 {
196, 1991.

[6] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algo-
rithms for approximate FSM traversal. In 30th ACM/IEEE Design
Automation Conference, pages 25 { 30, 1993.

[7] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking
and abstraction. In Conference Record of the 19th Annual ACM
SIGPLAN{SIGACT Symposium on Principles of Programming
Languages, pages 343 { 354, 1992.

[8] W. Damm, B. Josko, and R. Schl�or. Speci�cation and veri�cation of
VHDL-based hardware designs. In E. B�orger, editor, Speci�cation
and validation methods for programming languages and systems.
Oxford University Press, 1994. To appear.

[9] A. Debreil and P. Oddo. Synchronous designs in VHDL. In Pro-
ceedings Euro-DAC'93 with Euro-VHDL'93, pages 486{491. IEEE
Computer Society Press, September 1993.

[10] A. J. Hu and D. L. Dill. Reducing BDD size by exploiting functio-
nal dependencies. In 30th ACM/IEEE Design Automation Con-
ference, pages 266 { 271, 1993.

[11] J. Lohse, J. Bormann, M. Payer, and G. Venzl. VHDL-translation
for BDD-based formal veri�cation. Internal report, 1994.

[12] IEEE Standard VHDL Language Reference Manual. The Institute
of Electrical and Electronical Engineers, Inc., New York, IEEE Std
1076-1987 edition, 1988.

[13] K. L. McMillan and J. Schwalbe. Formal veri�cation of the encore
gigamax cache consistency protocol. In International Symposium
on Shared Memory Mulitprocessors, April 1991.

[14] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Pu-
blishers, 1993.

[15] K.L. McMillan. Fitting formal methods into the design cycle. In
31st ACM/IEEE Design Automation Conference, pages 314{319,
June 1994.

[16] P. Stanford and P. Mancuso. EDIF Electronic Design Interchange
Format, Reference Manual for Version 2 0 0. Electronic Industries
Association, Washington D.C., 1989.

