
Submitted for publication in IEEE Design and Test of Computers.

This work has been submitted to the IEEE for possible publication. Copyright may
be transferred without notice, after which this version may no longer be accessible.

1

Protected Shared Variables in VHDL: IEEE Std 1076a

Peter J. Ashenden

Department of Computer Science
The University of Adelaide

Adelaide, SA 5005
Australia

peter.ashenden@computer.org

Philip A. Wilsey

Dept. ECECS, PO Box 210030
The University of Cincinnati
Cincinnati, OH 45221-0030

USA

phil.wilsey@uc.edu

Abstract

The VHDL Standard current allows concurrent access to variables shared between processes,

but does not define any semantics for concurrency control. The IEEE 1076a Shared Variables

Working Group has developed a form of monitors, called protected types, to provide mutually

exclusive access to shared variables. This article identifies the problems that can arise from

unprotected concurrent access to shared variables, and reviews the idea of monitors, which

forms the basis of the proposed language change. It then describes protected types, gives some

guidelines on using them for hardware modeling, and includes an example to illustrate their

use.

Index terms: VHDL, shared variables, protected types, monitors

VHDL is a standard hardware description language for modeling the behavior and structure

of digital systems. A system is modeled as a hierarchy of component instances, intercon-

nected with signals. Within the primitive components of the hierarchy, behavior is expressed

using processes. A process encapsulates a body of sequential statements together with some

2

state information represented using local variables. Processes communicate with one another

using the interconnecting signals.

The original VHDL standard did not allow sharing of variables between process instances,

despite this being requested in the preliminary language design phase. During the restandar-

dization process started in 1990 (see sidebar, Standardizing VHDL), users identified the lack

of shared variables as a deficiency in the languages. Hence, the VASG added shared variables

as a requirement for the revised language standard.

The VASG subcommittee in charge of language design developed a mechanism called ac-

cess statements and included it in the draft standard [6]. However, there were sufficient nega-

tive ballots that the VASG resolved to remove access statements. They decided to allow

shared variables in the revised language, but not to specify what happens if multiple pro-

cesses concurrently access a shared variable. Further, they set up a new Working Group to

resolve the issue. That group has completed its work, and the language changes are about

to be balloted.

In this article, we show a variety of problems that can arise from unprotected concurrent

access to shared variables, and review the idea of monitors, which forms the basis of the pro-

posed language change [7]. We then describe the new language feature, protected types, and

give some guidelines on using them for hardware modeling. We also include an example

to illustrate their use.

Shared Variables in VHDL-93

VHDL models that we write are elaborated down to a collection of processes interconnected

by nets of signals. Normally, the only way for one process to communicate with another is

through the signals. However, when we are modeling at a high level of abstraction, there

are cases when communication by signals may be cumbersome. If two or more processes

3

simply need to share data, we could express the communication using a variable that is shared

by the processes. Each process could assign new values to the variable, and the changes

would be seen by other processes reading the variable.

VHDL-87 did not allow variables to be shared in this way. VHDL-93 does allow shared

variables, provided they are declared to be shared, as the following example illustrates:

shared variable counter : natural := 0;

Using the keyword shared documents the fact that there may be several processes with direct

access to the variable. Those processes may read and write to the shared variable without

restriction. However, the standard does not define the result of two processes concurrently

accessing the shared variable.

The scope and visibilty rules of the language determine which processes can access a vari-

able. VHDL’s rules are similar to those of programming languages such as Pascal and Ada.

A variable is declared in a declarative part of a construct, such as an architecture body, a pro-

cess or a subprogram. The scope of the variable extends from the declaration to the end of

the construct, including any nested constructs. Within its scope, a variable is visible unless

hidden by a declaration with the same name as the variable inside a nested construct.

The implication of these rules is that, if we declare a variable within a process, it is only

accessible within the process. Hence, it cannot be shared. If we declare a variable in an

architecture body or block statement, it is accessible to all processes within the architecture

body or block statement. Hence, it must be declared as a shared variable. Furthermore, if

we declare a variable in a package declaration, it is accessible to any process in the model,

and so must be declared as a shared variable.

Problems with Unprotected Shared Variables

Problems with shared variables can arise when the processes in the model are executed on

a parallel computer, such as a mutiprocessor workstation or a parallel supercomputer. They

4

can also occur on a single-processor computer if the simulation kernel preemptively switches

between processes. The simplest problem is that two processes trying to update a shared

variable might interfere with each other, resulting in an unpredictable final result for the vari-

able. Suppose, for example, that two processes try to increment the above counter. Each

process executes the statement

counter := counter + 1;

This statement typically involves reading the variable’s value, adding one to it, then storing

the result back into the variable’s memory location. If one process completes this sequence

before the other starts, the variable is incremented by two, as expected. However, if both

processes read the initial value before either performs the write, the variable is only increm-

ented by one. Since the model writer has no control over the interleaving of memory access

from multiple processes, the result is non-deterministic.

More complex problems arise when the shared variable is not simply a scalar, but is instead

a composite or dynamic data structure requiring complex update operations. In these cases,

interference between processes can put the data structure in an inconsistent state, resulting

in lost or corrupted data.

To date, model writers using shared variables have not had to deal with these problems,

since the only simulators that implement shared variables do not run on parallel computers.

However, the potential performance gains from parallel processing are sufficient to motivate

development of parallel simulation tools. Parallel simulation has been an active research area

for some time [9], and at least one vendor has announced a commercial parallel simulation

tool. There is no guarantee that models that give desired results on today’s sequential simula-

tors will work on the forthcoming parallel simulators.

5

Mutual Exclusion and Monitors

The key to avoiding interference between processes concurrently accessing a shared variable

is mutual exclusion. A process must acquire mutually exclusive access when it needs to read

or update the variable using some sequence of instructions. While the process is performing

those instructions, no other process is allowed access to the variable. This rule is enforced

by the language implementation.

A programming language that supports mutual exclusion must provide a way of expressing

which sequences of statements are to be performed with mutual exclusion. Such sequences

are often called critical regions. Much of the research into concurrent programming lan-

guages has been centered on this issue. (See Gehani and McGettrick [4] for a survey.)

The simplest approach is to associate a lock with each shared variable. Before entering

a critical section, a process must wait for the lock to be released, then set the lock. Testing

the lock and setting it must be performed as an indivisible operation, and usually relies on

hardware support from the host machine. After completing the critical section, the process

releases the lock. The main problem with this approach is that a programmer may forget

to release the lock, causing the shared variable to become inaccessible. Furthermore, the

separation of the lock and release operations makes programs hard to understand and main-

tain.

Programming language researchers in the 1970s developed several more abstract forms of

mutual exclusion mechanisms. One of these, developed by Hoare [5], was subsequently in-

corporated into a number of experimental programming languages. The idea is to encapsu-

late a shared variable so that it is not directly accessible to processes wishing to use it. The

shared variable is encapsulated in a monitor, and processes must invoke procedures called

monitor operations to access or update the shared variable. By definition, the monitor opera-

tions form critical regions. Only one process is allowed to execute operations of a given mon-

6

itor at a time. While one process executes an operation, other processes that invoke any

operation of the monitor are blocked. When the first process exits the operation (or suspends

within it) one other process is allowed to continue.

The advantage of basic monitors is that they make concurrent programs using shared vari-

ables easier to understand and maintain. However, the idea is complicated by the need to

allow processes to wait within monitor operations. The semantics that determine which pro-

cesses then resume and in what order are complicated. Furthermore, if monitors are nested

within monitors, the semantics become even more convoluted. For these reasons, monitors

in their general form have not gained favor as a general purpose concurrent programming

paradigm [1]. Languages based on remote procedure call and on message passing libraries

have become more widely used. Despite these facts, some recent languages (e.g., Ada-95

[8]) still use simplified forms of monitors for protecting access to shared variables.

Protected Types

The IEEE Shared Variables Working Group decided to follow the approach of Ada-95, and

specified a limited form of monitors, called protected types. The VHDL approach is somewhat

simpler that that of Ada-95, since it simply addresses mutual exclusion, not communication

between processes through shared variables.

In 1076a VHDL, we declare a protected type with a protected type definition in a type decla-

ration. The syntax rule is:

protected_type_definition ::=

protected_type_declaration

| protected_type_body

7

The protected type declaration specifies the interface of the protected type. It contain

methods, subprograms that will be used by processes to access the shared variable with mutu-

al exclusion. The syntax rules are:

protected_type_declaration ::=

protected

protected_type_declarative_part

end protected [protected_type_simple_name]

protected_type_declarative_part ::=

{ protected_type_declarative_item }

protected_type_declarative_item :=

subprogram_declaration

| attribute_specification

| use_clause

Note that these rules introduce a new reserved word, “protected,” into the language. A sim-

ple example of a protected type declaration is:

type shared_counter is protected

procedure reset;

procedure increment (by : integer := 1);

impure function value return integer;

end protected shared_counter;

This declares a type for a shared counter with methods (i) to reset the counter value to zero,

(ii) to increment the counter by some amount, and (iii) to read the value of the counter. We

can declare a shared variable to be of this type using a shared variable declaration, for exam-

ple:

shared variable event_counter : shared_counter;

8

Processes use the name of the shared variable as a prefix to a method name to identify

the shared variable on which the method is invoked. For example:

event_counter.reset;
event_counter.increment (2);
assert event_counter.value > 0;

In each case, the process acquires mutually exclusive access to event_counter before execut-

ing the body of the method. While the process is executing the method, other processes that

try to invoke any method on the same shared variable must wait. When the first process

finishes executing its method, it releases mutually exclusive access to the shared variable.

One of the waiting processes may then resume. The language definition makes no statement

about the order in which waiting processes are chosen for resumption. An implementation

may, for example, use first-in, first-out queuing, but that is not required.

A protected type body specifies the implementation details of a protected type. The syntax

rules are:

protected_type_declaration ::=

protected body

protected_type_body_declarative_part

end protected body [protected_type_simple_name]

protected_type_body_declarative_part ::=

{ protected_type_body_declarative_item }

protected_type_body_declarative_item :=

subprogram_declaration

| subprogram_body

| type_declaration

| subtype_declaration

9

| constant_declaration

| variable_declaration

| file_declaration

| alias_declaration

| attribute_declaration

| attribute_specification

| use_clause

| group_template_declaration

| group_declaration

Note that we can include variable declarations in a protected type body. These variables

constitute the data stored in a shared variable of the protected type. We must also include

subprogram bodies for the methods declared in the protected type declaration. Items de-

clared within a protected type body are not visible outside the protected type, so the only

way a process can access the items is by using the methods of the protected type.

A possible implementation of the shared counter protected type is:

type shared_counter is protected body

variable count : integer := 0;

procedure reset is
begin

count := 0;
end procedure reset;

procedure increment (by : integer := 1) is
begin

count := count + by;
end procedure increment;

impure function value return integer is
begin

return count;
end function value;

end protected body shared_counter;

10

The specification of protected types in VHDL includes a number of rules governing their

use. In summary, they are:

A protected type declaration and body together form a declarative region, but only

method names in the protected type declaration are visible outside the protected

type.

If a protected type is declared in a package declaration, the protected type body

must be declared in the corresponding package body. In other cases, the protected

type body must be declared in the same declarative region as the protected type

declaration.

Only variables and variable-class subprogram parameters can be of protected types.

Actual values of protected type subprogram parameters are passed by reference.

Shared variables must be of protected types; other variables may be of protected

types.

Protected types cannot be used as elements of files, as elements of composite types,

nor as the designated types of access types.

Variable assignment is not allowed for protected type variables. As a consequence,

a protected type variable must not have an initial value expression in its declaration.

The equality (“=”) and inequality (“/=”) operators are not predefined for protected

types.

A protected type method must not include or execute a wait statement.

Declarations in a protected type declaration are elaborated when the protected type

declaration is elaborated. Declarations within a protected type body are elaborated

11

once for each variable of the protected type, at the time of elaboration of the vari-

able.

Guidelines for Use

There are two modeling requirements that lead to the inclusion of shared variables in VHDL.

The first is a requirement in behavioral modeling to describe passive shared objects that are

accessed concurrently by different parts of a design. An example of such an object is a register

file in a pipelined CPU, represented simply as an array of bit-vectors. The register file must

be accessed by the processes representing the operand fetch stage and the result write-back

stage. At a lower level of abstraction, the register file would be implemented as a component

with read and write ports. Read and write operations would take place over signals, and

would conform to some signalling protocol. However, at the behavioral level of abstraction,

the register file may be more simply described as a protected type with read and write meth-

ods. The mutual exclusion afforded by the protected type ensures that reads and writes to

not interfere with each other.

The second requirement motivating shared variables is a requirement for instrumentation

of models. A shared variable can be used to collect information about the aggregate behavior

of processes within a design over the course of a simulation run. Each process updates the

variable using update methods as events of interest occur. Mutual exclusion ensures that

concurrent updates do not conflict. An example of this use is a multiprocessor computer

system with cache memories attached to each processor. A shared variable might be used

to collect sharing statistics for each block in the address space. Each process representing

a cache would invoke a method to update the statistics when the sharing state of a block

changes.

Shared variables using protected types are not intended as a general purpose inter-process

communication mechanism. Thus they are not appropriate for use in system-level modeling

12

to model communication between system components. Experience in concurrent program-

ming languages has shown that remote procedure call and message passing are more ap-

propriate paradigms for that purpose. Hence, VHDL protected types do not provide

mechanisms as seen in other monitor-based languages for waiting and signalling within mon-

itors. This is not to say that system-level communication is not required. Indeed, there are

other efforts in progress addressing the issue [2].

While protected types bear some similarities to classes in object-oriented languages, they

are not intended to fulfill that role. Classes provide encapsulation of data, allowing definition

of abstract data types. Protected types also provide encapsulation, but the reason is simply

to prevent uncontrolled concurrent access to the data. The preferred mechanism for defining

abstract data types in VHDL is to use types and operations defined in packages. Another

significant distinction is that classes include mechanisms for inheritance, whereas VHDL pro-

tected types do not. There is currently much interest in defining object-oriented extensions

to VHDL [3], and the IEEE is in the preliminary phases of preparing a trial use standard.

One final point to note in using VHDL protected types is the potential for deadlock. It is

possible to write a model in which two processes block waiting for mutual exclusion over

shared variables, and can never resume. To illustrate the possibility, consider an extension

of the shared counter example. Suppose the protected type is augmented to include a meth-

od to copy the value from one counter to another. The method is declared in the protected

type declaration as

procedure copy (variable from : in shared_counter);

The method implementation is declared in the protected type body as:

procedure copy (variable from : in shared_counter) is
begin

count := from.value;
end procedure copy;

Two shared variables are declared as

13

shared variable a, b : shared_counter;

Now consider what might happen if process P1 executes the statement

a.copy(b)

and process P2 executes

b.copy(a)

A possible interleaving of execution involves P1 acquiring access to a and P2 acquiring access

to b, before either reaches the body of the method. Note that passing a variable of protected

type simply involves passing a reference; it does not involve acquiring access to the variable.

When P1 reaches the invocation of the from method within the copy method, it tries to acquire

access to b. Since P2 already has access to b, P1 is blocked. Similarly, when P2 reaches the

invocation of the from method, it tries to acquire access to a. P1 already has access to a, so

P2 block. Neither process can proceed, and execution is deadlocked.

While this is a contrived example, it illustrates one situation under which deadlock can

arise. The language definition does not prohibit such situations, nor does it require that an

implementation detect or resolve deadlock. When writing models using protected types, we

must take care not to introduce the potential for deadlock.

A Modeling Example

This example illustrates use of shared variables for instrumenting a behavioral model of a

multiprocessor cache memory system. The instrumentation records for each memory block

the number of read misses for shared data, read misses for private data, and write misses.

The package declaration cache_instrumentation includes a protected type declaration for

the instrumentation data structure. The protected type includes methods for logging read

and write misses and for dumping the data to a file. The package also declares a shared vari-

14

able of the protected type for collecting the data. The implementations of the data structure

and the methods are described in the protected type body, which is declared in the package

body. The protected type body includes an array of records, one for each block of the multi-

processor’s memory space. Each record contains counters for the different kinds of misses

to be logged.

The individual caches are described by a behavioral architecture body, which includes a

cache controller process. The process invokes the instrumentation methods when cache miss

events occur. The complete multiprocessor system is described by an architecture body that

generates multiple instances of a processing element, each with an attached cache. Since

each cache instance includes a cache controller process, there are multiple cache controller

processes that may concurrently access the instrumentation variable in the instrumentation

package. Furthermore, the multiprocessor model includes a process that periodically invokes

the dump_log method. All of these processes share access to the instrumentation variable,

so mutual exclusion is required to prevent interference.

package cache_instrumentation is

use work.cache_types.all;

type shared_counters is protected

procedure log_read_miss (block_number : block_range; is_shared : boolean);

procedure log_write_miss (block_number : block_range);

procedure dump_log (file log_file : std.textio.text);

end protected shared_counters;

shared variable cache_counters : shared_counters;

end package cache_instrumentation;

package body cache_instrumentation is

type shared_counters is protected body

type counter_record is record
shared_read_misses,
private_read_misses,
write_misses : natural;

end record counter_record;

15

type counter_array is array (block_range) of counter_record;

variable counters : counter_array := (others => (0, 0, 0));

procedure log_read_miss (block_number : block_range; is_shared : boolean) is
begin

if is_shared then
counters.shared_read_misses := counters.shared_read_misses + 1;

else
counters.private_read_misses := counters.private_read_misses + 1;

end if;
end procedure log_read_miss;

procedure log_write_miss (block_number : block_range) is
begin

counters.write_misses := counters.write_misses + 1;
end procedure log_write_miss;

procedure dump_log (file log_file : std.textio.text) is
use std.textio.all;
variable L : line;

begin
for block_number in block_range loop

write (L, string’(”Block ”));
write (L, block_number);
write (L, string’(”: shared read misses = ”));
write (L, counters.shared_read_misses);
. . .
writeline (log_file, L);

end loop;
end procedure dump_log;

end protected body shared_counters;

end package body cache_instrumentation;

architecture behavioral of cache is

use work.cache_instrumentation.all;
. . .

begin

cache_controller : process is
. . .

begin
. . .
if hit = ’0’ then

if read = ’1’ then
cache_counters.log_read_miss (current_block_number, shared = ’1’);

else
cache_counters.log_write_miss (current_block_number);

end if;
end if;

16

. . .
end process cache_controller;

. . .

end architecture behavioral;

architecture system of multiprocessor is

. . .

begin

PE_array : for PE_index in 0 to num_PEs generate

PE : entity work.processor(behavioral)
port map (. . .);

L2_cache : entity work.cache(behavioral)
port map (. . .);

. . .

end generate PE_array;

log_controller : process is
use work.cache_instrumentation.all;

begin
wait for 10 ms;
cache_counters.dump_log (std.textio.output);

end process log_controller;

. . .

end architecture system;

Acknowledgements

Numerous people were involved in the IEEE Shared Variables Working Group over the course

of its activities. Their work in analyzing requirements, surveying alternative solutions, and

refining the details of the protected type approach lead to the current draft standard. Stephen

Bailey as chair of the Working Group ensured that a good solution resulted from the effort.

John Willis as author of the Language Change Specification ensured the conceptual integrity

and completeness of the solution. Paul Menchini as LRM editor carefully integrated the lan-

guage change specifications into the VHDL Standard document. We would like to thank all

three for reviewing a draft of this article:

17

References

[1] G. R. Andrews and F. B. Schneider, “Concepts and Notations for Concurrent Program-

ming,” ACM Computing Surveys, vol. 15, no. 1, pp. 1–43, 1983.

[2] P. J. Ashenden and P. A. Wilsey, “Considerations on System-Level Behavioural and Struc-

tural Modeling Extensions to VHDL,” Proceedings of VHDL International Users Forum

Spring 1998 Conference, Santa Clara, CA, pp. 42–50, 1998.

[3] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, “SUAVE: Painless Extension for an Object-

Oriented VHDL,” Proceedings of VHDL International Users Forum Fall 1997 Conference,

Arlington, VA, pp. 60–67, 1997.

[4] N. Gehani and A. D. McGettrick, Eds., Concurrent Programming. Wokingham, UK: Addi-

son-Wesley, 1988.

[5] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept,” Communications

of the ACM, vol. 17, no. 10, pp. 549–557, 1974.

[6] IEEE, Draft Standard VHDL Language Reference Manual. Draft Standard P1076-1992/A,

New York, NY: IEEE, 1992.

[7] IEEE, Shared Variable Language Change Specification (PAR 1076A). IEEE DASC P1076a

Working Group, http://vhdl.org/vi/svwg/lcs/lcs.htm, 1996.

[8] ISO/IEC, Ada 95 Reference Manual. International Standard ISO/IEC 8652:1995 (E), Ber-

lin, Germany: Springer-Verlag, 1995.

[9] G. D. Peterson and J. Willis, “A Taxonomy of Parallel VHDL Simulation Techniques,” Pro-

ceedings of VHDL International Users Forum Fall 1996 Conference, Menlo Park, CA,

1995.

18

Sidebar

Standardizing VHDL

VHDL stands for VHSIC Hardware Description Language. The US Department of Defense

originally developed the language to help solve its electronic component procurement prob-

lems. Parts supplied to defense agencies were to be documented in VHDL, reducing the costs

of developing and maintaining complex parts with long life-cycles.

As a means of promulgating the language, the Department of Defense turned it over to

the IEEE for standardization. The IEEE has a well-defined process for developing a standard,

starting with a Project Authorization Request (PAR) put forward by a sponsoring Technical

Committee or a Standards Coordinating Committee. The sponsor forms a Working Group

to draft the standard document. The sponsor also forms a pool of balloters, who review the

draft standard and vote upon it. Balloters who vote negative must provide proposed changes

that, if adopted, would allow them to reverse their votes. If there are sufficiently many nega-

tive votes, the revised draft is recirculated for further ballot. When the balloters accept the

draft, it is forwarded to the IEEE Standards Board for final approval and adoption as a stan-

dard. Subsequently, the standard must be reviewed every five years and be reaffirmed, re-

vised, or rescinded.

Standardization of the VHDL was sponsored jointly by the Design Automation Technical

Committee and Standards Coordinating Committee 20. The sponsors formed the VHDL Anal-

ysis and Standardization Group (VASG) in 1985 as the Working Group responsible for devel-

oping the draft IEEE standard from the previously developed language definition. In 1987,

IEEE Std 1076-1987 was approved. The language defined by that standard is informally

known as VHDL-87.

In 1990, the VASG started the process of reviewing the standard. Various subcommittees

collected requirements from users for improvements to the language, designed language ex-

19

tensions, validated the extensions, revised the standard document, and conducted ballots.

Due to the complexity of the task, they were not able to provide a revised draft to the Stan-

dards Board in time for approval in 1992. Hence the current version of the standard is IEEE

Std 1076-1993 [1], defining the language known as VHDL-93.

One of the requirements that the VASG was unable to meet satisfactorily in VHDL-93 was

provision of share variables with well-defined concurrency control. Hence, the VASG formed

a separate Working Group chartered to develop shared variable language mechanisms, and

to draft changes to the standard to incorporate the mechanisms. The revised standard, IEEE

Std 1076a, will replace the existing standard.

References

[1] IEEE, Standard VHDL Language Reference Manual. Standard 1076-1993, New York, NY:

IEEE, 1993.

