
SUAVE Proposal for Extensions to VHDL for High-Level Modeling

Peter J. Ashenden <petera@cs.adelaide.edu.au>
Philip A. Wilsey <phil.wilsey@uc.edu>
Dale E. Martin <dmartin@ececs.uc.edu>

Technical Report TR-97-07
Department of Computer Science

The University of Adelaide, SA 5005
Australia

Technical Report TR-207/08/97/ECECS
Department of Electrical and Computer Engineering

and Computer Science
University of Cincinnati,

PO Box 210030
Cincinnati, OH 45221- 0030

USA

This work was partially supported by Wright Laboratory
under USAF contract F33615- 95- C- 1638

ii

Abstract

Designers are increasingly using VHDL for high-level modeling. However, their task is hindered
by the lack of object-oriented and genericity features in the language. Experience in programming
languages shows that these features significantly aid management of complexity in large designs and
promote re-use of modules. SUAVE extends VHDL by adapting several object-oriented and gener-
icity features from Ada-95. The extensions improve support for modeling in VHDL from system
level down to gate level. This report describes the extensions and illustrates their use with examples.

1

1 Introduction

VHDL is widely used by designers of digital systems for specification, simulation and synthesis.
Increasingly, designers are using VHDL at high levels of abstraction as part of the system-level de-
sign process. At this level of abstraction, the aggregate behavior of a system is described in a style
that is similar to that of software. Data is modeled in abstract form, rather than using any particular
binary representation, and functionality is expressed in terms of interacting processes that perform
algorithms of varying complexity. A subsequent partitioning step in the design process may deter-
mine which aspects of the modeled behavior are to be implemented as hardware subsystems, and
which are to be implemented as software.

Experience in the software engineering community has lead to adoption of object-oriented de-
sign and programming techniques for managing complexity through abstraction data types (ADTs)
and re-use [4]. Features included in programming languages to support these techniques are abstrac-
tion and encapsulation mechanisms, inheritance, and genericity. The term “object-based”is widely
used to refer to a language that included abstraction and encapsulation mechanisms [8]. The term
“object-oriented” is used to refer to a language that additionally includes inheritance.

While VHDL can be used for modeling at the system level, it has some deficiencies that make
the task more difficult than it would otherwise be. These difficulties center around language features
(or lack of some features) for supporting complexity management. VHDL is currently somewhat
less than object-based, as its encapsulation mechanism are weak. It is certainly not object-oriented,
as it does not include any form of inheritance. While it does include a mechanism for genericity,
that mechanism is severely limited, allowing only parameterization of units by constant values. We
have discussed these issues in a previous paper [1].

SUAVE aims to improve support for high-level modeling in VHDL by extending the language
with features for object-orientation and genericity. As well as adding specific language features,
some existing features are generalized. We have previously argued that extending VHDL in this way
has the side-effect of improving its expressiveness at all levels of abstraction [2].

The purpose of this report is to define the language extensions proposed in SUAVE. Most of
the features added to VHDL are adapted from features in Ada-95 [7], and are included largely for
the same reasons that they are included in Ada-95 [3]. Section 2 of this report outlines the design
principles and objectives that were followed in deciding how to extend VHDL. Subsequent sections
describe the extensions in detail and illustrate them with examples. Section 3 describes the exten-
sions to the type system of VHDL to support type derivation, extension and class-wide program-
ming. Section 4 describes the extensions that improve the encapsulation features of VHDL. In
combination, the extensions in these two sections turn VHDL into an object-oriented language. Sec-
tion 5 describes further extensions to improve genericity in VHDL. Section 6 describes some minor
changes the the existing languages to allow the extended features to integrate cleanly with existing
features. The changes to the existing syntax rules for VHDL are summarized in Section 7.

While this report does describe the SUAVE extensions in some detail, it does not present the
level of detail that would be required to allow an implementation of the extensions. A complete de-
scription in the form of changes the the VHDL Language Reference Manual [6] will be developed
as part of future work in the SUAVE project.

2

2 SUAVE Design Objectives
A previous paper [2] reviews the issues to be addressed in extending VHDL for high-level modeling
and discusses principles that should govern the design of language extensions. As a result of that
analysis, a number of design objectives were formulated for SUAVE:

S to improve support for high-level behavioural modeling by improving encapsulation and
information hiding capabilities and providing for hierarchies of abstraction,

S to improve support for re-use and incremental development by allowing further delaying
of bindings through type-genericity and dynamic polymorphism,

S to preserve capabilities for synthesis and other forms of design analysis,
S to support hardware/software co-design through improved integration with programming

languages (e.g., Ada),
S to support refinement of models through elaboration of components rather than through

repartitioning, and
S to preserve correctness of existing models within the extended language.
Since SUAVE is an extension of the existing VHDL language, it is important that the extensions

integrate well with all aspects of the existing language. In designing the SUAVE extensions, the
design principals followed during the restandardization of VHDL that lead to the current language
[6] were adopted in addition to those listed above. They are [5]:

S upward compatibility
S preserve strong typing
S separate declaration and functionality
S unification of timing semantics
S preserve determinism
S preserve generality
S preserve scope of VHDL (gate to system)
S preserve intermixed abstraction levels
S preserve concurrency
S preserve and improve consistency
S preserve and improve portability
S no application specific packages
S minimize implementation impact
S maximize implementation efficiency

3 Extensions to the Type System
A data type in VHDL is characterized by a set of values and a set of operations. The set of values
is specified by a type definition. An abstract data type (ADT) is one in which the concrete details

3

of the type definition are hidden from the user of the ADT. The user may only use the operations
of the ADT to manipulate values.

SUAVE extends the type system of VHDL to improve facilities for defining ADTs by adopting
the object-oriented features of Ada-95. An ADT is defined by declaring a type and its primitive op-
erations in a package. Derived types inherit the primitive operations. If a type is declared as a tagged
record, additional record elements can be added on derivation. Class-wide types allow definition
of operations that operate on values of any type within a derivation hierarchy. Where the particular
type of an object of a class-wide type is not known statically, dynamic dispatching is used to deter-
mine the operation to invoke.

3.1 Primitive Operations
An operation on a type is expressed in the form of a subprogram (a procedure or a function) that has
one or more parameters of the type or a function result of the type. Such a subprogram can be de-
clared in any part of a model where the type is visible. When a type is declared, a number of prede-
fined operations on the type are implicitly declared. For example, when a numeric type is declared,
the arithmetic operations are implicitly declared.
SUAVE defines the notion of primitive operations of a type as follows.

S The predefined operations implicitly declared when the type is declared are primitive
operations of the type.

S For a derived type (see Section 3.2) the primitive operations of the parent type are inher-
ited as primitive operations of the derived type.

S For a type explicitly declared within a package declaration, any subprograms that are also
explicitly declared within the same package declaration and that operate on the type are
primitive operations of the type.

Example
The following package defines a type for complex numbers. The predefined operators “=”and “/=”
are primitive operations. The explicitly declared operations “&”, re, im, “+”, “- ”, “*”and “/”are also
primitive operations on type complex.

package complex_numbers is
type complex is

record
re, im : real;

end record complex;
- - The predefined operators “=”and “/=”are primitive operations.
function “&”(L, R : real) return complex;
function re (C : complex) return real;
function im (C : complex) return real;
function “+”(L, R : complex) return complex;
function “- ”(L, R : complex) return complex;
function “*”(L, R : complex) return complex;
function “/”(L, R : complex) return complex;
- - The operations “&”, re, im, “+’, “- ”, “*”and “/”are primitive operations of the type complex.

4

end package complex_numbers;

— — —

3.2 Derived Types
A derived type is a means of inheriting type information from a parent type to form a new type. The
derived type inherits the set of values and the primitive operations of the parent type. In each inher-
ited primitive operation, occurrences of the parent type in the operation’s profile are replaced by oc-
currences of the derived type. The inherited primitive operations may be overridden by defining
new primitive operations for the derived type. A derived type is defined using a new form of type
definition, expressed by the extended syntax rule:

type_definition ::=
. . .

| derived_type_definition

derived_type_definition ::=
[abstract] new parent_subtype_indication [record_extension_part]

The parent subtype indication specifies the parent subtype. The type of the parent subtype is
the parent type. If the reserved word abstract is included, the derived type is abstract (see Section
3.4). A record extension part is only allowed if the parent type is a tagged type (see Section 3.3).
The derived type is unconstrained if the parent subtype is unconstrained, otherwise the derived type
is constrained with the constraints specified in the parent subtype indication.

Example
type word is new bit_vector(0 to 31);

The type word inherits the predefined logical, shift, “&”, “=”and “/=”operations. It is constrained,
since the parent subtype indication is constrained.
— — —

A derived type can also be defined by a private extension declaration in the visible part of a pack-
age (See Section 4.3), or a formal derived type definition in a generic interface list (see Section
5.3.1).

3.3 Tagged Types and Type Extension
A record type or a private type may include the reserved word tagged in its definition. Such a type
is called a tagged type. See Section 4.3 for a description of private types. The modified syntax rule
for a record type definition is:

record_type_definition ::= [[abstract] tagged] [limited] record_definition

record_definition ::=
record

element_declaration
{ element_declaration }

end record [record_type_simple_name]
| null record

5

If the reserved word abstract is included, the record type is abstract (see Section 3.4). If the
reserved word limited is included, the record type is limited (see Section 4.4). An object of a tagged
type includes a run-time tag that identifies the specific type used to create the object. For an object
of a class-wide type (see Section 3.5), the tag is used to determine the specific type of the object when
dispatching an operation on the object.

Example
Suppose the following type and subprograms are declared in a package:
type instruction is

tagged record
opcode : opcode_type;

end record instruction;
function privileged (instr : instruction; mode : protection_mode) return boolean;
procedure disassemble (instr : instruction; file output : text);

The type instruction represents the root type of a hierarchy of kinds of instructions in a CPU.
All instructions have an opcode. Other kinds of instructions will be derived from instruction and will
extend it with additional fields. The subprograms are primitive operations of instruction and will be
inherited by derived types.
— — —

A tagged type may be extended on derivation either by a record extension or a private extension.
The derived type is also a tagged type. See Section 4.3 for a description of private extensions. A
record extension is defined by the syntax rule:

record_extension_part ::= with record_definition
A record extension defines additional record elements that are included in the derived type in

addition to those of the parent type. The names of the elements in the record extension must be dis-
tinct from visible element names in the parent type.

Example
type ALU_instruction is new instruction with

record
destination, source_1, source_2 : register_number;

end record ALU_instruction;
procedure disassemble (instr : ALU_instruction; file output : text);
The type ALU_instruction is derived from instruction and has four elements: the opcode element

inherited from instruction, and the three register number elements defined in the extension. A version
of the function privileged is inherited from instruction with the instr parameter being of type ALU_in-
struction. The disassemble instruction defined for ALU_instruction overrides that inherited from in-
struction.
— — —

3.4 Abstract Types and Subprograms
An abstract type is a tagged type that is intended for use solely as the parent of some other derived
type. A tagged type may be declared as abstract by including the reserved word abstract in its defi-

6

nition. Objects may not be declared to be of an abstract type. An abstract subprogram is one that
has has not body, because it is intended to be overridden when inherited by a derived type. An ab-
stract subprogram declaration may appear in any declarative part where a subprogram declaration
may appear. It is declared using an abstract subprogram declaration:

abstract_subprogram_declaration ::= subprogram_specification is abstract ;

Example
The following type declaration defines a kind of instruction that addresses memory using a base

register and an offset. It is declared abstract, since it is intended to be the parent type for load and
store instruction types. The function effective_address_of is not abstract, since it can calculate the
result using the data in a memory_instruction record. The function can be inherited “as is”by derived
types. The procedure perform_memory_transfer, on the other hand, is declared abstract since the di-
rection of transfer depends on whether a memory instruction is a load or a store. The derived types
must provide overriding non-abstract implementations of this procedure.

type memory_instruction is abstract new instruction with
record

base : register_number
offset : integer:

end record memory_instruction;
function effective_address_of (instr : memory_instruction) return address;
procedure perform_memory_transfer (instr : memory_instruction) is abstract;

The definition of the load and store instruction types is as follows:
type load_instruction is new memory_instruction with

record
destination : reg_number;

end record load_instruction;
procedure perform_memory_transfer (instr : load_instruction);
type store_instruction is new memory_instruction with

record
source : reg_number;

end record store_instruction;
procedure perform_memory_transfer (instr : store_instruction);

Objects cannot be declared to be of type memory_instruction, but they can be declared to be of
type load_instruction or store_instruction.
— — —

3.5 Class-Wide Types
For a tagged type T, there is a class-wide type denoted by T’Class that is the union of T and all types
derived directly or indirectly from T. The type T is called the root of the class-wide type T’Class.
An object of type T’Class can have a value of any specific type in T’Class. The tag of a value of
T’Class determines the specific type of the value. The only elements of an object of type T’Class
that are visible are those that are visible for type T. There are no primitive operations of a class-wide
type. However, a subprogram may have a parameter of a class-wide type, in which case the subpro-
gram is called a class-wide operation. A class-wide type is considered to be an unconstrained type.

7

Example
Consider the instruction type shown in previous sections. The class-wide type instruction’Class

includes instruction, ALU_instruction, and any other types that may be derived from these. For an ob-
ject of type instruction’Class, the only element that can be accessed is opcode. A class-wide operation
to execute any kind of instruction might be declared as:

procedure execute (instr : instruction’Class);

— — —

3.6 Objects of Tagged Types
A constant, variable or signal may be of a specific tagged type. A constant may be of a class-wide
type, but must be initialized with a value of a specific tagged type. A variable must be declared to
be of a specific type, and may only be assigned values of that specific type. A signal may be of a
class-wide type, and may be assigned values of differing specific types. Thus, a signal may be a
polymorphic object. An access type may have a class-wide type as its designated type. An object
created by an allocator for an access type is a variable of a specific type, and thus may only be as-
signed values of that specific type. A file type may not have elements of a specific tagged type or
of a class-wide type, since the correspondence between tag values and specific types may vary be-
tween models.

Note that a signal may not be of a type that directly or indirectly includes an access type element.
In the case of a signal of a class-wide type, it may not be possible to check this during analysis of
the unit containing the signal declaration. While the root type of the class might not include an access
type element, there may be an access type element in an extension in a descendant type. In general,
the hierarchy of classes covered by a class-wide type is globally static. A check can be performed
at elaboration-time that, for a signal of a class-wide type, the class does not cover any specific type
that includes an access type element.*

Example
The following declares two constants. The first is of the specific type instruction. The second

is of the class-wide type instruction’class, constrained by the initialization expression to be a value
of the specific type instruction:

constant nop_instruction : instruction := instruction’(opcode => op_nop);
constant undef_instruction : instruction’Class := instruction’(opcode => op_undef);

The following entity declaration represents an instruction register that has a facility to overwrite
the stored instruction with a NOP instruction:

entity instruction_reg is
port (load_enable : in bit;

jam_nop : in bit;
instr_in : in instruction’class;

* An alternative approach is to allow declaration of a signal of a class-wide type that covers a specific type including
an access-type element, provided no value of that specific type is ever assigned to the signal. This would require
a run-time check during signal assignment to a signal of class-wide type. Possible implementation approaches are
to include a status bit in the tag of a tagged type indicating whether the value contains access values, or to include
such a bit in the type descriptor identified by the tag.

8

instr_out : out instruction’class);
end entity instruction_reg;
The ports instr_in and instr_out are signals of a class-wide type. A behavioral architecture body

for the register is:
architecture behavioral of instruction_reg is
begin

store : process (load_enable, jam_nop, instr_in) is
type instruction_ptr is access instruction’class;
variable stored_instruction : instruction_ptr := new undef_instruction;

begin
if jam_nop = ’1’then

stored_instruction := new nop_instruction;
elsif load_enable = ’1’then

stored_instruction := new instr_in;
end if;
instr_out <= stored_instr.all;

end process store;
end architecture behavioral;
The process implements the register storage using the local variable stored_instruction. Since

a variable cannot be of a class-wide type, stored_instruction is defined as an access value, pointing
to a dynamically allocated object of type instruction’class.
— — —

3.7 Dispatching
The primitive operations of a tagged type are called dispatching operations. The specific types of
the operands and the expected result in a subprogram call determine the controlling tag, namely the
tag of the type whose operation is called. If the controlling tag is statically determined, the particular
subprogram body to be invoked is statically determined. If the controlling tag can only be deter-
mined dynamically, the subprogram is dispatched at run-time— the particular operation for the type
corresponding to the controlling tag is invoked.

Example
Suppose a model includes the declarations:
constant halt_instruction : instruction := instruction’(opcode => op_halt);
signal fetched_instruction : instruction’Class;
The first of the following two function calls is statically dispatched, since the specific type of

the operand halt_instruction is statically determined to be instruction. The second call, on the other
hand, must be dynamically dispatched, since at different times fetched_instruction might have values
of different types derived from instruction. The tag of fetched_instruction determines which version
of privileged is invoked.

privileged (halt_instruction, user_mode)
privileged (fetched_instruction, user_mode)

— — —

3.8 The ’Tag Attribute
There is a predefined private type named Tag. For a specific subtype S, the predefined attribute
S’Tag yields a value of type Tag that represents the tag of the type of S. For a class-wide subtype

9

S, the predefined attribute S’Tag yields a value that represents the tag of the specific tagged type at
the root of the class hierarchy denoted by S. For an object X of a class-wide type, the predefined
attribute X’Tag yields a value of type Tag that represents the tag of the specific type of X. For an
access object X whose designated type is a class-wide type, the predefined attribute X’Tag yields
a value of type tag that represents the tag of the specific type of the designated object.

The predefined relational operators (“=”, “/=”, “”<, “<=”, “>”and “>=”) are defined for oper-
ands of type Tag. For specific tagged types L and R:

S L’Tag = R’Tag iff L and R are the same type,
S L’Tag /= R’Tag iff L and R are different types,
S L’Tag < R’Tag iff L is derived directly or indirectly from R,
S L’Tag <= R’Tag iff L is derived directly or indirectly from R,
S L’Tag > R’Tag iff R is derived directly or indirectly from L,
S L’Tag >= R’Tag iff R is derived directly or indirectly from L or R is the same type as L.
The relational operators applied to class-wide types and objects of class-wide types similarly

determine the relationships between the specific types at the roots of the class hierarchies. Note that
The ordering implied by the relational operations is a partial order. Thus, L’Tag < R’Tag yielding
false does not imply that L’Tag >= R’Tag yields true. If neither L nor R is derived from the other,
both operations yield false.

Example
The relational operators provide a means of performing membership tests. Given the instruc-

tion types defined in previous examples, and the signal declaration:
signal current_instruction : instruction’class;

the following test whether the value of current_instruction is a member of the class hierarchy rooted
at memory_instruction:

current_instruction’Tag <= memory_instruction’Tag

— — —

3.9 Type Conversions
SUAVE extends the notion of a type conversion to include value conversion and view conversions.
A value conversion is the same as a type conversion currently in VHDL. It takes an operand of a
source type and yields a value of a target type. A view conversion, on the other hand, takes a name
of a source type and denotes a name of a target type. The revise syntax rules are:

name ::=
. . .

| type_conversion

type_conversion ::=
type_mark (expression)

| type_mark (name)

10

A type conversion whose operand is the name of an object is a view conversion if its target type
is tagged, or if it appears as an actual parameter of mode out or inout or as the designated name in
an alias declaration; other type conversions are value conversions.

Conversion from a source tagged type to a target tagged type is allowed under the following
circumstances:

S Conversion is allowed between two specific tagged types if the target type is an ancestor
of the source type.

S Conversion from a specific type to a class-wide type is allowed only if the root of the
class-wide type is an ancestor of the source type. Such a conversion need not be explicit-
ly stated.

S Conversion from a class-wide type to a specific type is allowed only if the actual value is
of the target type or one of its descendants. A run-time check is required.

S Conversion from a source class-wide type to a target class-wide type is allowed only if
the classes have a common ancestor and the source class-wide type is covered by the
target class-wide type. A run-time check is required if the source type is not an subclass
of the target type.

Type conversion of a value or an object of a tagged type does not change the tag or any elements
of the value or object. The converted value or object is treated as being of the target type.

3.10 Aggregates
A value may not be converted from a specific tagged type to a specific descendent type. Instead,
an extension aggregate must be used. An extension aggregate is a form of record aggregate that uses
a record value of a parent type and adds extension elements for the descendent type. The revised
syntax rules for aggregates are:

aggregate ::= record_aggregate | extension_aggregate | array_aggregate

record_aggregate ::= (record_element_association_list)

record_element_association_list ::=
element_association_list

| null record

extension_aggregate ::= (ancestor_part with record_element_association_list)

ancestor_part ::= expression | type_mark

array_aggregate ::= (element_association_list)

element_association_list ::=
element_association { , element_association }

The syntax rule for a normal record aggregate requires revision to handle the possibility of a
null record. The syntax rule for an array aggregate is unchanged. The syntax rule for an extension
aggregate allows specification of an expression of an ancestor type, followed by values for elements
added to that type to derive the descendent type. Alternatively, if only an ancestor type name is speci-
fied, an ancestor record value with default element values is used.

11

Example
The variable potential_load is of type load_instruction, a descendent of the type instruction. The

assignment below uses the value of the constant nop_instruction of type instruction, just containing an
opcode element. The aggregate extends this value with elements base and offset required for the type
memory_instruction and the element destination required for the type load_instruction.

variable potential_load : load_instruction;
. . .
potential_load := load_instruction’(nop_instruction with base => 0, offset => 0, destination => 0);

— — —

4 Extensions for Encapsulation
Definition of an ADT requires that the concrete implementation details of the type are hidden from
users. The interface visible to users should consist only of the operations for manipulating ADT
values. SUAVE extends the features of VHDL packages to improve encapsulation of the imple-
mentation of ADTs. It adopts the mechanisms of private types and private parts in packages to pro-
vide improved encapsulation.

4.1 Declaration of Packages
In VHDL-93 a package may only be declared at the library level. This prevents use of packages for
defining abstract data types that are local to a declarative region. In SUAVE, the rules for declarative
parts are modified to allow a package declaration or a package body to occur in:

S an entity declaration
S an architecture body
S a block statement
S a generate statement
S a process statement
S a subprogram body

The revised syntax rules are:
entity_declarative_item ::=

. . .
| package_declaration
| package_body_declaration

block_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

process_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

12

subprogram_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

Furthermore, a package declaration may occur within a package declaration and a package body may
occur within a package body. The revised syntax rules are:

package_declarative_item ::=
. . .

| package_declaration

package_body_declarative_item ::=
. . .

| package_body_declaration
Since a package declaration and its corresponding package body (if required) form a single de-

clarative region, they must both be declared directly within the same enclosing declarative region.
If a package declaration is nested within a package declaration and the inner package requires a body,
then the outer package also requires a body and must contain the body of the inner package.

A name declared within a package declaration is visible by selection in the scope of the package
name by using the package name as a prefix. A name may be made directly visible in the scope of
the package by writing a use clause that names the package as a prefix.

Example
The following architecture body for a FIFO includes a package that defines a queue type. The

package declaration defines a number of items, including the type queue and the subprogram empty.
Since there is a subprogram specification in the package declaration, a package body is required.
The items declared in the package are visible by selection within the architecture body. The use
clause makes the type name queue directly visible.

architecture behavioral of FIFO is
package queues is

. . .
type queue is . . .
function empty (Q : queue) return boolean;
. . .

end package queues;
package body queues is

function empty (Q : queue) return boolean is . . .
. . .

end package body queues;
begin

FIFO_manager : process is
use queues.queue;
variable FIFO_queue : queue;

begin
. . .
if queues.empty (FIFO_queue) then . . .

13

. . .
end process FIFO_manager;

end architecture behavioral;

— — —
A package declaration directly or indirectly nested within a subprogram body or a process state-

ment may not contain a signal declaration. This is an extension of the rule that a signal may not be
declared within a subprogram body or a process statement.

A variable declaration in a package declaration that is directly or indirectly nested within a sub-
program body or a process statement may be an ordinary variable declaration. If the package is
nested with a subprogram body, the variable is only accessible to the process that is the parent of
the subprogram invocation, so concurrent access is not possible. A similar argument applies if the
package is nested within a process statement. A variable declaration in a package declaration that
is directly or indirectly nested within any other context must be a shared variable declaration. In
such circumstances, the variable may be accessible to more than one process, so concurrent access
is possible.

4.2 Visible and Private Parts of Packages
A package declaration may be divided into two parts: a visible part and a private part. The visible
part may be used to declare the interface of an ADT so that it is visible to users. The ADT is ex-
pressed as a private type and related operations. The private part of the package is then used to de-
clare the concrete implementation details of the private type that should be hidden from the user,
but which may not be deferred to the package body. See Section 4.3 for a description of private types
and for examples of private parts of packages. The modified syntax rule for a package declaration
is:

package_declaration ::=
package identifier is

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;

package_private_declarative_part ::= { package_private_declarative_item }

package_private_declarative_item ::=
subprogram_declarative_item

| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification

14

| use_clause
| group_template_declaration
| group_declaration
| package_declaration

See Section 5.1 for a description of a generic clause in a package declaration. The first declara-
tive part in the package declaration is the visible part and the second declarative part is the private
part. The visible part and the private part are considered to form a single declarative part for the
purpose of rules that relate to items within declarative parts. The names declared within the visible
part are visible by selection where the package name is visible. They may be made directly visible
by a use clause that names the package. The names declared in the private part are visible within
the declarative region of the package and nowhere else.

4.3 Private Types and Private Extensions
A type declared in the visible part of a package declaration may be declared as a private type or a
private extension. These define a partial view of the type, in which only some of the details of the
type are defined. The full view of the type defines all of the details of the type. It must be defined
by a full type declaration for the type in the private part of the package. The syntax rules for defining
a private type and a private extension are:

type_declaration ::=
. . .

| private_type_declaration
| private_type_extension

private_type_declaration ::=
type identifier is [[abstract] tagged] [limited] [access] private ;

private_extension_declaration ::=
type identifier is [abstract] new ancestor_subtype_indication with [access] private ;

If the reserved word abstract is included, the type is abstract (see Section 3.4). If the reserved
word tagged is included, the type is tagged (see Section 3.3) and must be completed in the full view
with a tagged type. The full view may be a tagged type even if the partial view is not. If the reserved
word limited is included, the partial view of the type is limited (see Section 4.4). The full view of
the type may also be limited, but usually it is not, since the implementation of operations on the type
will need to use assignment. If the reserved word access is included, the type may be of an access
type or include an element of an access type. The reserved word is required if the full view of the
type does include an access type. This allows checking that the type is not used in contexts where
inclusion of an access type is prohibited, for example, as the type of a signal.

A private type allows the concrete details of the type to be hidden from users of the type. A
private extension allows the fact that a type is derived from a particular ancestor to be known, but
hides the details of the extension. The ancestor type specified must be a specific tagged type. In
the full view, the type must be derived from the specified ancestor type, although it need not be de-
rived directly. It may be derived via one or more intermediate types.

For a private type or private extension, only the partial view is visible to users of the package.
However, within the private part and body of the package, the full view is visible. The full view must
be completed in the private part of the package declaration rather than being deferred to the package

15

body in order to provide the analyzer with enough information to be able to allocate object of the
type, determine parameter passing mechanisms, etc.

The full view of a private type must be a constrained type. This ensures that the size of a value
of the type is known when an object of the type is to be created. The full view may not be a file type.
A file object can not be of a private type or private extension, nor may it have a private type or private
extension as the element type. This is required, since a file element may not be of a tagged type,
and the full view of a private type may be tagged even if the partial view is not.

Example
An ADT for complex numbers can be defined in a package as follows.
package complex_numbers is

type complex is private;
constant i : complex;
function “&”(L, R : real) return complex;
function re (C : complex) return real;
function im (C : complex) return real;
function “+”(L, R : complex) return complex;
function “- ”(L, R : complex) return complex;
function “*”(L, R : complex) return complex;
function “/”(L, R : complex) return complex;

private
type complex is

record
re, im : real;

end record complex;
end package complex_numbers;

Since the type complex is not limited, assignment is allowed and equality is predefined. This
is appropriate for the Cartesian representation used in the implementation.
— — —

Example
The following package declares an ADT for tokens used in uninterpreted modeling. The private

type token is declared tagged so that it can be extended by ADT users. The concrete implementation
is as a tagged record type.

package tokens is
type token is tagged private;
function new_token return token;
. . .

private
type token is

tagged record
id : natural;

16

creation_time : time;
end record token;

end package tokens;
The token type can use used as the parent of a derived type as shown below. The new_token func-

tion for colored tokens creates its result with an extension aggregate based on a value of the parent
type.

type colored_token is new token with
record

color : color_type;
end record;

function new_token (new_color : color_type := default_color) return colored_token is
begin

return (token’(new_token) with color => new_color);
end function new_token;
variable next_token : colored_token := new_token;
variable subsequent_token : colored_token := new_token(red);

— — —

Example
The following package declares an ADT for traceable tokens that record their recent history of

flow around a queuing network. The type is derived from the token type declared in the example
above, but the details of the extension are private.

package traceable_tokens is
type traceable_token is new token with private;
function new_token return traceable_token;
. . .

private
type history_queue_type is ...
type traceable_token is new token with

record
history_queue : history_queue_type;

end record traceable_token;
end package traceable_tokens;

— — —

4.4 Limited Types
A limited type is a view of a type for which the assignment operation is not allowed. A type may
declared limited by including the reserved word limited in a private type declaration, a formal pri-
vate type definition, or a record type definition. A type is also limited if it is a composite type with
a limited element, or a descendent of a limited type. The equality operator is not predefined for a
limited type.

Example
The following package declares an ADT for lists of thingies. The concrete implementation is

as a linked list of elements. The type is declared limited because deep copy is required, rather than

17

just copying the pointer to the first element in a list. The private type declaration also includes the
reserved word access because the concrete implementation uses access types.

package thingy_lists is
type list is limited access private;
constant empty_list : list;
procedure copy (from : in list; to : out list);
impure function “=”(L, R : list) return boolean;
procedure add (L : inout list; element : thingy);
. . .

private
type element_node;
type element_ptr is access element_node;
type list is new element_ptr;

end package thingy_lists;

package body thingy_lists is
use work.thingies.all;
type element_node is

record
next_element : element_ptr;
element : thingy;

end record element_node;
constant empty_list : list := list(element_ptr’(null));
procedure copy (from : in list; to : out list) is . . .
. . .

end package body thingy_lists;
— — —

5 Generics
Reuse of a software module can be improved by making it applicable in a wider set of contexts, for
example, by making it more generic. VHDL currently includes a mechanism, generic interface
constants, that allows components and entities to be parameterized with formal constants. Actual
generic constants are specified when components are instantiated and when entities are bound. The
generic constant mechanism is widely used to specify timing parameters and array port bounds,
amongst other things.

SUAVE extends the generic mechanism of VHDL to improve support for reuse. There are two
main aspects to the extension. The first is to allow subprograms and packages to have generic inter-
face clauses. The second is to allow formal type parameters in a generic interface clause, making
the generic item reusable for a variety of different types. Formal subprogram and formal package
parameters are also allowed as a corollary to allowing formal type parameters.

5.1 Generic units
SUAVE extends the declaration of packages and subprograms to allow inclusion of a formal generic
clause. The extended syntax rule for a package declaration is shown in Section 4.2, and is repeated
here:

18

package_declaration ::=
package identifier is

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;
A package that includes a formal generic clause is a generic package. A generic package is a

template for an ordinary package, and does not provide declarations itself. It must be instantiated
as described in Section 5.2. Examples of packages with formal generic clauses are shown in Section
5.3.

The extended syntax rule for a subprogram specification is:
subprogram specification ::=

procedure designator
[generic (generic_list)] [(formal_parameter_list)]

| [pure | impure] function designator
[generic (generic_list)] [(formal_parameter_list)] return type_mark

A subprogram declaration or body that includes a formal generic clause in its specification is
a generic subprogram. A generic subprogram is a template for an ordinary subprogram. It cannot
be called, but must be instantiated as descibed in Section 5.2. Examples of subprograms with formal
generic clauses are shown in Section 5.3.

If a generic subprogram is declared as a separate subprogram specification and subprogram
body, the subprogram body must include the formal generic clause, which must conform with the
formal generic clause in the subprogram specification.

5.2 Instantiating Generic Units
A generic subprogram may be instantiated as a subprogram. The syntax rule is:

generic_subprogram_instantiation ::=
[subprogram_kind] designator is new generic_subprogram_name

[generic_map_aspect] ;
Similarly, a generic package may be instantiated as a package. The syntax rule is:

generic_package_instantiation ::=
package identifier is new generic_package_name

[generic_map_aspect] ;
A generic package that directly or indirectly contains a declared signal may not be instantiated within
the declarative region of a process statement or a subprogram body. Instantiation of components
and entities remains unchanged. Examples of instantiation of generic subprograms and packages
are shown in Section 5.3.

5.2.1 Extended Generic Maps
A generic map aspect is used to associate actual generics with formal generics upon instantiation
of a generic subprogram, a generic package, a component or an entity. A generic map is also used

19

to associate actual generics with formal generics in a block statement. The extended syntax rule for
an actual designator, allowing specification of actual generics for formal type, subprogram and
package generics, is:

actual_designator ::=
. . .

| type_mark
| subprogram_name
| package_instance_name

For a formal generic type, the associated actual type is designated by a type mark. For a formal
generic subprogram, the associated actual subprogram is designated by a subprogram name. For
a formal generic package, the associated actual package is designated by the name of a package
instance. Examples of extended generic maps are shown in Section 5.3.

5.3 Extended Generic Clauses
SUAVE extends the kinds of formal generics that may be specified in a formal generic clause to in-
clude formal types, formal subprograms and formal packages. These can be included in generic
clauses of package declarations, subprogram specifications, block statements, entity declarations
and component declarations. The revised syntax rule is:

interface_declaration ::=
. . .

| interface_type_declaration
| interface_subprogram_declaration
| interface_package_declaration

Interface type, subprogram and package declarations may only appear in formal generic
clauses. A formal generic clause may only include interface constant, type, subprogram and package
declarations.

The rule (LRM ¶4.3.2.1) that prohibits use of an item declared in an interface list within the
declaration of other items in the interface list is relaxed in the case of generic interface lists. Items
declared in a generic interface list may be used in the declaration of items declared subsequently in
the interface list.

5.3.1 Formal Generic Types
An interface type declaration defines a formal generic type that can be used to pass a particular type
when the generic unit is instantiated. The form of the interface type definition determines the class
of type that can be passed as the actual generic type. The syntax rules are:

interface_type_declaration ::=
type identifier is interface_type_definition ;

interface_type_definition ::=
interface_private_type_definition
| interface_derived_type_definition
| interface_discrete_type_definition
| interface_integer_type_definition

20

| interface_physical_type_definition
| interface_floating_type_definition
| interface_array_type_definition
| interface_access_type_definition
| interface_file_type_definition

5.3.2 Formal Private Types
An interface private type definition defines a formal generic type that can denote any type, subject
to the restrictions described below. The syntax rule is:

interface_private_type_definition ::= [[abstract] tagged] [limited] [access] private
Inclusion of the reserved word tagged specifies that the formal type denotes a tagged type— the actu-
al type must be tagged. Omission of the reserved word tagged specifies that the formal type is not
tagged— the actual type may be tagged or untagged. Inclusion of the reserved word abstract speci-
fies that the formal type is abstract— the actual type may be abstract or non-abstract. Omission of
the reserved word abstract specifies that the formal type is non-abstract— the actual type must be
non-abstract. Inclusion of the reserved word limited specifies that the formal type denotes a limited
type— the actual type may be limited or unlimited. Omission of the reserved word limited specifies
that the formal generic type is unlimited— the actual type must be unlimited. Inclusion of the re-
served word access specifies that the formal generic type may be of or include an element of an ac-
cess type— the actual type may or may not be of or include an access type. Omission of the reserved
word access specifies that the formal generic type does not include an access type— the actual type
must not be an access type nor include an element of an access type.

Example
A package defining an ADT for sets of elements can be made reusable by making it generic with

respect to element type, as shown below. The formal type generic element_type is unlimited, non-
tagged and non-abstract. Hence, any actual type provided on instantiation must be an unlimited,
non-abstract type, but may be a tagged type.

package sets is
generic (type element_type is access private);
type set is access private;
constant empty_set : set;
procedure copy (from : in set; to : out set);
function “+”(R : element_type) return set; - - singleton set
impure function “+”(L : set; R : element_type) return set; - - add to set
impure function “+”(L : element_type; R : set) return set; - - add to set
. . .

private
type element_node;
type element_ptr is access element_node;
type set is new element_ptr;

end package sets;

21

package body sets is
type element_node is

record
next_element : element_ptr;
value : element_type;

end record element_node;
. . .

end package body sets;

Given a type thingy, an ADT for sets of elements of this type may instantiated as follows:
package thingy_sets is new sets generic map (element_type => thingy);

— — —

5.3.3 Formal Derived Types
An interface derived type definition defines a formal generic type that denotes any type in the deriva-
tion tree rooted at a specified type. The syntax rule is:

interface_derived_type_definition ::= [abstract] new type_mark [with [access] private]

The reserved words with private must be included if and only if the ancestor type specified is a spe-
cific tagged type, in which case the formal generic type denotes a private extension of the ancestor
type. If the reserved words with private are omitted the ancestor type must not be a tagged type.
The reserved word abstract may only be included if the ancestor type is a tagged type, and specifies
that the formal generic type denotes an abstract type— the actual type may or may not be abstract.
Omission of the reserved word abstract specifies that the formal type is non-abstract— the actual
type must be non-abstract. Inclusion of the reserved word access specifies that the private extension
may include an element of an access type— the actual type may or may not include an access type.
Omission of the reserved word access specifies that the private extension does not include an access
type— the actual type must not include an element of an access type.

Example
The following package defines a mixin derivation for adding indexed addressing information

to a type derived from the instruction type. Use of the reserved words with private in the formal type
generic specifies that the type instruction is a specific tagged type and that parent_instruction is derived
from it. The type indexed_instruction is declared abstract in case the user needs the type resulting from
mixing in the indexed addressing properties to be abstract. If the user needs the type to be non-ab-
stract, a non-abstract version can be derived from indexed_instruction.

package indexed_addressing_mixin is
generic (type parent_instruction is abstract new instruction with private);
type indexed_instruction is abstract new parent_instruction with

record
index_base, index_offset : register_number;

end record indexed_instruction;
function effective_address (instr : indexed_instruction) return address;

end package indexed_addressing_mixin;

Suppose types load_instruction and store_instruction are derived from type instruction as follows:

22

type load_instruction is abstract new instruction with
record

destination : register_number;
end record load_instruction;

type store_instruction is abstract new instruction with
record

source : register_number;
end record store_instruction;

Indexed versions of these instructions can be derived through instantiations of the indexed_ad-
dressing_mixin package, as follows:

package indexed_loads is
new indexed_addressing_mixin generic map (parent_instruction => load_instruction);

type indexed_load_instruction is
new indexed_loads.indexed_instruction with null record;

package indexed_stores is
new indexed_addressing_mixin generic map (parent_instruction => store_instruction);

type indexed_store_instruction is
new indexed_stores.indexed_instruction with null record;

— — —

5.3.4 Formal Discrete Types
An interface discrete type definition defines a formal generic type that denotes any discrete type.
The syntax rule is:

interface_discrete_type_definition ::= (<>)

Example
The following entity declaration describes a counter that counts through successive values of

any discrete type denoted by count_type:
entity counter is

generic (type count_type is (<>));
port (clk : in bit; data : out count_type);

end entity counter;

An architecture body for the counter is shown below. Since count_type denotes a discrete type,
the process can use the attributes low, high and succ.

architecture behavioral of counter is
begin

count_behavior : process is
variable count : count_type := count_type’low;

begin
data <= count;
wait until clk = ’1’;
if count = count_type’high then

count := count_type’succ(count);
else

count := count_type’low;
end if;

end process count_behavior;

23

end architecture behavioral;

Some examples of instantiation of this counter are:
type state_type is (idle, receiving, processing, replying);
. . .
natural_counter : entity work.counter(behavioral)

generic map (count_type => natural)
port map (clk => master_clk, data => natural_data);

state_counter : entity work.counter(behavioral)
generic map (count_type => state_type)
port map (clk => master_clk, data => state_data);

— — —

5.3.5 Formal Integer Types
An interface integer type definition defines a formal generic type that denotes any integer type. The
syntax rule is:

interface_integer_type_definition ::= range <>

Example
The counter example can be rewritten to use a formal integer type, allowing use of the addition

operator in the implementation.
entity counter is

generic (type count_type is range <>);
port (clk : in bit; data : out count_type);

end entity counter;
architecture behavioral of counter is
begin

count_behavior : process is
variable count : count_type := count_type’low;

begin
data <= count;
wait until clk = ’1’;
if count = count_type’high then

count := count + 1;
else

count := count_type’low;
end if;

end process count_behavior;
end architecture behavioral;

— — —

5.3.6 Formal Physical Types
An interface physical type definition defines a formal generic type that denotes any physical type.
The syntax rule is:

interface_physical_type_definition ::= units <>

24

Example
The following generic package that defines a physical type that is the dimensional product of

two physical types specified as formal physical type generics:
package product_measures is

generic (type measure1, measure2 is units <>);
type product_measure is

units
product_unit;
product_unit_E3 = 1E3 product_unit;
product_unit_E6 = 1E6 product_unit;
product_unit_E9 = 1E9 product_unit;
product_unit_E12 = 1E12 product_unit;

end units product_measure;
function “*”(L : measure1; R : measure2) return product_measure;
function “/”(L : product_measure; R : measure1) return measure2;
function “/”(L : product_measure; R : measure2) return measure1;

end package product_measures;
The implementation of the operators is completed in the package body:
package body product_measures is

function “*”(L : measure1; R : measure2) return product_measure is
begin

return product_measure’val(measure1’pos(L) * measure2’pos(R));
end function “*”;
function “/”(L : product_measure; R : measure1) return measure2 is
begin

return measure2’val(product_measure’pos(L) / measure1’pos(R));
end function “/”;
function “/”(L : product_measure; R : measure2) return measure1 is . . .

end package body product_measures;
An instantiation of the package to define a type for power as the product of voltage and current

is shown below. Use of the “*”and “/”functions defined by the package instance performs dimen-
sionally correct arithmetic on voltage, current and power values.

type voltage is
units

microvolt;
millivolt = 1000 microvolt;
volt = 1000 millivolt;

end units voltage;
type current is

units
microamp;
milliamp = 1000 microamp;
amp = 1000 milliamp;

end units current;
package power_measures is

new product_measure generic map (measure1 => voltage, measure2 => current);
alias power is power_measures.product_measure;
alias picowatt is power_measures.product_unit;

25

alias nanowatt is power_measures.product_unit_E3;
alias microwatt is power_measures.product_unit_E6;
alias milliwatt is power_measures.product_unit_E9;
alias watt is power_measures.product_unit_E12;

— — —

5.3.7 Formal Floating Types
An interface floating type definition defines a formal generic type that denotes any floating point
type. The syntax rule is:

interface_floating_type_definition ::= range <> . <>

See Section 5.3.10 for an example that includes use of a formal type generic.

5.3.8 Formal Array Types
An interface array type definition defines a formal generic type that denotes any array type. The
syntax rule is:

interface_array_type_definition ::= array_type_definition

A formal array type and the associated actual array type must both be constrained or both be
unconstrained. Both must have the same dimensionality, the same index types in each dimension
and the same element types. For a formal constrained array type, the index constraint must be speci-
fied in the form of a type mark, and the actual array type must have the same index range as the formal
array type.

Example
The following entity declaration describes a shift register that stores and shifts a vector of arbi-

trary type:
entity shift_register is

generic (type index_type is (<>);
type element_type is private;
type vector is array (index_type range <>) of element_type);

port (clk : in bit;
data_in : element_type;
data_out : vector);

end entity shift_register

The architecture body is:
architecture behavioral of shift_register is
begin

shift_behavior : process is
constant data_low : index_type := data_out’low;
constant data_high : index_type := data_out’high;
type ascending_vector is array (data_low to data_high) of element_type;
variable stored_data : ascending_vector;

begin
data_out <= stored_data;
wait until clk = ’1’;

26

stored_data(data_low to index_type’pred(data_high))
:= stored_data(index_type’succ(data_low) to data_high);

stored_data(data_high) := data_in;
end process shift_behavior;

end architecture behavioral;

The entity can be instantiated as follows:
signal master_clk, carry_in : bit;
signal result : bit_vector(15 downto 8);
bit_vector_shifter : entity work.shift_register(behavioral)

generic map (index_type => natural, element_type => bit, vector => bit_vector)
port map (clk => master_clk, data_in => carry_in, data_out => result);

— — —

5.3.9 Formal Access Types
An interface access type definition defines a formal generic type that denotes any access type. The
syntax rule is:

interface_access_type_definition ::= access_type_definition

Example
The following generic procedure copies the value of one dynamic vector to another. The index

type and element type of the dynamic vectors are specified as formal generic types, and the dynamic
vector type is represented as a pointers to an allocated array.

procedure copy_vector
generic (type index_type is (<>); type element_type is private;

type vector is array (index_type range <>) of element_type;
type vector_ptr is access vector)

(src : in vector_ptr; dest : inout vector_ptr) is
begin

if dest /= null then
deallocate (dest);

end if;
dest := new src.all;

end procedure copy_vector;

Given the following declarations for dynamic vectors of time values:
type time_vector is array (natural range <>) of time;
type time_vector_ptr is access time_vector;
variable schedule1 : time_vector_ptr := new time_vector’(1 ns, 3 ns, 10 ns);
variable schedule2 : time_vector_ptr;

The procedure may be instantiated and called as follows:
procedure copy_time_vector is

new copy_vector generic map (index_type => natural, element_type => time,
vector => time_vector, vector_ptr => time_vector_ptr);

. . .
copy_time_vector (src => schedule1, dest => schedule2);

— — —

27

5.3.10 Formal File Types
An interface file type definition defines a formal generic type that denotes any file type. The syntax
rule is:

interface_file_type_definition ::= file_type_definition

Example
VHDL does not allow a file to contain elements that are multidimensional arrays. One means

of working around this restriction is to use a file of the element type of the multidimensional array,
and to read and write array elements in sequence. The following package provides read and write
operations using this approach for two-dimensional arrays. The package is generic with respect to
the array type, and includes a file type with the same element type as the array type. The package
cannot be written with a private type for the element type, since there are restrictions on the kinds
of types that can be included as file elements. This example uses a floating-point type as the element
type. Similar packages could be written for other kinds of types that are permissible for file ele-
ments.

package floating_matrix_IO is
generic (type row_index_type, col_index_type is (<>);

type element_type is (<>.<>);
type matrix is array (row_index_type, col_index_type) of element_type;
type matrix_file is file of element_type);

procedure read (file f : matrix_file; value : out matrix);
procedure write (file f : matrix_file; value : in matrix);

end package floating_matrix_IO;

An implementation of the read and write operations is shown in the following package body.
package body floating_matrix_IO is

procedure read (file f : matrix_file; value : out matrix) is
begin

for row_index in row_index_type loop
for col_index in col_index_type loop

read (f, value(row, col));
end loop;

end loop;
end procedure read;
procedure write (file f : matrix_file; value : in matrix) is
begin

for row_index in row_index_type loop
for col_index in col_index_type loop

write (f, value(row, col));
end loop;

end loop;
end procedure write;

end package body floating_matrix_IO;

An example of instantiation and use of this package is:
subtype transformation_index is integer range 1 to 3;
type transformation_matrix is array (transformation_index, transformation_index) of real;
type real_file is file of real;

28

package transformation_matrix_IO is
new floating_matrix_IO

generic map (row_index_type => transformation_index,
col_index_type => transformation_index,
element_type => real,
matrix => transformation_matrix,
matrix_file => real_file);

use transformation_matrix_IO.all;
file transformation_file : real_file;
variable next_transformation : transformation_matrix;
. . .
file_open (transformation_file, “test_transformations.dat”, read_mode);
read (transformation_file, next_transformation);

— — —

5.3.11 Formal Subprogram Generics
An interface subprogram declaration defines a formal generic subprogram that can be used to pass
a particular subprogram when the generic unit is instantiated. The syntax rule is:

interface_subprogram_declaration ::=
subprogram_specification [is subprogram_default]

subprogram_default ::= name | <>

The subprogram specification may not contain a generic clause. The subprogram default speci-
fies the subprogram to use if no actual generic subprogram is provided on instantiation. If a name
is specified as the subprogram default, it must denote a callable subprogram with the same profile
as that of the subprogram specification. If a box is specified as the subprogram default, it indicates
that the actual generic subprogram should be a subprogram with the same name and profile as those
of the subprogram specification that is directly visible at the point of instantiation.

Example
The following package defines an ADT for lookup tables. A table contains elements that are

each identified by a key value. The formal function key_of determines the key for a given element.
No default function is provided, so the user must supply an actual function on instantiation of the
package. The formal function “<”is used to compare key values. The default function is specified
using the “<>”notation, so if an appropriate function named “<”is visible at the point of instantia-
tion, no actual need be specified. The generic procedure traverse is parameterized by an action pro-
cedure. An instance of traverse applies the actual action procedure to each element in the table.

package lookup_tables is
generic (type element_type is access private;

type key_type is private;
function key_of (E : element_type) return key_type;
function “<”(L, R : key_type) return boolean is <>);

type lookup_table is limited access private;
procedure lookup (table : in lookup_table; lookup_key : in key_type;

element : out element_type; found : out boolean);

29

procedure search_and_insert (table : in lookup_table; element : in element_type;
already_present : out boolean);

procedure traverse
generic (procedure action (element : in element_type))
(table : in lookup_table);

private
type tree_record;
type tree_ptr is access tree_record;
type tree_record is

record
left_subtree, right_subtree : tree_ptr;
element : element_type;

end record tree_record;
type lookup_table is new tree_ptr;

end package lookup_tables;

The package body is shown below. The formal functions key_of and “<”are invoked using the
formal name.

package body lookup_tables is
procedure lookup (table : in lookup_table; lookup_key : in key_type;

element : out element_type; found : out boolean) is
variable current_subtree : tree_ptr := tree_ptr(table);

begin
found := false;
while current_subtree /= null loop

if lookup_key < key_of(current_subtree.element) then
lookup (lookup_table(current_subtree.left_subtree),

lookup_key, element, found);
elsif key_of(current_subtree.element) < lookup_key then

lookup (lookup_table(current_subtree.right_subtree),
lookup_key, element, found);

else
found := true;
element := current_subtree.element;
return;

end if;
end loop;

end procedure lookup;
procedure search_and_insert (table : in lookup_table; element : in element_type;

already_present : out boolean) is ...
procedure traverse

generic (procedure action (element : in element_type))
(table : in lookup_table) is
alias tree is tree_ptr(table);

begin
if tree = null then

return;
end if;
traverse (lookup_table(tree.left_subtree));
action (tree.element);
traverse (lookup_table(tree.right_subtree));

end procedure traverse;

30

end package body lookup_tables;
Suppose a model requires a lookup table of test patterns that use character strings as keys. Such

a table may be instantiated as shown below. Since the predefined function “<”operating on strings
is visible at the point of instantiation, it is used as the actual function for the formal function “<”.

type test_pattern_type is . . .
function test_id_of (test_pattern : in test_pattern_type) return string;
package test_pattern_tables is

new lookup_tables generic map (element_type => test_pattern_type,
key_type => string,
key_of => test_id_of);

The traversal procedure can be used to count the number of elements in the table by instantiating
it as follows:

variable count : natural := 0;
procedure count_a_test_pattern (test_pattern : in test_pattern_type) is
begin

count := count + 1;
end procedure count_a_test_pattern;
procedure count_test_patterns is

new test_pattern_tables.traverse generic map (action => count_a_test_pattern);
The instantiated traversal function can be called with a test pattern lookup table as a parameter,

as follows:
variable patterns_to_apply : test_pattern_tables.lookup_table;
. . .
count_test_patterns (patterns_to_apply);

— — —

5.3.12 Formal Package Generics
An interface package declaration defines a formal generic package that can be used to pass a particu-
lar instance of a generic package when the generic unit is instantiated. The syntax rule is:

interface_package_declaration ::=
package identifier is new generic_package_name interface_package_actual_part ;

interface_package_actual_part ::=
generic map (<>)

| [generic_map_aspect]
The name must denote a generic package. If the interface package actual part is of the form that

includes a box, the actual package may be any instance of the named generic package. If the interface
package actual part is a generic map aspect, the actual package must be an instance of the named
generic package with the same actual generics as those specified in the generic map aspect. If the
interface package actual part is empty, the actual package must be an instance of the named generic
package with the same actual generics as the defaults for the generic package.

The following example is adapted from the Ada Rationale [3].

Example
Suppose a generic package for complex numbers is defined as follows:

31

package generic_complex_numbers is
generic (type float_type is range <>.<>);
type complex is private;
function “+”(L, R : complex) return complex;
function “- ”(L, R : complex) return complex;
. . .

private
. . .

end package generic_complex_numbers;

The package is generic so that it may be used with different floating point types. A package
for generic complex vectors can be defined as shown below. It is generic with respect to the type
of complex number used as vector elements. The package could be defined with the complex type
as a formal type generic, but then the operators needed to implement the vector functions would also
have to be included as formal subprogram generics. A more succinct form is to specify a formal
package generic for the package defining the complex number ADT.

package generic_complex_vectors is
generic (package complex_numbers is

new generic_complex_numbers
generic map (<>));

use complex_numbers.all;
type complex_vector is array (natural range <>) of complex;
function “+”(L, R : complex_vector) return complex_vector;
function “- ”(L, R : complex_vector) return complex_vector;
. . .

end package generic_complex_vectors;

As an illustration of how the operations defined in the formal complex number ADT package
are used, the package body for the complex vectors package is as follows:

package body generic_complex_vectors is
function “+”(L, R : complex_vector) return complex_vector is

alias L_norm : complex_vector(1 to L’length) is L;
alias R_norm : complex_vector(1 to R’length) is R;
variable result : complex_vector(1 to L’length);

begin
assert L’length = R’length

report “Addition of complex vectors of different lengths”;
for index in result’range loop

result(index) := L_norm(index) + R_norm(index);
end loop;
return result;

end function “+”;
function “- ”(L, R : complex_vector) return complex_vector is . . .
. . .

end package body generic_complex_vectors;
Suppose now that the complex numbers package is instantiated as follows:
type short_float is range - 10.0 to 10.0;
package short_complex_numbers is

new generic_complex_numbers generic map (float_type => short_float);

32

alias short_complex is short_complex_numbers.complex;

The complex vectors package is then instantiated as follows:
package short_complex_vectors is

new generic_complex_vectors generic map (complex_numbers => short_complex_numbers);
alias short_complex_vector is short_complex_vectors.complex_vector;

Suppose now that a generic package for mathematical functions on floating point types is de-
fined as follows:

package generic_float_functions is
generic (type float_type is range <>.<>);
function sqrt (x : float_type) return float_type;
function log (x : float_type) return float_type;
. . .

end package generic_float_functions;

A generic package for mathematical functions on complex numbers can be defined as shown
below. The formal package generic complex_numbers is an instance of the generic complex_numbers
package defined above. That package is generic with respect to the underlying floating point type
used. The complex functions package must use the generic floating point functions package, but
instantiated with the same underlying floating point type. This is enforced by the actual part speci-
fied for the formal package generic_float_functions.

package generic_complex_functions is
generic (package complex_numbers is

new generic_complex_numbers
generic map (<>);

package float_functions is
new generic_float_functions

generic map (float_type => complex_numbers.float_type));
use complex_numbers.all;
function sqrt (x : complex) return complex;
function log (x : complex) return complex;
. . .

end package generic_complex_functions;

This package can be instantiated for the complex number type as follows:
package short_float_functions is

new generic_float_functions generic map (float_type => short_float);
package short_complex_functions is

new generic_complex_functions generic map (complex_numbers => short_complex_numbers,
float_functions => short_float_functions);

— — —

6 Other Related Changes

6.1 Access Constants and Constant Parameters
SUAVE removes the VHDL-93 rule prohibiting an object of class constant from being of an access
type or a type that includes an access type. This applies to declared constants and to constant inter-

33

face objects. A constant access-type object is initialized to point to a given allocated object, and
cannot be changed to point to any other object. The value of the object designated by the access value
can, however, be changed. The removal of the restriction allows a constant to be declared of an ab-
stract data type that is implemented using an access type. It also allows impure functions to have
in-mode constant-class parameters of access type. This means an abstract data type that is imple-
mented using an access type can have operations that are functions, and that have the abstract data
type as parameter and result types.

Example
An ADT for dynamically created lists of time values is declared below. The function empty has

a constant parameter that is of an access type, hence the function is declared to be impure. Currently
in VHDL, this operation would have to be declared as a procedure with an in-mode variable parame-
ter.

package time_lists is
type time_list_ptr is access private;
function new_time_list return time_list_ptr;
impure function empty (time_list : time_list_ptr) return boolean;
. . .

private
type time_list_node;
type time_list_ptr is access time_list_node;
type time_list_node is

record
value : time;
next : time_list;

end record time_list_node;
end package time_lists;

— — —

Example
The following declarations define a type for an array of dynamic strings. The constant of this

type is initialized with an array of pointers to strings forming a multi-line message.
type string_ptr is access string;
type string_array is array (positive range <>) of string_ptr;
constant help_message : string_array

:= (new string’(“Enter the port name and driving value.”),
new string’(“If the port is to be disconnected, enter ““null””in place of the value.”),
new string’(“To terminate simulation, enter ““quit””.”));

— — —

7 Summary of Syntax Changes
type_definition ::=

. . .
| derived_type_definition

34

derived_type_definition ::=
[abstract] new parent_subtype_indication [record_extension_part]

record_type_definition ::= [[abstract] tagged] [limited] record_definition

record_definition ::=
record

element_declaration
{ element_declaration }

end record [record_type_simple_name]
| null record

record_extension_part ::= with record_definition

abstract_subprogram_declaration ::= subprogram_specification is abstract ;

name ::=
. . .

| type_conversion

type_conversion ::=
type_mark (expression)

| type_mark (name)

aggregate ::= record_aggregate | extension_aggregate | array_aggregate

record_aggregate ::= (record_element_association_list)

record_element_association_list ::=
element_association_list

| null record
extension_aggregate ::= (ancestor_part with record_element_association_list)

ancestor_part ::= expression | type_mark

array_aggregate ::= (element_association_list)

element_association_list ::=
element_association { , element_association }

entity_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

block_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

process_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

35

subprogram_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

package_declarative_item ::=
. . .

| package_declaration
package_body_declarative_item ::=

. . .
| package_body_declaration

package_declaration ::=
package identifier is

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;
package_private_declarative_part ::= { package_private_declarative_item }
package_private_declarative_item ::=

subprogram_declarative_item
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration
| package_declaration

type_declaration ::=
. . .

| private_type_declaration
| private_type_extension

private_type_declaration ::=
type identifier is [[abstract] tagged] [limited] [access] private ;

private_extension_declaration ::=
type identifier is [abstract] new ancestor_subtype_indication with [access] private ;

package_declaration ::=
package identifier is

36

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;

subprogram specification ::=
procedure designator

[generic (generic_list)] [(formal_parameter_list)]
| [pure | impure] function designator

[generic (generic_list)] [(formal_parameter_list)] return type_mark

generic_subprogram_instantiation ::=
[subprogram_kind] designator is new generic_subprogram_name

[generic_map_aspect] ;

generic_package_instantiation ::=
package identifier is new generic_package_name

[generic_map_aspect] ;

actual_designator ::=
. . .

| type_mark
| subprogram_name
| package_instance_name

interface_declaration ::=
. . .

| interface_type_declaration
| interface_subprogram_declaration
| interface_package_declaration

interface_type_declaration ::=
type identifier is interface_type_definition ;

interface_type_definition ::=
interface_private_type_definition
| interface_derived_type_definition
| interface_discrete_type_definition
| interface_integer_type_definition
| interface_physical_type_definition
| interface_floating_type_definition
| interface_array_type_definition
| interface_access_type_definition
| interface_file_type_definition

interface_private_type_definition ::= [[abstract] tagged] [limited] [access] private

interface_derived_type_definition ::= [abstract] new type_mark [with [access] private]

interface_discrete_type_definition ::= (<>)

37

interface_integer_type_definition ::= range <>

interface_physical_type_definition ::= units <>

interface_floating_type_definition ::= range <> . <>

interface_array_type_definition ::= array_type_definition

interface_access_type_definition ::= access_type_definition

interface_file_type_definition ::= file_type_definition

interface_subprogram_declaration ::=
subprogram_specification [is subprogram_default]

subprogram_default ::= name | <>

interface_package_declaration ::=
package identifier is new generic_package_name interface_package_actual_part ;

interface_package_actual_part ::=
generic map (<>)

| [generic_map_aspect]

References
[1] P. J. Ashenden and P. A. Wilsey, “Considerations on Object-Oriented Extensions to VHDL,”

Proceedings of VHDL International Users Forum Spring 1997 Conference, Santa Clara, CA,
pp. 109- 118, 1997.

[2] P. J. Ashenden and P. A. Wilsey, Principles for Language Extension to VHDL to Support High-
Level Modeling, Dept. Computer Science, University of Adelaide, Technical Report
TR-03/97, ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-principles.ps, 1997.

[3] J. Barnes, Ed. Ada 95 Rationale, vol. 1247. Berlin, Germany: Springer-Verlag, 1997.
[4] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City, CA: Ben-

jamin/Cummins, 1994.
[5] E. Christen, “VHDL’93 Design Guidelines,” , 1997.
[6] IEEE, Standard VHDL Language Reference Manual. Standard 1076-1993, New York, NY:

IEEE, 1993.
[7] ISO/IEC, Ada 95 Reference Manual. International Standard ISO/IEC 8652:1995 (E), Berlin,

Germany: Springer-Verlag, 1995.
[8] P. Wegner, “Dimensions of Object-Based Language Design,” ACM SIGPLAN Notices, vol.

22, no. 12, Proceedings of OOPSLA ’87, pp. 168- 182, 1987.

